## Homework till the 23th of May

1 Derive using $\beta$-reduction

- and $\mathbf{t t} \mathbf{f f} \rightsquigarrow *$ ff
- and $\mathbf{f f} \mathbf{t t} \rightsquigarrow *$ ff

2 Let $f:=\lambda Z . \lambda s . c o n d(\llbracket x>0 \rrbracket s, Z \llbracket y:=y+x ; x:=x-1 \rrbracket s, s)$. Give $f^{1} \Omega, f^{2} \Omega, f^{3} \Omega, f^{n} \Omega$ and $f^{\omega} \Omega$, where $\Omega$ is as in the lecture.
3 Let us fix a complete partially ordered set $(D, \preccurlyeq)$ and a continuous function $f: D \rightarrow D$.
i) Show that $f$ is monotone, i.e. $f(a) \preccurlyeq f(b)$ for all $a, b \in D$ with $a \preccurlyeq b$.
ii) Using $i$ ), show by beans of induction $\forall i \geq 0\left(f^{i}(\perp) \preccurlyeq f^{i+1}(\perp)\right)$ and $\forall i \geq 0\left(f^{i}(\perp) \preccurlyeq x\right)$ for any fixed point $x$ of $f$.
iii) Conclude using i) and ii) the theorem of Knaster-Tarski from the lecture. That is, show that $\sup \left\{f^{i}(\perp) \mid i \geq 0\right\}$ is the least fixed point of $f$.

