

antric

a

250+ staff

About me

(U
()

()

12 offfices (9 in Germany)

Experts for developing custom IT solutions

Involvement in the IT community via

* twitter
Dr. Andreas Schroeder * github
codecentric AG * meetup
Elsenheimerstr 55A ° ..

80687 Miinchen
andreas.schroeder@codecentric.de
www.codecentric.de

blog.codecentric.de

Agenda

The Pain

Therefore, Microservices
Stable Interfaces: HTTP, JSON, REST

Characteristics

Comparison with Precursors

Challenges
* With special focus on Service Versioning

Conclusion

The Pain

Observed problems

* Area of consideration
* Web systems
* Built collaboratively by several development teams

* With traffic load that requires horizontal scaling
(i.e. load balancing across multiple copies of the system)

* Observation
* Such systems are often built as monoliths or layered systems (JEE)

Software Monolith

A Software Monolith

* One build and deployment unit

 One code base

* One technology stack (Linux, JVM, Tomcat, Libraries)
Benefits

 Simple mental model for developers
* one unit of access for coding, building, and deploying

» Simple scaling model for operations
* just run multiple copies behind a load balancer

Problems of Software Monoliths

Huge and intimidating code base for developers

Development tools get overburdened

* refactorings take minutes

* builds take hours

* testing in continuous integration takes days

Scaling is limited
* Running a copy of the whole system is resource-intense
* It doesn’t scale with the data volume out-of-the-box

Deployment frequency is limited
* Re-deploying means halting the whole system
* Re-deployments will fail and increase the perceived risk of deployment

Layered Systems

A layered system decomposes a monolith into layers
 Usually: presentation, logic, data access

* At most one technology stack per layer
* Presentation: Linux, JVM, Tomcat, Libs, EJB client, JavaScript
* Logic: Linux, JVM, EJB container, Libs
* Data Access: Linux, JVM, EJB JPA, EJB container, Libs

Benefits
» Simple mental model, simple dependencies

» Simple deployment and scaling model

Presentation

Data Access

Problems of Layered Systems

Still huge codebases (one per layer)

... with the same impact on development, building, and deployment

Scaling works better, but still limited

Staff growth is limited: roughly speaking, one team per layer works well
* Developers become specialists on their layer
» Communication between teams is biased by layer experience (or lack thereof)

Growing systems beyond the limits

* Applications and teams need to grow beyond the limits imposed by monoliths and layered systems, and they
do - in an uncontrolled way.

 Large companies end up with landscapes of layered systems that often interoperate in undocumented ways.

* These landscapes then often break in unexpected ways.

How can a company grow and still have a working IT architecture and vision?

* Observing and documenting successful companies (e.g. Amazon, Netflix) lead to the definition of
microservice architecture principles.

10

Therefore, Microservices

History

« 2011: First discussions using this term at /
a software architecture workshop near Venice

» May 2012: microservices settled as the most
appropriate term

* March 2012: “Java, the Unix Way” at 33rd degree
by James Lewis

James Lewis

* September 2012: “pService Architecture” at
Baruco by Fred George

* All along, Adrian Cockroft pioneered this style
at Netflix as “fine grained SOA”

http://martinfowler.com/articles/microservices.html#ffootnote-etymology Adrian Cockroft

12

Underlying principle

On the logical level, microservice architectures are defined by a

functional system decomposition into manageable
and independently deployable components

* The term “micro” refers to the sizing: a microservice must be manageable by a single development team (5-9
developers)

* Functional system decomposition means vertical slicing
(in contrast to horizontal slicing through layers)

* Independent deployability implies no shared state and inter-process communication (often via HTTP REST-ish
interfaces)

13

More specifically

 Each microservice is functionally complete with
* Resource representation
* Data management

* Each microservice handles one resource (or verb), e.g.
* Clients
* Shop Items
* Carts
* Checkout

Microservices are fun-sized services, as in
“still fun to develop and deploy”

Independent Deployability is key

It enables separation and independent evolution of
 code base

* technology stacks

* scaling

* and features, too

15

Independent code base

Each service has its own software repository

Codebase is maintainable for developers - it fits into their brain
Tools work fast - building, testing, refactoring code takes seconds
Service startup only takes seconds

No accidental cross-dependencies between code bases

16

Independent technology stacks

Each service is implemented on its own technology stacks

The technology stack can be selected to fit the task best

Teams can also experiment with new technologies within a single microservice

No system-wide standardized technology stack also means

* No struggle to get your technology introduced to the canon

* No piggy-pack dependencies to unnecessary technologies or libraries
* It‘s only your own dependency hell you need to struggle with ©

Selected technology stacks are often very lightweight

A microservice is often just a single process that is started via command line, and not code and
configuration that is deployed to a container.

