
Ludwig-Maximilians-Universität München
Institut für Informatik Sheet 6

Exercise 6-1 Threads (H)

Given the following parallel program.

x, y <- 0

thread 1 do

x <- x + 1

y <- y + 1

end thread

thread 2 do

x <- x + 2

y <- y + 2

end thread

Define an LTS for this program.

a) Define the sets S and A.

Solution:

A = {t1, t2}
S = {(0, 0), (1, 0), (2, 0), (1, 1), (3, 0), (2, 2), (3, 1), (3, 2), (3, 3)}

b) Draw a diagram of the LTS.

Solution:

0,0

1,0t1

2,0
t2

1,1t1

3,0
t2

t1

2,2
t2

3,1
t2

t1

3,2
t2

t1

3,3
t2

t1

Exercise 6-2 Critical section (H)

In a concurrent program, a process cycles continuously through two sections of code. The first section,
denoted by n, is noncritical, whereas the second section, denoted by c, is critical, i.e., it is required that at
most one process may access it. Before executing the critical section, the process visits a state, denoted by
w, where it waits for access to the critical section. Informally, an execution path of a process is therefore

n→ w → c→ n→ w → c→ · · · .

Access to the critical section is granted by a scheduler which may pick any of the waiting processes
nondeterministically.



a) Define a suitable LTS that models the program with two processes. (Hint: you may want to label a
state with 〈s1, s2〉, where si ∈ {ni, wi, ci}, for i = 1, 2.)

Solution: We assume that in the initial state all processes are accessing the noncritical section.

〈n1, n2〉

〈w1, n2〉 〈n1, w2〉

〈w1, w2〉

〈c1, n2〉 〈n1, c2〉

〈c1, w2〉〈w1, c2〉

ns1 ns2

ns2

ac1

cs1

ns2

ac2

ns1

cs2

ns1

ac1ac2

cs1cs2

Comments:

• The interpretation of the action labels is as follows

nsi means “execution of the noncritical section of process i”

aci means “access to the critical section by process i”

csi means “execution of the critical section for process i”

• The states 〈n1, n2〉, 〈w1, n2〉, 〈w1, w2〉, 〈n1, w2〉 form the classic concurrency diamond. With
labelled transition systems, the semantics of concurrent processes is interleaving—the two pro-
cesses may finish executing their noncritical sections in either order.

• In any state there is always a nondeterministic choice, except for the states where one process
is in the critical section and the other is waiting, i.e., 〈c1, w2〉 and 〈w1, c2〉—we may only see
the former finishing the execution of the critical section.

b) Execution might not be fair. There are infinite paths starting at 〈w1, w2〉 where thread 1 never enters
the critical section. Specify one such path.

Solution:
〈w1, w2〉

ac2−−→ 〈w1, c2〉
cs2−−→ 〈w1, n2〉

ns2−−→ 〈w1, w2〉
ac2−−→ 〈w1, c2〉

cs2−−→ . . .

c) Define a suitable LTS that models the program with three processes (only a sketch is fine).

Solution: Label a state with the triple 〈s1, s2, s3〉, with si ∈ {ni, wi, ci}, for i = 1, 2, 3 and proceed
as in Question 1. (This model has 27− (1 + 3 · 2) = 20 states.)

d) Can you give an upper bound to the total number of states of the LTS that models the program
with twenty processes?

Solution: An upper bound may be obtained by considering that, in the worst case, each process may
be in any local state regardless of the state of the other processes (i.e., ignoring mutual exclusion for
the shared resource). Since each process may visit 3 states, an upper bound for the total number of
states is 320. This is an instance of the problem of state-space explosion—the number of states grows
exponentially with the number of components in the system.

e) Suppose now that the scheduler serves the waiting processes according to a first-come first-served
policy. Define a suitable LTS that models the program with two processes.

Solution: The state representation for this LTS is a triple 〈s1, s2, q〉, where s1 and s2 are as before
(i.e., they model the state of each program) and q ∈ {0, 1, 2} models the state of the scheduler.

• q = 0 indicates that there are no processes waiting for access to the critical section.

• q = 1 indicates that process 1 has come first.



• q = 2 indicates that process 2 has come first.

The LTS is graphically depicted below. Notice that, essentially, this LTS resolves the nondeterministic
behaviour of the scheduler by splitting the state in which the two processes are both waiting into
two distinct states 〈w1, w2, 1〉 and 〈w1, w2, 2〉.

〈n1, n2, 0〉

〈w1, n2, 1〉

〈c1, n2, 0〉

〈w1, w2, 1〉

〈c1, w2, 2〉

〈n1, w2, 2〉

〈n1, c2, 0〉

〈w1, w2, 2〉

〈w1, c2, 1〉

ns1 ns2

ns2

ac1

cs1

ns2

ac2

ns1

cs2

ns1

ac1 ac2

cs1cs2

Comparing this model with the LTS of (a), it is interesting to note that this is a fairer system. In this
LTS, a process may be waiting forever without getting access to the critical section (see (b)). Instead,
in the FIFO system, if one starts from 〈w1, w2, 1〉 then, after ac1 is observed, it is not possible to
observe another ac1 without having observed a ac2 before. (This will be formalised problem when
we discuss temporal logic specifications.)


