Theepknl Languagé

Alexander Knapp, Nora Koch
Ludwig—Maximilians—Universitat Minchen
{knapp, kochn} @ nf or mat i k. uni - ruenchen. de

Luis Mandelf
Forschungsinstitut flr Angewandte Software-Technologie (FAST)
mandel @ ast . de

28th November 1996

Abstract

Electronic Product Catalogues (EPCs) have reached theetankl are gradually dis-
placing traditional paper catalogues. EPCs usually caapriultimedia presentations, lots
of special effects, video, audio, and images, besides thdupts being presented, their
number ranging from a dozen to tens of thousands. For thefigation of such catalogues,
the languagepkmn is presented. The languagehism -like, provides primitives for the
construction of product families, integrates templatedtie presentation of products of the
same family, and allows the definition of variables as weltres definition of macros. It
is window oriented, embeds SQL for database access, pahmitonnection with external
objects, and has network capability.

Keywords: Electronic Product Catalogues, Multimedia, Mark-Up Laage.

*This work was supported by the BMBF project EPKfix.
tThe work was carried out when Luis Mandel was a member of the Institutféimhatik , Ludwig—Maximilians—
Universitat Minchen.

Contents

Introduction 3
1 TheEPK-fix Project 4
1.1 Electronic Product Catalogues 4
1.2 TheAimoftheProject 4
1.3 The Architecture of the EPK-fix System 5
2 Development of theepkm Language 6
2.1 Requirements Analysis 6
2.2 TheEPCframework 8
3 The Syntax of epkmi 20
3.1 Characteristics of thepkm Language 20
3.2 ElementsofthelLanguage, 22
3.3 The Structure of aapkmi Catalogue 27
4 The Semantics of epkmi 29
4.1 TheModel. 29
4.2 TheRules 31
5 Conclusionsand Further Steps 34
Acknowledgments 35
References 35
A Example 37
B Document Type Definition 43

| ntroduction

With the expansion of the World Wide Web online services and the distribution ofnrafioon
on CD-ROM, modern electronic support of advertising and sale of goods becomesactay f
in the marketing strategy of many companies. The technologies used to dendaelaer
multimedia systems are still far from being easy and efficient and they stany weaknesses.

Due to the significant degree of difficulty in developing, producing and maintaining smalbest

multimedia software, it is necessary to get the job done by large multipdiisary teams of pro-
grammers, designers, media-experts, and quality control specialistsn$erao this problem
lies partly in putting easy-to-use tools in the hands of a small team of soffwaiessionals and
marketing experts which together would:

¢ help to determine the requirements,

reduce the time to design the product,

increment the quality testing speed,

reduce the costs of producing and updating multimedia systems,

simplify the maintenance of the information.

Informations systems, which focus their attention in multimedia presentati products or
services with functions that allow searching, selection, and ordering ke e¢ectronic product
catalogues (EPCs). Inthis paper we will concentrate our attention only orothedf snformation

systems: EPCs on CD-ROM. All the same we are sure that most of our workewilseful for
other information systems.

We think that one main issue of the problem is a connecting basic formalism, EP @3 lae
developed inepkm is a specification language for EPCs, that allows a declarative desaripti
of them. It is part of the EPK-fix project, that aims to develop methods and todsgport
the whole life cycle of electronic product catalogues on CD-ROM. These toolsuypjport the
requirement analysis, the design of the EPCs, the realization of spesi@eseand an extensive
automatic validation of the resulting catalogue. The project is carried outhegeith one
industrial partner and three universities.

The languagepkm was defined as an instance of the Standard Generalized Markup Language
(sgm), based on Hypertext Markup Languagé¢ (i) but enlarged with special features needed

for the description of EPCs.epkmnl is window oriented and allows dynamic generation of
layout elements. It includes templates, primitives for the control flowjatsée and macro
definition, among other introduced elements. The definition of the specification langaage
based on an object-oriented framework for EPCs, which describes the compoheletstronic
product catalogues and the interaction among them. The determination of allevedEPC’s
components was done during the requirement analysis phase.

The first chapter presents a brief description of electronic product catalogustasesithe goal

of the EPK-fix project and describes the architecture of the system. The sdw@ptdidetails the

epkmn language development process including the requirements analysis and the construction
of the framework. Chapter three describes the characteristics and the gyrtexlanguage

epkm . The semantics is defined in the fourth chapter and chapter five delineatesstonsl|

and further steps in the development and implementation. An example is givée ifirst
appendix and the complete Document Type Definition (DTD) of the language in the second.

1 TheEPK-fix Project

EPK-fix is a project belonging to the software engineering promotion program of theaaer
Ministry of Education, Science, Research and Technology (BMBF). The tasksgbriogram is
the research and the test of new technologies for the production of application reoftilae
target of the EPK-fix project is to define a specification language and to devs&watools for
the easy and low-cost production of electronic product catalogues.

1.1 Electronic Product Catalogues

Electronic Product Catalogues are computer controlled information systemsmitmportant
multimedia (especially visual) product presentation, navigation facildies almost always
equipped with a shopping bag administration feature. They are an inexpensivatare to
paper catalogues, but a high quality design is still related to enormous castaskehere are no
appropriate tools available.

EPC developing tools would be welcome in every company or institution that waptegent its
products and/or services. The catalogue design and development would be done by a teamwork
of marketing experts, graphic designers, and programmers. Marketing peoplly bslahg to
the enterprise, the others may be independent catalogue developers.

In each case there are different groups or teams of people involved in the ER@4$s. First
of all there is the person or group who makes the decision to go into the markeswah a
multimedia presentation for potential customers. We call them cataloguelproVihey or their
marketing people describe their wishes to the catalogue developer, who mgyy dediproduce
it by himself or require the assistance of software experts. EPCs are deédmibe used by
customers or users, who are interested in the products or services thatrageotiered in the
catalogue (we will call them users or end-users).

1.2 TheAim of the Project

The goal of the EPK-fix project, as already said, is the development of methods alhectian

of integrated tools for efficient specification, production, and validation of EPCs

The project is part of a promotion program supported by the BMBF for software technology
development in economy, science and engineering. Software users cooperateftwHres
developers in each project, achieving better know-how transfer.

4

The EPK-fix project partners are:

Mediatec Private Limited Company for Multimedia Solutions,

Knowledge Acquisition Research Group of the Bavarian Center for Knowledged
Systems (FORWISS),

Programming Languages and Compilers Unit of the Department of Computer Science of
the Technical University Darmstadt,

Programming and Software Technology Unit of the Institute of Computer Science of the
Ludwig-Maximilians-University Munich,

Chair for Compiler Construction of the Institute for Software Technique |, Depamt of
Computer Science of the Dresden University of Technology.

The methodologies and specific tools support the complete life cycle of EPCs staittinpe
catalogue providers requirements, continuing with the catalogue design up to therfahtsts.
These tools must be easy to use, reduce the amount of EPC development time and permit
low-cost production of catalogues. These conditions will be a prerequisite for thef ulke
EPK-fix system especially in small and medium size organizations.