17

Independent Scaling

Each microservice can be scaled independently

* Identified bottlenecks can be addressed directly

 Data sharding can be applied to microservices as needed

* Parts of the system that do not represent bottlenecks can

remain simple and un-scaled

JEE Pet Store

Netflix \

Scaling
Cube

horizontal & vertical

18

functional decomp.

Independent evolution of Features

Microservices can be extended without affecting other services
* For example, you can deploy a new version of (a part of) the Ul without re-deploying the whole system

* You can also go so far as to replace the service by a complete rewrite

But you have to ensure that the service interface remains stable

19

Stable Interfaces - standardized communication

Communication between microservices is often standardized using

* HTTP(S) - battle-tested and broadly available transport protocol

* REST - uniform interfaces on data as resources with known manipulation means
* JSON - simple data representation format

REST and JSON are convenient because they simplify interface evolution
(more on this later)

20

Stable Interfaces: HTTP, JSON, REST

HTTP Example

GET / HTTP/1.1

Host: www.codecentric.de

Connection: keep-alive

Cache-Control: max-age=0

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,image/webp,*/*;q=0.8

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/38.0.2125.104 Safari/537.36

Accept-Encoding: gzip,deflate

Accept-Language: de-DE,de;q=0.8,en-US;q=0.6,en;0=0.4

Cookie: ..

HTTP/1.1 200 OK

Date: Tue, 21 Oct 2014 ©06:34:29 GMT

Server: Apache/2.2.29 (Amazon)

Cache-Control: no-cache, must-revalidate, max-age=0
Content-Encoding: gzip

Content-Length: 8083

Connection: close

Content-Type: text/html; charset=UTF-8 .

HTTP

Available verbs GET, POST, PUT, DELETE (and more)
« Safe verbs: GET (and others, but none of the above)
* Non-idempotent: POST (no other verb has this issue)

Mechanisms for

* caching and cache control

* content negotiation

* session management

* user agent and server identification

Status codes in response (200, 404, etc) for
information, success, redirection, client error, server error

Rich standardized interface for interacting over the net

23

JSON

* Minimal and popular data representation format ﬂf’fﬂff{}
- Schemaless in principle, but can be validated if need be { members }
p ple, members
pair
Example of two bank accounts: pair , members
pair
string : value
[{ arvay
[]
"number" 12345, [elements]
"balance" : _2@.@@, elements
1] 1] O 11] 1] -Illﬂllr”g
currency . EUR value , elements
value
‘]{’, string
number
"number" : 12346, object
"balance"” : 120.00, f"'"‘”—"
"currency" : "USD" false
}] null
json.org

24

REST

» REST is an architectural style for systems built on the web. It consists of a set of coordinated architectural
constraints for distributed hypermedia systems.

* REST describes how to build systems on battle-tested protocols and standards that are already out there (like
HTTP)

» REST describes the architectural ideas behind HTTP, and how HTTP can be used to do more than serving static
web content

25

REST Architectural Constraints

Client-Server: Separation of logic from user interface

Stateless: no client context on the server —

Cacheable: reduce redundant interaction between client and server

Layered System: intermediaries may relay communication between client and server (e.g. for load balancing)
» Code on demand: serve code to be executed on the client (e.g. JavaScript)

* Use of known HTTP ve})s g resources

* Resource manipulation through representations which separated from internal representations

* Hypermedia as the engine of application state (HATEOAS):
the response contains all allowed operations and the resource identifiers needed to trigger them

