Homework till the 23th of May

1 Derive using β -reduction

- and tt ff \rightsquigarrow^* ff
- and ff tt ~→* ff
- **2** Let $f := \lambda Z \cdot \lambda s \cdot cond([[x > 0]]s, Z[[y := y + x; x := x 1]]s, s)$. Give $f^1\Omega, f^2\Omega, f^3\Omega, f^n\Omega$ and $f^{\omega}\Omega$, where Ω is as in the lecture.
- 3 Let us fix a complete partially ordered set (D, \preccurlyeq) and a continuous function $f : D \rightarrow D$.
 - i) Show that f is monotone, i.e. $f(a) \preccurlyeq f(b)$ for all $a, b \in D$ with $a \preccurlyeq b$.
 - *ii*) Using *i*), show by beans of induction $\forall i \ge 0(f^i(\bot) \preccurlyeq f^{i+1}(\bot))$ and $\forall i \ge 0(f^i(\bot) \preccurlyeq x)$ for any fixed point x of f.
 - iii) Conclude using i) and ii) the theorem of Knaster-Tarski from the lecture. That is, show that $\sup\{f^i(\bot) \mid i \ge 0\}$ is the least fixed point of f.