1.3

The Architecture of the EPK -fix System

The EPK-fix system components comprise a formal description language for elegiroduct
cataloguesgpknl) and the following four tools: the Requirements Analysis ASSIstant (RASSI),
the Specification ASSlistant (SASSI), the Generation ASSIstant (§AS8 the Testing ASSIs-
tant (TASSI).

epkmnl is a specification language that makes the description of the static and dynamic
aspects of the electronic product catalogue possible.

RASSI supports the informal recording of information (text, images, video) tisattrat
the requirements analysis stage based on structured interviews. The catalogder
expresses his desires for the catalogue to be designed during these interviews.

SASSI is responsible for the EPC design based on the results of the RASSI toeftaoynyv
them in a catalogue specificationepkm . Efficient and powerful editors that assist the
catalogue developer are part of this component.

GASSI makes use of the EPC specification, that was generated by SASSlaasldtes
theepkm description into a general programming language, implementing this way the
electronic product catalogue.

TASSI realizes static tests on the catalogue descriptiepkm and a dynamic validation
on the EPC generated by GASSI, using for that purpose especially prepareddest da

5

2 Development of theepkm Language

In this section we describe the different steps we followed to develoatiyribge. First of all an
exhaustive requirements analysis was made to determine the general ¢isiestd catalogues
and the features needed in the design of EPCs. A brief outline of our “Catalogues-BOGD
State of the Art” [KM96] is given. We developed a framework for the EPC compaendinis
object-oriented view served as a careful description of the EPC elenmahthair attributes and
led us to the next and final step: the definition of the specification langalgel . (See chapter
3 and chapter 4.)

2.1 Requirements Analysis

The analysis of the EPCs existing on the market demonstrates that they go mihehn floan
paper catalogues with cross references. They offer services likendeatares, demos to show
end-users how to use the catalogue, enquiries through telephone communication and fang or onl
ordering. Additionally, developers need features that allow an easy anddst\production of
standard catalogues but that are on the other hand, flexible enough to design more sbguhistic
ones. Maintenance and proof of correctness are also important subjects to bereahside

We observed that working with an electronic product catalogue can be divided iatdiffierent
steps:

e Installation.
In this initial step the access component of the EPC is installed onto the canquutig-
uring it to match multimedia hardware.

e Presentation.

The user is presented with publicity messages about the company and its offamchgs
perhaps a demo of navigation facilities through the catalogue. During this phase the
potential customer is a passive user, who is shown how the catalogue works othigr tha
the next steps where he interacts with it.

e Search.
Here the end-user enters the selecting criteria according to which thelEeRMcates the
matching entries.

e Selection.
Alternating with the previous step the desired products are marked, thusgréeg order
list.

e Order. The list created is formatted and forwarded to the service provider or produc
vendor.

| [Q [O M R [B] S M

windows Vi v v v

frames Vv Vi vV

overlapped frames V V

modifiable windows Vv v

fixable windows Vv

help windows Vv Vv Vv v v

help with hypertext Vv Vi v

active help v v

product graph V vV V v v v

product comparisor V v v

alternative search Vv v Vv Vv v

input for searching Vv and, or, not v Vv

communication printer | printer | printer | printer | printer | printer | printer
btx btx btx

animation Vv v v v

audio v I V[V v v v

special effects v/ Vi v v v

video v IV [V v v

games v/ vV v

Q: Quelle [Que95], O: Otto [OTT95], M: Mercedes Benz [Mer95], R: RS [RS]
B: Bosch [Bos95], S: Springer [Spr95], Mi: Microsoft [Mic95].

Figure 1: Catalogue comparison

Depending on the relative importance of the presentation, the searching, th®selad ordering
steps, we distinguish betwepresentation, searching, andorder catalogues.

Each step was analyzed in detail and a list of the observed element$astive system behaviour
reacting to different user’s stimuli was made. The content of the list vas thecked against
many catalogue examples to determine even slight differences in comntoreear hese results
have been tabulated. A small subset of one table is shown in figure 1.

We conclude that general requirements of the langegdari are:
e support of multimedia elements,

e incorporation of control constructions to permit interaction with the user and nawga
through the catalogue,

e simple handling of catalogue standard operations like user registration, produattisga
order forms, and question forms,

e good implementability,
e good validability,

e easiness to be learned.

As another conclusion of our analysis we grouped the EPC functional requirements to fake consi
ered in the design of the specification language, as follows:

e Satic requirements.

These mean the existence of layout elements in the language, such as winday, fram
button, check-box, pull-down menu, slider, text, paragraph, heading, listing etc.

e Dynamic requirements.

This group includes every interactive situation, such as starting or stoppangmation or
avideo, navigating by clicking on buttons, scrolling in a browser, selectingfbetgions,
sending an order, etc.

e Data requirements.

These are primarily products, companies, and customer information, help textpor he
windows, navigation sequences, orders, and multilingual text for the pages. All this
multimedia information has to be stored in files or databases.

To document the requirements of the languaglkni in detail, we have choose an object-oriented
approach, that is the development of an application framework using techniquesaisetkem
[Dav90], [Pfl91], and [RBP9I1].

2.2 TheEPC framework

An EPC framework is a set of cooperating classes that make up a reusaigle fwesan EPC
specification language.

The following steps were performed in constructing our framework: identifioatf abstract and
concrete classes, definition of attributes, identification of associadimhaggregations between
objects, choice of methods that reflect their behaviour, organization and sintpificd the
model using inheritance, iteration to refine the framework, grouping classesantponents or
modules. This steps are suggested by [R8F for the Object Modeling Technique (OMT). A
good overview on object-oriented methods can be found in [Bal95].

The resulting interacting components, observed in every EPCsamacture, layout, direction,
product database, andservices.

The selection of the wordirection needs a few more words: the choice follows the idea of
directing a film. The contemplation of a catalogue can be compared to the actsaeiof) a
movie. The viewer of the movie has no chance to modify the sequence of the scenethahile
catalogue user develops his own screenplay making use of the navigation facilhie concept

is supported by authoring tools like Director from Macromedia [Mac95].

8

e Thedtructureis the skeleton of the catalogue; it comprises a graph or hierarchy of themes
and pages and the navigation between them to guide the user through the catalogue.

e Thelayout is the static description of frames, windows and their contents.

e Thedirection describes the dynamic aspect. We can distinguish between macro-direction
for the navigation through the catalogue and micro-direction for the activitidsrwit
frame or window.

e Theproduct database component supports all the information about offers, in such a way
that it can easily be searched, exchanged, and maintained.

e The services add some comfort to the EPC allowing for example the administration of
orders, the user registration, the access to help functions, online communicatidribe
catalogue navigation.

It is beyond the scope of this paper to describe all classes of the EPC frameawevkyy section
only a brief description of some relevant classes and their variables atibdseare given. A
detailed description can be found in the report of the EPK-fix project [KKMW9%§r the
graphical representation we have chosen the OMT notation. Examples of part of therents
are given.

We use g ava-like syntax to describe each class of the framework, its instanceblesisand
the methods which define its behaviour. For more details apaua see [GM95], [VHSS96],
[Fla96], [AG96]. In the next sections names of classes, attributes arftbdsebelonging to the
framework are printed in typewriter font.