26

HATEOAS example in JSON

{

¥

Resource representation
"number" : 12345, x////’—

"balance"” : -20.00,
"currency"” : "EUR", | (K ov cl |
"links" : [{ relation name (known by clients
"rel" "self",‘///’——ﬁ\
"href" : "https://bank.com/account/12345"
b A
"rel” : "deposit",
"href" : "https://bank.com/account/12345/deposit”

b \

URI for operation

27

Stable Interfaces

* HTTP offers a rich set of standardized interaction mechanisms
that still allow for scaling

 JSON offers a simple data format that can be (partially) validated

* REST provides principles and ideas for leveraging HTTP and JSON to build evolvable microservice interfaces

Be of the web, not behind the web
lan Robinson

28

Characteristics

Componentization via Services

Interaction mode: share-nothing, cross-process communication
Independently deployable (with all the benefits)
Explicit, REST-based public interface

Sized and designed for replaceability
* Upgrading technologies should not happen big-bang, all-or-nothing-style

Downsides

* Communication is more expensive than in-process

* Interfaces need to be coarser-grained

* Re-allocation of responsibilities between services is harder

30

Favors Cross-Functional Teams

* Line of separation is along functional boundaries, not along tiers

/ VS

[]
]
I

Presentation

Logic

Data Access

31

Decentralized Governance

Principle: focus on standardizing the relevant parts, and
leverage battle-tested standards and infrastructure

Treats differently

* What needs to be standardized
» Communication protocol (HTTP)
* Message format (JSON)

* What should be standardized
* Communication patterns (REST)

* What doesn‘t need to be standardized
* Application technology stack

32

Decentralized Data Management

* 00 Encapsulation applies to services as well

 Each service can choose the persistence solution that
fits best its
 Data access patterns
* Scaling and data sharding requirements

 Only few services really need
enterprisey persistence

33

Infrastructure Automation

* Having to deploy significant number of services
forces operations to automate the infrastructure for

* Deployment (Continuous Delivery)
* Monitoring (Automated failure detection)
* Managing (Automated failure recovery)

 Consider that:
* Amazon AWS is primarily an internal service

* Netflix uses Chaos Monkey to further enforce
infrastructure resilience / /

[I -]
[1
..

/]

34

Comparisons with Precursors

Service-Oriented Architecture

NOLLYY1SIHINHO JOIAH3S vivd
- /

-\
/ g/ u

O

3

Service-Oriented Architecture

SOA systems also focus on functional decomposition, but

* services are not required to be self-contained with data and Ul, most of the time the contrary is pictured.

* Itis often thought as decomposition within tiers, and introducing another tier - the service orchestration tier
In comparison to microservices

» SOAis focused on enabling business-level programming through business processing engines and languages
such as BPEL and BPMN

» SOA does not focus on independent deployment units and its consequences

* Microservices can be seen as “SOA - the good parts”

37

Component-Based Software Engineering

Underlying functional decomposition principle of microservices is basically the same.
Additionally, the following similarities and differences exist:

State model
* Many theoretical component models follow the share-nothing model

Communication model

» Component technologies often focus on simulating in-process communication across processes (e.g. Java
RPC, 0SGi, EJB)

* Microservice communication is intra-process, serialization-based

Code separation model
* Component technologies do require code separation
» Components are often developed in a common code repository

Deployment model
» Components are often thought as being deployed into a uniform container

38

Challenges

Fallacies of Distributed Computing

Essentially everyone, when they first build a distributed application, makes the following eight
assumptions. All prove to be false in the long run and all cause bigtrouble and painfullearning
experiences.

' ﬁ&mﬁ%‘& ! .;l:‘__ oy

* The network is reliable

* Latencyis zero

 Bandwidth is infinite

* The network is secure

* Topology doesn‘t change

* There is one administrator

» Transport cost is zero

* The network is homogeneous

Peter Deutsch

40

Microservices Prerequisites

Before applying microservices, you should have in place
* Rapid provisioning
 Devteams should be able to automatically provision new infrastructure

* Basic monitoring
* Essential to detect problems in the complex system landscape

 Rapid application deployment
* Service deployments must be controlled and traceable
* Rollbacks of deployments must be easy

Source
http://martinfowler.com/bliki/MicroservicePrerequisites.html

41

http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html

Evolving interfaces correctly

Microservice architectures enable independent evolution of services - but how is this done without breaking
existing clients?
There are two answers

* Version service APIs on incompatible APl changes

* Using JSON and REST limits versioning needs of service APls

Versioning is key

* Service interfaces are like programmer APIls - you need to know which version you program against

* As service provider, you need to keep old versions of your interface operational while delivering new

versions

But first, let’s recap compatibility

42

API Compatibility

There are two types of compatibility

* Forward Compatibility
* Upgrading the service in the future will not break existing clients

* Requires some agreements on future design features, and the design of new versions to respect old
interfaces

* Backward Compatibility
* Newly created service is compatible with old clients
* Requires the design of new versions to respect old interfaces

The hard type of compatibility is forward compatibility!

