Homework till the 31th of May

1 Let (D, \preccurlyeq) denote a finite complete partially ordered set and assume that $f: D \rightarrow D$ is monotonic. Show that f is continuous.
2 Find a complete partially ordered set (D, \preccurlyeq) and a function $f: D \rightarrow D$ which is monotonic but not continuous.
3 Calculate the final state of $\mathcal{C} \llbracket x:=$ read; output $x \rrbracket\langle 1$, nil, mem \rangle. (Note: the definition of $\mathcal{C} \llbracket x:=e \rrbracket$ was updated in the script.)
4 Give, without formal calculation, the least fixed point of

$$
\begin{aligned}
\Theta_{w} \mapsto \lambda \sigma . \text { let } & (\mathcal{E} \llbracket x>0 \rrbracket \sigma) \text { be }\left\langle v, \sigma^{\prime}\right\rangle \text { in } \\
& v \rightarrow \Theta_{w}\left(\mathcal{C} \llbracket \mathrm{y}:=\text { read; output } \mathrm{y} ; \mathrm{x}:=\mathrm{x}-1 \rrbracket \sigma^{\prime}\right), \sigma^{\prime}
\end{aligned}
$$