2.2.1 The Catalogue Structure

A catalogue consists of a set of themes, databases, a configuration, and therditeatiacts as
interface between them. A theme is nothing else than a view of the database gnorquingts
under some aspects. Different theme hierarchies conform different views shthe database
which are not restricted to conform a partition of it, i.e., a given product gpear in two
different hierarchies. Themes additionally build a navigation structuréidw @ahe jump from
one theme to another.

The catalogue’s structure is organizedlimenes and they again may structuredlihenes and
Themes may be contain one or more pages, we called tiient ual Pages. The aggregation
relation of these classes can be seen in figure 2. Both are classes thatfiahethe abstract
classSt r uct ur e, which has only a grouping function and for that reason is not included in
figure 2. The abstract classkayout , Di r ecti on, andDat abase mentioned in the figure
2 together with classes that inherit from them are described in the faitpsections.

The clas€Cat al ogue has a methodt art () , which calls the initialization process @on-
figurati on, starts the first process and the first then@anf i gur ati on is responsible
for the installation process. The methstlart () of Thene starts the first process and the
first virtual page and the methad art () of Vi rt ual Page awakes the first process and the
drawing of the layout elements of the first page.

Catalogue

7717
. l

Theme Direction Database

1+

VirtualPage <}

1+

Layout

Figure 2: The catalogue structure

cl ass Cat al ogue ext ends bj ect

private String nane;

private String version;

private String author;

private String copyright;

private List<Thenme> contents;

privat e Li st <Dat abase> dat a;

private List<Thread> direction;
private Configuration configuration;

publ i c Catal ogue(String nane, String version,
String author, String copyright,
Li st <Thenme> contents, List<Database> dat a,
Li st<Direction> direction);

public start();

10

cl ass Thene extends Structure

{

private String nane;

private Li st<Theme> subt henes;
private List<Virtual Page> pages;
private List<Thread> direction;

public Thenme(String nanme, List<Thenme> subthenes,
Li st <Vi rtual Page> pages, List<Thread> direction);

public start();

ass Virtual Page extends Structure

private String nane;
private Li st<Layout> | ayout;
private List<Thread> direction;

public Virtual Page(String nane, List<Layout> |ayout,
Li st<Thread> direction);

public start();

2.2.2 Layout

Layout elements are grouped into other layout elements and these can again be grauped int
frames and so on. The inheritance diagram of most of the layout classes is shiayuner8.

Each frame has a bordgvgddi ng) defined as the distance from the content to the frame and
which is considered part of the object. The elements are placed in reflatiagor if coordinates

are given, theosi t i on will be absolute. Other important attributes that inherit every layout
object from theLayout class ard ayer, si ze, mar gi n,vi si bl e, anddi spl ay. Margin

is the distance to the surrounding objects, which differs from padding because it ddetamf

to the object. Ifvi si bl e is false the object will not be seen, but it has already an assigned
position. The methodr awis responsible for the representation of the object on the screen.

abstract cl ass Layout extends Obj ect

pri vat e Bool ean vi si bl e;
private | nteger |ayer;
private Position position;
private Extension size;
pri vat e Paddi ng paddi ng;
privat e Paddi ng margi n;
private User Mode user node;
private Di splay display;

public draw);

11

Handler

Layout |
Pl Mouse Keyboard
ayer Handler Handler
‘ g pWANES A
Multimedia
Button
M Frame
Browser
Zﬁ PopUpMenu
CheckBox—‘ A
Video Image Tabular |
SlideShow Tab.Row Scrollable
Tab.Entry I Frame
VideoRecorder Listing Text 4
Window
Itemize |
Input
Enumerate
Paragraph
— Heading

Many classes inherit from clagsayout , redefining the methodr aw if necessary and adding

Figure 3: Diagram of some layout components

specific variables. We will mention here only those we think are the most signifi

ClassFr ane serves to group layout elements allowing the definition of a background. Variables
al i gnnment anddi st ri but e are set to arrange elements in a different manner in the frame.

The classscr ol | abl eFr ane adds an horizontal and a vertical slider to the frame and methods
to handle themW ndows are frames with the capability to be moved within the screen, to change
their size, to be reduced to an icon, and to be closed with the variabiesabl e, si zeabl e,

12

i coni zabl e, andcl oseabl e respectively.

cl ass W ndow ext ends Scrol | abl eFrane

{

private Layout title;
private | mage icon
private Button iconizabl e;
private Button cl oseabl e;
private Button sizeabl e;
pri vat e Bool ean noveabl e;
privat e Extension mnsize;
privat e Extensi on maxsi ze;

publ i ¢ W ndow Li st <Layout> contents, Layout title, |nmage icon,
Button i coni zabl e, Button cl oseabl e,
Button si zeabl e, Bool ean noveabl e,
Ext ensi on mi nsi ze, Extensi on maxsi ze,
Slider horizontal slider, Slider verticalslider);

publ i c noveW ndow() ;
public resizeW ndow();
public full Si zeW ndow) ;
publ i c i coni zeW ndow() ;
publ i ¢ hi deW ndow();

}

The clasd-l1 owBox allows text flow horizontally around layout elements.

For objects of the clasBext the usual features are offered: selection of a font, fontsize, style and
colour for them. The text itself is stored gour ce, which together with the methathange-
Language makes it possible to support multilingual catalogues. ClaBsesagr aph and
Headi ngs inherit from classText . Par agr aph includes attribute ndent for indentation
andbasel i neSki p for the separation between linebeadi ng has al eft Margi n and a
nunber to be added to the text andsayl e for the same.

Classes for the definition of lists and tables are also part of the layout comportéetfeime-
work. Classed.i sting, Enunerate, andltem ze are lists, which differ only in the
symbols that precede the text. The cldabul ar together with the class@sabul ar Rowand
Tabul ar Ent r y permit the creation of tables.

Multimedia elements are described in the claddedeo, | mage, andSl i deShow, which are
subclasses from the abstract cldsg t i medi a.

Very important layout elements are buttons, because they are indispensablengydayithe
navigation through the EPC. But t on can be not clickable. Metho@sabl e anddi sabl e
allow the status to be changed.

cl ass Button extends GrouplLayout, MuseHandl er

private Li st<Layout> cont ent sdi sabl ed;
private Li st<Layout> contentsnotclicked;
private Li st<Layout> contentsclicked;
private I nteger default;

publ i ¢ Button(List<Layout> contentsdi sabl ed,

13

Li st <Layout > contentsnotcl i cked,
Li st <Layout > contentsclicked,
I nteger default);

publ i c enabl e();
publ i c di sabl e();
}

Three different contents for thBut t on can be defined witltont ent scl i cked, con-

t ent snot cl i cked, andcont ent sdi sabl ed.

The classa oupLayout is not represented in figure 3 for simplicity reasons, grouping is the
only purpose of this abstract class. Other interactive classes that ifrleenitclassLayout

are the well-known:Br owser , PopUpMenu, CheckBox, Radi oButt on, Sl i der, and

Pul | DownMenu (the last three are not included in figure 3, they can be drawn below checkbox).
They inherit as well from the cladébuseHandl er .