43

Forward compatibility through REST and JSON

REST and JSON have a set of inherent agreements that benefit forward compatibility
* JSON: only validate for what you really need, and ignore unknown object fields (i.e. newly introduced ones)

* REST: HATEOAS links introduce server-controlled indirection between operations and their URIs

{ "number" : 12345,

;iinks" c [{ ///fV "https://accounts.bank.com/12345/deposit™
"rel” : "deposit",
"href" : "https://bank.com/account/12345/deposit™

bl

44

Compatibility and Versioning

Compatibility can’t be always guaranteed, therefore versioning schemes (major.minor.point) are introduced
* Major version change: breaking APl change

* Minor version change: compatible APl change

Note that versioning a service imposes work on the service provider

* Services need to exist in their old versions as long as they are used by clients

* The service provider has to deal with the mapping from old API to new API as long as old clients exist

45

REST API Versioning

Three options exist for versioning a REST service API

1. Version URIs
http://bank.com/v2/accounts

2. Custom HTTP header

api-version: 2
3. Accept HTTP header

Accept: application/vnd.accounts.v2+json
Which option to choose?

* While developing use option 1, it is easy to pass around

* For production use option 3, it is the cleanest one

46

REST API Versioning

 Itisimportantto
* version your API directly from the start
* install a clear policy on handling unversioned calls
* Service version 1?
* Service most version?
* Reject?

Sources
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/

47

http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/

Further Challenges

Testing the whole system
* A single microservice isn‘t the whole system.
* A clear picture of upstream and downstream services is needed for integration testing

Transactions
* Instead of distributed transactions, compensations are used (as in SOA)

Authentication
* |s often offloaded to reverse proxies making use auf authentication (micro)services

Request logging

* Pass along request tokens
* Add them to the log

* Perform log aggregation

48

Conclusion

Microservices: just ...?

* Just adopt?

* No. Microservices are a possible design alternative for new web systems and an evolution path for existing
web systems.

* There are considerable amounts of warnings about challenges, complexities and prerequisites of
microservices architectures from the community.

* Just the new fad?

* Yes and no. Microservices is a new term, and an evolution of long-known architectural principles applied in
a specific way to a specific type of systems.

* The term is dev and ops-heavy, not so much managerial.
* The tech landscape is open source and vendor-free at the moment.

50

Summary

There is an alternative to software monoliths

Microservices: functional decomposition of systems into
manageable and independently deployable services

Microservice architectures means
* Independence in code, technology, scaling, evolution
* Using battle-tested infrastructure (HTTP, JSON, REST)

Microservice architectures are challenging

» Compatibility and versioning while changing service interfaces
* ... transactions, testing, deploying, monitoring, tracing is/are harder

Microservices are no silver bullet, but may be the best way forward for
* large web systems

* built by professional software engineers

51

Sources and Further Reading

* http://martinfowler.com/articles/microservices.html

* http://www.infoq.com/articles/microservices-intro

* http://brandur.org/microservices

* http://davidmorgantini.blogspot.de/2013/08/micro-services-what-are-micro-services.html
e http://12factor.net/
* http://microservices.io/

 https://rclayton.silvrback.com/failing-at-microservices

* http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
* http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-

melee.html

* http://capgemini.github.io/architecture/microservices-reality-check/

52

http://martinfowler.com/articles/microservices.html
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://brandur.org/microservices
http://brandur.org/microservices
http://brandur.org/microservices
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://12factor.net/
http://microservices.io/
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/

Pictures

e Slide 1: Cover Picture
* Slide 6: Monolith

Boris Macek
Martin Dosch

53