2.2.3 Direction

The dynamic direction is defined separately from the static layout. This sEpaisagot over by

the use of multiple inheritance.

Independent and parallel threads communicate through events and are synchronizdalcksth
are the basic direction objects. There are two conditions for the implemamtdtthis direction
model: the existence of a background process, the event manager, and a systemtbldioci wi
necessary precision.

From the abstract cladsi r ect i on the classed ock, Event, and Thr ead inherit the
variablesuser nodus, andl i m t (see figure 4). The first specifies the users permissions and
the second provides boundaries for the number of active processes, events, and clocks.

abstract class Direction extends bj ect

{

privat e User Mode user node;
private Integer limt;

publi c set User Mode(User Mode user node) ;
publ i c User Mode get User Mode();
public setLimt(lnteger linit);

| public Integer getLimt();

With the help ofCl ock events can be synchronized over the timB. mer andPer i od-

i cal Ti mer have additionally alarm and periodical alarm functionality respectivero-

cesses are informed through events of any change in the actual state. Aactabkiss

Event resumes the characteristics of the different type of events. ThesEoaresEv-

ent, C ockEvent ,MbuseEvent, Acti onEvent, Keyboar dEvent, and | nterac-

ti onEvent. Some of these classes have subclasses that describe accurately what happens
when the mouse or keyboard key is up or down or the effect of selecting an objethe/ihouse.

14

Direction

A

Clock Event Thread
Timer
Navigation ;
L Handler Manager TimedThread
PeriodicalTimer —| ClockEvent Player
g eusEEeE L { MouseHandler
Audio
| ActionEvent - FocusHandler
Animation
— KeyboardEvent — ClockHandler
Demo
— InteractionEvent — KeyboardHandler Transition

Figure 4: Some classes from the component direction

abstract cl ass Event extends Direction

private Tinme stanp;

public set Stamp(Ti ne stanp);
public Time getStanp();

15

publ i ¢ Bool ean signal ();
publ i ¢ Bool ean asignal ();

}

For the clas3hr ead there is defined a variabjg i or i t y and a list of instances of subclasses
of Event which is interested in that kind of processes. If an event matches theshtara
thread, the methotlandl| er of the process is called and an event of lower priority may be
interrupted.

cl ass Thread extends Direction

{
private Integer priority;
private PriorityList<Event> interests;

public Thread();

public Thread(lnteger priority, PrioritylList<Event> interests);

publ i c Bool ean start();

publ i c Bool ean stop();

public run();

publ i ¢ Bool ean suspend();

publ i ¢ Bool ean resume();

publ i c Boolean kill();

publ i c Bool ean yiel d();

publ i c Boolean join(Tine wait);

publ i c Bool ean handl er (Event event);

public setPriority(lnteger Priority);

public Integer getPriority();

public setlnterests(PrioritylList<Event> interests);
c

publ i
}

We defined three subclasses fidir ead, there areHandl er, Navi gat i onManager , and
Ti medThr ead, a brief description is given below.MouseHandl| er, FocusHandl er,
Cl ockHandl er, andKeyboar dHandl er are subclasses of the cladandl er and they
allow through multiple inheritance the easy connection of the layout with the dinectFor
example, the specification of the cldésyboar dHandl er is as follows:

PriorityList<Event> getlnterests();

cl ass Keyboar dHandl er ext ends Handl er

publ i ¢ onKeyDown(Keyboar dEvent event);
publ i ¢ onKeyUp(Keyboar dEvent event);

}

The clasdNavi gat i onManager is defined to control the catalogue navigation. Therefore it
includes ast ack of virtual pages and a variabéct ual to register the visited and the actual
page. Pages can be incorporated boak mar ks list. The methodback, next ,bookmar k,
andunbookmar k have been defined to administrate these lists of pages.

cl ass Navi gati onManager extends Thread

private List<Virtual Page> stack
private Virtual Page actual ;

16

private List<Virtual Page> booknar ks;
publ i ¢ Navi gati onManager () ;

publ i c Virtual Page back();

public Virtual Page next();

public register(Virtual Page obj);

public skip();

publ i ¢ bookmar k(Vi rtual Page obj);

publ i ¢ unbookmar k(Vi rtual Page obj);
public List<Virtual Page> getHistory();
publ i c Li st<Virtual Page> get Bookmarks();

}

To model uniform synchorized events the cldssmeThr ead is provided with a clock. To
control different interactive multimedia elements the following classee available:Audi o,

Ani mat i on, Denp, andTr ansi ti on. Their general behaviour is summarized in the class
Pl ayer , that inherits fronili medThr ead.

abstract cl ass Pl ayer extends Ti nedThr ead

{
private Li st<Marker> markers;
public play();
public halt();
public reverse();
public forward(Tine tinme);
public rewind(Tinme tine);
publ i ¢ got o(Marker marker);
publ i ¢ set Marker s(Li st<Marker> markers);
publ i c Li st<Marker> get Markers();

}

2.24 Database

Information about the products, the orders, the company, and about the EPC structube must
stored to allow the catalogue construction, visualization, and navigation. (dbigneepresen-
tation is included here.)

The abstract clasBat abase describes their general properties and the clasSbj ect the
properties of the database entries. At the moment we restricted us tomaladatabases. The
catalogue provider will normally own a product database, which in most of thes eaiebe
reorganized by the developer to obtain an adequate product hierarchy, independent from the
layout and the navigation.

Products can be grouped in product groups and these againin groups. To describe threbédsiera
the classeBr oduct andPr oduct G- oup are provided. Each product is characterized only by
anunber, anane, alistofproperti es,adescri ption,and apri ce. Every property
that depends on the nature of the product can be defined separately anchaas and a
cont ents.

17

ClassOr der is defined to allow the storage of products that the end-user marks or selects to be
part of the shopping bag and then decided to order. Products that had already beeniaordered
previous catalogue sessions by the same user can also be located.

cl ass Order extends DbObj ect

private String nunber;
private User user;
private Date date;
private Product product;
private I nteger quantity;
pri vat e Bool ean marked;

public Order(Date date, User user, Product product,
I nteger quantity, Bool ean marked);

public Order(String nunber, User user, Product product,
I nteger quantity, Bool ean marked);

}

ClassHel p offerspages andkeywor ds to assist the end-user. The methsti®wandhi de
permit the visualization or the hiding of help pages related to a keyword.

Methods of the clas€onpany will manage the information for the general presentation of the
company and maybe the presentation of the catalogue itself, showing fa@lmikadvantages.

To make navigation possible information about every virtual page that has beea wisit be
stored with the assistance of a cl@sal ogue. Catalogue personalization is achieved by class
User , which has variables and methods to register and retrieve all data th&fydkee end-user.

2.25 Services

This group of classes adds some comfort and is a great help for the catalogue dewetaper
can incorporate these special catalogue features without additional effodesMmed standard
forms for situations that require user input. Their description can be found in tbe/fog classes:
Regi st r at i onFor mwhich is a template for the input fields, with it the end-user can achieve
the catalogue personalizatidsear chFor mfor special queries to the databakle] pFor mfor
assistance by the catalogue use, @ndst i onFor mif the provider is interested in the users
feedback. (See figure 5.)

The shopping bag functionality is supported by the cBssppi ngBag, which allows to add
products to the list, delete products, change the quantity to order, and compute arlgestotal
amount of the selected products.

cl ass Sear chForm ext ends W ndow, Keyboar dHandl er

private PopUpMenu i ndex;
private Browser show,
private OKButton ok;

pri vat e Backbutton back;
pri vat e Hel pbutton hel p;

publ i ¢ SearchForm(Li st <Layout > contents, PopUpMenu i ndex,

18

Browser show, OKButton ok,
BackButt on back, Hel pButton hel p);

cl ass Shoppi ngBag ext ends W ndow

private Miultipl eBrowser orders;

private Text total;
private OKButton ok;

private Cancel Button cancel;

Window

ShoppingBag

Presentation

Table of Contents

Handler
/\ Layout
Keyboard Mouse

Handler Handler

RegistrationForm Button
SearchForm
HelpForm
QuestionForm BackButton
DemoButton
OKButton
ResetButton

Figure 5: Services

19

OrderButton

CancelButton

HelpButton

pri vat e Hel pButton hel p;
private OrderButton order;

publ i c O dersBag(W ndow wi ndow, Muilti pl eBrowser orders,
Text total, OKButton ok, Cancel Button cancel,
OrderButton order, Hel pButton hel p);

} public sum();

Usually an EPC begins with a company presentation and follows with an inidlexeferences
to different sections. For the company overview we provide a special Blassent at i on,
which include the possibility of a demo. For the index we desigreald eOf Cont ent s. Itis

a class that comprises a listbhenebut t ons, a list oft henes, and three "special” buttons:
deno, hel p, andexi t . With the last the user can leave the catalogue.

Services are also supported by special buttonsBi&kek But t on, DenpoBut t on, OKBut t on,
Reset Butt on, Or der But t on, Cancel But t on, andHel pButt on.

3 The Syntax of epkm

The specification languaggpkn is result of the exhaustive requirements analysis made and is
based on the framework described in the previous chapter.

EPCs on CD-ROM have similarities with hypertext documents distributech@World Wide
Web (WWW), in what concern the layout and the navigation. Web pages are descitbed w
HyperText Markup Languagé{ m), an instance of the Standard Generalized Markup Language
(sgm). For more details osgm andht m see [Gol94] [vH94]) [Gra95].

On account of the advantages of a standapkni is defined as an instance 8§ . Even
though inepkm most of theht M layout elements can be found, it has been enlarged with
important additional capabilities incorporating ideas frpava, f r amemaker , TeX, and au-
thoring tools.

In the first section of this chapter we enumerate the features that chiemathe language which

we presentin this report. The second section outlines the mostimportant edesfihie language
with subsections for layout, structure, control, database, and services. |astisection we give

an overview of the elements defined for the catalogue structure descriptioa,ateeheader,
externals, styles, definitions, and main.

3.1 Characteristicsof theepkmnl Language

The basic features of this language are the following:

e epkm ishtn like.

epkm is an instance o§gm . This decision gives us two advantages: it is a standard
(ISO 8879). A public domain software, i.egm s can be used to parse every Document
Type Definition (DTD). Everybody who knows rudimentstdafni will not find it difficult

to learn.

20

epkm admitsthe hierarchical organization of catal ogues themes.

An EPC can be seen as a front-end of a database. The products are organizedchieier
For the construction of this “class hierarchy” we have built—in facilitieshe language.
Using these facilities tree hierarchies —called themes— can be deifinteir each theme
the developer has the possibility to define the products belonging to the theme and the
presentation of these products. This is possible using the templates mentioned belo

epkml integrates templates.

Usually it is desirable to have the same presentation for all the products hedotagihe
same family. For example, for an EPC for fashion, the catalogue developer araytav
give a blue logo to all the products of winter fashion. Such a presentation is defimed usi
a template which may include generic variables for the products to be displayed.

epkml offers special services.

EPCs have some commonalities. Usually an EPC provides the possibility tagnaeluct,
it has a help function, a demo, a quit button, etc. Such features are includpétim as
built-in functions.

epkm allows variable definition.

The language offers the possibility to define variables. That is, in an EPC argefae
new variables which later can be used either as entities for reuse of codaoradtribute
of atag.

epkm includes macro definition and expansion.

The variable mechanism is not enough for name abstraction, so that the factigfihe
macros has been added to the language. Macros are stated to allow pazarhéter
different types: attribute and elements.

epkm has primitivesfor control flow.

Some control flow primitives are present in the language. In principle any lajemeat
(i.e. window, frame, paragraph, text, etc.) can be opened or closed by the use &days
active elements like radio-buttons, browsers, buttons, sliders,egtct to external inputs
such as mouse clicking. For these objects we have defined special tags. Contsaitsle
that are specified under the scope of such a tag will be executed only when thetivespe
layout element is clicked, focused, etc.

epkm iswindow oriented.

In contrast to others “screen oriented” languages we have developed a windotedrie
language with the full functionality of windows, i.e. overlapping, iconizatiorc, et

epkm embeds SQL-statements.

21

We assume that the products of the EPCs are organized in a relational datadrasechF
a database we use SQL as standard query language. A tag is provided for database quer
and general access.

e epkm allows connection to external languages.

A connection to the external world is provided via applets as it tstiml . Applets allow
the specification of parameters. This is especially suitable for connewttbrexternal
objects and the operating system.

e epkm hasdynamic generation of layout elements.

The result of a query to the database can be cast to be the contents of a browser or the
contents of an itemized list. It is possible to do this “on the flygpkn .

e epkm provides network capability.

The SQL-statements are in fact requests sent to a database sern&idaldbase could
be local, in the simplest case or refers to an external server. Thetyoohh request is
transparent to the user.

3.2 Elementsof the Language

The languagepkmnl , as already said, is defined as an instancegfl . That means that the
language uses mark-up tags. They are writaane- of - t he- t ag> for the opening tag and

</ name- of - t he- t ag> for the closing tag, thus separating a block. For some tags the closing
tag is defined as optional.

For the full grammar in form of a DTD (document type definition) and some information on
sgm see Appendix B. In the sequel, some familiarity whthrm is assumed [Gra95)].

3.2.1 Layout Elements

The layout features aépkmni are a superset of those bt nml . Thus different text fonts and
styles are provided, paragrapk®¢), <i mage>, <f r ame>, etc. may be used. Also the known
interactive elements such gbr owser >, <checkbox>, <i nput >, and so on, are available.
According to the framework, we addegd ndow> (thus makinggepkm window oriented instead

of screen oriented)f | owbox> for images inside texts, and some other miscellanea such as
<pul | down- menu> or <but t on>. Additionally, the time-dependent elemertgi deo>,

<sl i de- show>, and<audi 0> were introduced.

Any layout element may now be positioned absolutely by means of attrikpi@s andypos.

They may also be provided with some margin and padding, giving extra space surrounding the
element. If no positioning information is given, for these elements the layoes tallace as in
htm .

22

<franme nane=hell o
Xpos=10pt
ypos=20pt >

<p>Hel | o worl d!
<but t on nanme=quit >
<p>Qui t
<on-cl i ck>
<exit>
</ button>
</ frane>

The interactive layout elements were enriched by specifyable methodsomgcl i ck> for
<but t on> that are invoked if an interaction takes place. The details are thesci section
3.2.3.

3.2.2 Structure

The theme hierarchy is the heart of the languagehenme> implements hene andvi rt u-
al Page of the framework.
Each<t henme>includesits<ext ensi on>: an SQL statement declaring the products it covers,
<page>: a form to be filled with actual product contentsexcept i ons>: products of the
extension to be treated specially with their owpage>, and perhaps some sub-themes.
Pages are some predefined templates for structured data presentation. ttargbpdilled “on
the fly” with values obtained via SQL-statements.
The exceptions may be used on the one hand for showing products that do not fit the norm
syntactically or, on the other hand, for rendering products that shall attract riter¢i@n than
the other ones, e.g. those that are on sale.
<t hene nane = general >
<extension result = general-result>
<sqgl >
</ édi >
</ ext ensi on>
<page nane = general -tenpl ate>

<e$<éépt i ons>

<sqgl >

</ sql > _

<page nanme = exception-tenpl ate>
<t heme name = sub-general >

</t héﬁé>

Through the theme hierarchies a forest structure is build up in which navigates place by
the special commandsmext >, <pr evi ous>, <up>, <down>, and<back> (implementing

23

theNavi gat i onManager). These instructions branch to the next or previous theme in a given
hierarchy, to the one below or above, or back in the history of visited thensgeatvely.

3.2.3 Control

Besides the new layout elements, the database access feature, and the drarobids, we
added control elements to the languagpk i .

Variables. First of all, variables were introduced. They are writterbasme$. Their values
may be modified by theset > tag. Variables can contain both element and attribute contents,
but they must be used consistently.

<var nanme = nmonths value = 12>
<var nanme = pic>

<ing src = pic.gif>
</var>

<set name = pic>
<ing src = pic2.gif>
</set>

There are some predefined variables for special uses. These variablsi aree$, $au-
t hor $,$dat e$, $l ast - nodi f i ed$,$cur dat e$,$cur ti ne$,$di mensi on-uni t$,
and$ti me-uni t$.

Macros. To achieve more convenient programming, theredsacr o> tag to abbreviate some
often used constructs.

<macro name = dummy
attribs = "a"
elens = "e">

<p>3%e$</ p>
</ macr o>

The attributeat t r i bs is used to specify the list of parameters which will be passed. They are
used asgnl attributes whereas the attribide ens has the same target but fegm elements.

It is not allowed to use a parameter which has been defined to be an ata#baiteelement and
vice versa.

Macros are expanded using thexpand> tag.

<expand nanme=dumry>
<attri bute nane=a val ue=12>
<el ement nanme=e>
Hel |l o worl d!
</ el enent >
</ expand>

24

Control Flow. The control of the flow of a catalogue is sequential from top to bottom, but it
may be modified by the use of special tags.

Conditional branching may be achieved with tenpt y> and <non- enpt y> tags on the
basis of the result of a database query.

For unconditional branching there are several possibilities: First, strilgiutfzere may be a
change between themes by the useméxt >, <pr evi ous>, etc., already mentioned. Second,
any layout element and any theme may be called directly vigagpen> statement provided
with a name: the element called is shown and its statements are edeC@Qdnversely, elements
may be closed witkcl ose>, but this has no effect on the control flow.

For a finite number of repetitions there has been defitfenl each>, which cause the sequence
of tags between the opening-tag and the matching end to be executed for eachedatdiyas
value indicated byi n>.

Last but not least, the user may affect the control flow. Whenever he irgevibtthe catalogue
by e.g. clicking a button, the statements that are declared inside the actlwodoéthe interactive
element (i.e<on- cl i ck>in case of<but t on> and similarily for browsers, sliders, etc.) are
executed. Those interactions are registered when the catalogue is inrey\state by executing
the<wai t > statement. It can wait indefinitely or until a certain condition (an aJdha end of

a video, etc.) is fulfilled.

<button styl e=sport-style>
<ing src=stop.gif>
<on-click>
<cl ose nane=sport-presentati on>
</on-click>
</ button>

Besides the standard mode of control flow there is a special demo mode during wipdhtiyeal
features and facilities of the catalogue may be shown automaticalljomsctinder the scope of

the tag<denp> are executed in sequence, but without the possibility of user interactions. For
the simulation of these interactions thel i ck> tag is supplied.

<deno nanme=gener al - deno>
<set name=tine-unit val ue=sec>
<open nane=w nt er-t hene>
<cl i ck name=hel p>
<wai t end- of =5>
<cl ose nane=hel p-w ndow>
<open nane=pres-vi deo fornmat =nov>
<wai t end- of =pres-vi deo>
<next thenme>
<wai t end- of =5>
<exit deno>
</ deno>

External Functionality. The tag<appl et > permits to call external functions in the same
way as in the newest versionsiaf m . The specification of parameters in applets allows among
other possibilities the connection with external objects and the operating system

25

3.24 Database

Database access is reached viatbgl > tag. Statements under the scope of this tag must be
written in standard SQL, see [MS93]. The result of a SELECT stateme3abfis bound to the
name specified via the attributesul t .

<sql result=trousers>
SELECT *
FROM f ashi on
WHERE ki nd=tr ousers
</ sql >

When an SQL-statement is executed the result can be cast to be optionswarrg the use of
the<make- opt i ons>tag or to be items of an itemized list by the use oftmke- i t ens>
tag. An example of the use of the tagl is given in Appendix A.

3.25 Services

Services are the standard functionalities provided for a catalogue. Taedimat purposepkim
includes the following tags:

e <t abl e- of - cont ent s>: allows the definition of an introduction window or page as
an index of the different alternatives of the EPC (company’s presentation, detocal,
different views of the product database, ordering). It corresponds to the claghevgme
name in the framework presented in section 2.2.

e <regi stration-fornp: permits the personalization of the catalogue. Data entered
in this form will appear in the order form.

e <sear ch-f or nm: with this tag it is possible to define which kind of search will done
onto the database every time the end-user fills in this form with the adequaterkks.

e <shoppi ng- bag>: is a template for the products list that has been selected as “product
to buy”, supposed to allow update functions as modification of the quantity to order or to
eliminate any product of the list.

e <shoppi ng-1i st >: serves to administrate the list of products selected all together at
the begining and to be visited during navigation.

e <order>: defined to send a buy order to the provider. This function has different
semantics depending on the hardware configuration. An order can be sent by internet, by
e-mail, by dialing a telephone number by modem, by fax, or can be printed. When the
catalogue is installed the semantics of this tag is decided.

e <questi on-fornk: to be filled in by the end-user to provide some feedback to the
catalogue provider about the success of the catalogue or to criticize it.

26

3.3 The Structure of an epkm Catalogue

As is shown in the example listed below, epkm catalogue is divided into five sections. We
give a brief explanation of each of them.

<epkmnl >
<header
title = "The Shortest EPKM. Cat al ogue”
aut hor = "Me"

date = "03/10/96"
| ast-nodi fied = "03/10/96">
<ext er nal s>
<styl es>
<definitions>
<mai n>
<exit>
</ epkm >

3.31 Header

The first section is theheader >, which only comprises documentation about the catalogue.
Under this tag the attributetsi t | e, aut hor, dat e andl ast - nodi fi ed are mandatory
and they generate values for the variab®ts t | e$, $aut hor $, $dat e$, and $l ast -

nodi fi ed$.

3.3.2 Externals

The <ext er nal s> section is planned primarily to declare objects, that are external to the
language. Such is the case of the relational database scheme, declared &ienoypsihecks
purpose. Then every SQL-statement can be checked against the scheme ddlihealat order

to detect unknown tables or columns.

The SQL-statements can also be seen as requests to a databaseT$®sernrequests may be
local or remote to the database. Using the attrikygtat h> of the<schene> tag, the developer
can specify an URL which is the path to the (local/remote) database. i(ijplementation

of this feature has not yet been done. Such requests/answers can be implemeargea usi
new MIME-type or using a database proxy server. l.e. an answer to such reqlidsivweia
Cont ent - Type: appl i cati on/ sgl to be interpreted by thepkm -browser.)

<cl ass> is another allowed tag irext er nal s>. It is used to declarate new tags allowed
in theepkm -language. In the example given below a new tag cafled- wi ndow wi t h-

| ogo>whose only attribute isogo is declared. Thus new objects of the clasy- wi ndow-

wi t h-1 ogo> are created. It is also possible to indicate via the attrimmehods of the
<ny-w ndow w t h- | ogo>tag to which methods they must respond.

<ext er nal s>
<schene nane
<t abl e nane
col ums

nmy- dat abase>
"prod-desc"
"code price desc">

27

</ schene>

<cl ass nane
slots

nmet hods

</ external s>

my-wi ndow wi t h-| ogo
n I Ogoll . .
"redraw i coni ze" >

333 Styles

A style is a collection of stylesheets and a stylesheet is a set of defandiférents tags collected
under a nameepkmni allows the declaration of styles for layout elements viathéyl e> and
<st yl esheet >tags. Every attribute of a layout element can be set to a given stylesheet.
A stylesheet can extend or inherit from other stylesheets and they can be loguke specification
of the attributeext end of the <st yl esheet > tag. Multiple inheritance of stylesheets is
allowed and name clashes are solved from left to right ingkéend list or by using the
<def aul t > tag.

<styl es>
<styl esheet nanme = cat al ogue-styl e>
<defaul t>
<p Iftnrg = lcnp
</ defaul t >
</ styl esheet >

<styl esheet nane nmy- cat al ogue-styl e

extends = cat al ogue-styl e>
<default extends = other-catal ogue-styl e>
<p baselineskip = 12pt>
</ defaul t >
</ styl esheet >
</styl es>

3.3.4 Dsefinitions

Global specifications are done with tkelef i ni ti ons> tag. It was originally thought for
global definitions of variables, macros and frames, but later it was extendaliotv global
definitions of any layout element. Definitions made under these tag can be used hereryw
and may be be redefined under the scope of another tag. Then the rules of lexical scope will
applied.

An example of the employment of tkalef i ni t i ons> tag is shown in Appendix A.

3.35 Main

The<mai n> part of an EPC is composed by the sequence of instructions to be executed when

the EPC is loaded. Basically undemai n>the developer specifies the presentation of the whole
catalogue, help facilities, navigation solutions through the structure and awpéixin.

28

4 The Semanticsof epkm

In what follows we give a short overview of a formal structural operationaies#ics (cf. [NN92])

of the languagepkm . We describe a model of states that reflects the necessary information
to control the execution flow of aepkm -program, but which abstracts from the exact layout
and database internals. The possible transitions between these statesrabg gules that show
how anepkm -statement affects the state in which it is executed. Some of thesematg be
annotated by external events thus extending conventional structural operatioaatissm

The semantics provides a static binding for the variables and the procedurdbdilayout
elements), a block structure for the scopes of variables, and “call-by>vaduameter handling.

It takes care of possible interactions by the user and of the time aspectagbhadg offers.

4.1 TheModel

The set of all possiblepkmi -statements (the programs) is calléd Any statement that does
not contain free variables is a value of our semantics.
Some statements contain actions (&@n- cl i ck>in <but t on>); we define a function

act: S — S

that returns this action for a given statement, whenever this is possiblgenkral, we define
functions with names as used in the syntaxepkm to yield that part of a statement that their
syntactical counterpart surrounds, say

template: S — S

returns for a statement the text contained in the first occurring pairs <f enpl at e> and
</t enpl at e>in s, according to the block-structure in the lexicographic ordering.

The set of alepkn -variable names is called.

The semantics works on states, elements of Zdkat are quintuples of a theme structure graph
(from a set(7), an environment (fronF), a database instance (frof), the laid out elements
(from L), and a memory store (from/):

Y=GxFExDxLxM.

The memory storeV/ is a set of locationg”’, where a pair of arepkm -statement and an
environment can be saved.

M=C<—SxEFE
This is due to the static binding. An operation
new: M — C

returns a new location for a given memory state, not in the domain of this menatey sThe
operations

stm: C — S and envC — F

29

return for a location the statement and the environment contained, respectivel
An environment is a list (a stack) of partial mappings from the variable namslocations,

E=(N<=C(C)
written asle, . . ., e,|e] (Whereey, . . ., e, are partial mappings arecanother environment).. This
is due to the block structure and the static binding as well. The application ovanement (seen

as a partial function) to a variable name yields the value of the first (the uppgrapgdicable
mapping in the list for this variable. An environment may be extended by

U:ExXNxC—=FE

which manipulates the first mapping of the list or a value of an already definebleamay be
changed by a recursive search in the stack:

U:ExNxC—E.

The set of theme structure grap@iscomprises all lists of trees that are describablekn ,
the vertices of which are marked with a name eqgok i -statement (the contents ef hene>
without the sub-themes), an environment, and a boolean value to mark a themew@aseheor
not.

G=(Nx(SXxE)xB+ (N x(SxE)xB)xG)
On these graphs,
pos: G x N — G

returns for a given graph and a name a new graph, with the boolean mark set only foerte t
with the given name,

nxt: G — N
returns the name of the vertex with the next theme.The function
bld: GxNx(SxE)xG" —G

constructs for a given graph, a mark, and a list of graphs, a new one that extends tyainst
by a tree out of the mark and the list of graphs. As for variable names,

env: G = F

returns for a theme structure graph the environment of the vertex that is maslcdrent.

The set of database instandesontains lists of tuples according to the relevant database schemes.
We do not model these schemes. We assume the required SQL-statements gs/bring

Finally, the elements of the layoiitare sets of locations the contents of which is supposed to be
visible on the screen.

L=p(C)
Besides these states, we model an external surrounding that supplies eveimde((igeractions
and timings) to trigger state transitions. These events are denoted as @muhdiftor a user

interaction with an elemeritwe write . : [, for the expiration of a timer : ¢ set to duration,
and for the end of a procegqsuch as a videa) : p.

30

4.2 TheRules

We only state rules for so-called normalize@kml -programs. These are syntactically cor-
rect statements in which every attribute assignnmedrdit us=open is substituted byst a-

t us=cl osed and an<open>-statement, after the owning statement. Obviously, this is no
restriction of the possiblepkm -programs.

To take into account side effects of the interactive elements, we thirtkeaf\ariable changes
as being permanent (the memory of their location is changed, too); we only pastiaié/the
necessary memory manipulations.

Every rule transforms a pair of apknl -statement and a state either merely to a state, saying
that the statement has been fully executed, or again to a pair of a statemdemtstate. This
amounts to a small step semantics.

We do not provide a full semantics here. Only the control part is considered.

4.2.1 Syntactical Structure
The sequential composition is reflected by the usual structural rule.

(5, (7,€,0,\, 1)) = (v, €, 6", XN, ')
(8 8,7 (/}/7 57 67 A? /’l’)) :> (8/7 (7,7 5/7 5/7 Al? /’l’,)>

4.2.2 Layout

Closed layout elements (i.et at us=cl osed) are treated much the same as variables, but
opening their own binding scope via an artifictddl ock>tag. Heréayout may have the values
wi ndow, f r ane, but t on and so on.

(<layout nanme=n status=cl osed> s </ layout>,(v,e,d,\, pu)) =

(v,eU{n+— newp)},d, A pU{newu) — (<bl ock> s </ bl ock>,¢)})

(<block>,(v,¢€,0, A, 1)) = (7, [Dle], 6, A,)

(</ bl ock>, (v, [ale], 0, A, 1)) = (7,€,0, A, 1)

423 Database

The semantics of the database tag relies on an appropriate semantics oféspauding SQL
statements.

(<sql result=r> SELECT s </sql > (v,&,0,\, un)) =
(/77 g, 67 /\7 % U {7’ = [[SELECT 8]]5011(6)})

31

(<sqgl > INSERT s </sql >,(v,¢,0,A, 1)) = (7,¢, [| NSERT s]sq(9), A, 1)

(<sql > DELETE s </sql >, (3,¢,8,\ ;1) = (7,&, [DELETE s]ut(8), A, 1)

424 Themes

The theme structure graph is built up from bottom to top taking into account the scope of t
theme names.

((<t heme nanme=n;> s; </theme> (v,&,0, A\ un)) = (7,0, A, 1)) 1<i<k
(<t heme nanme=n> s ’
<t hene nane=n;> s; </theme>);<;<
</ theme> (y,&,6,\ pn)) =

(bld(’ya n,s, ‘97 (’Vi)lﬁiﬁk)v ey {n = neV\(M)}v 57)‘7 pU {neV\(:U’) = (87 5)})

wheref is the set of all theme names in the theme structure graph. Note that evesystrasture
subgraph carries its own relevant environment information such that theanwent changes in
the antecedens of the rule need not be taken into account.

425 Control

(<var nane=n val ue=v> </var> (vy,&,0,\ un)) =
(7,6 U{n = new(u)}, 6, A, p U {newu) — (v,¢€)})

The contents of a variable may be treated as a statement with its oworenent:

(stm(e(n)), (v, [enm(e(n))[e], 6, A, p)) = (v, €, 8", N, ')
(n, (v,6,0,\, 1) = (7/,&,8, N,)

Thus implicitly a hiding block is opened.

(<set nanme=n val ue=v> </set> (v,e,6,\u)) = (v,&,6,\,uU{n — (v,e)})

(<set name=n> s </set> (v,5,6,\p)) = (7,606 \puU{n— (se)})

32

The conditionals are dealt with conventionally:
(<enpty which=n> s </enpty>(y,¢,0,\ 1)) =
(87(’775767A7M)), |f 5(”) :(Z)

(<enmpty which=n> s </enpty> (v,6,6,\pn) = (v,6,0,\,p), ife(n)#0

(<non- enpty whi ch=n> s </ non-enpty> (y,¢,d\ pn)) =
(s, (v,€,0, A\, 1)), if e(n) #0

(<non-enpty which=n> s </non-empty> (v,e,4 A, u)) =
(v.6,8, A\, p), ife(n)=0

For an<open> statement its attributes are evaluated first, especiallytitst us attribute will
be set tmpened; we omit the details.

(<open name=n {a; = (si,€)}1>, (7,¢,0, A, 1)) =

(stm(e(n), (v, [{a; = new(u):}| en\(e(n))], 6, A U {e(n)},

pU{newp); — (si,e)}), if » is not a theme

(</ open>, (v, [ale], 0, A, 1)) = (7,€,6,A,)

(<cl ose name=n> </close> (v,e,§, A\ u)) =
(7,6,0, A\ {e(n)}, n U {u(e(n)). st at us « cl osed})

For themessopen> has to be treated specially:
(<open nanme=n> </ open>, (vy,&,d,\ pu)) =

(presentatiofstm(e(n))), pogy, n), enU7), d, A, i)), if nis atheme

(<next theme> </ next> (v,e,d, A\ u) =
(stm(e(nxt(~))), POy, NXt(y), en(e(NXt(7))), &, A, 1)

The other navigation commands are evaluated alike.

33

When the user interacts with a layout element its action statementdatexkin its own environ-
ment. Here the permanence of changes of the memory space (not those of the enviraament) i
important. Note that for these external stimuli a new transition symbol is used.

(actstm(l)), (v, lenv(D)[e], 6, A, 1)) = (v, €', 8, N,)
(<wai t > </ wait>, (v,£,0,\ 1)) = (<wai t > </ wai t >, (v,,8, N, 1))

T:t

(<wai t end_of =t> </ wai t>,(y,e,5,\, 1)) = (7,¢,0, A\,)

(<wai t end_of =p> </ wait > (v,2,0,\, 1)) == (7,,6,\,)

5 Conclusonsand Further Steps

What we have achieved in this project is a comfortable specification langoglgeth electronic
product catalogues on CD-ROM and, in general, multimedia information systenit. tivg
features and built-in services of the languagkni the development of a catalogue becomes
an easy and inexpensive task for companies of any kind and size. The additionaifttads
EPK-fix—project, namely RASSI, SASSI, GASSI, and TASSI, will imgdurther on this.

As specification of EPCs is not only of academic interest, technology transfezde universities
and the industry is a declared aim of the EPK-fix—project. Industrial knowleddpeicatalogue
domain influenced this language design, since it provided, besides many other hirdaycta
features and layout considerations and our knowledge in specification shall infllegatmgae
design because we formalized and standardized the whole production process. tAgain,
collaboration between academic and non-academic institutions has provérabieafor the
development of innovative systems that can find their way to the market.

In the future, a lot of challenging goals in the field of EPC-development are to bedon. First

of all, the distribution of catalogues on the World Wide Web must not only be made pobsibl
also as easy as the specification of a catalogegkm now is. For this purpose, a sound basis
must be given through the definition of a client/server-model for database axcesgecially
including security aspects. A translation to the—perhaps changing—standards ofettmetnt
must be supported.

A further extension oepkmni that we are currently working on is a simplified description and
declaration of processes, in analogy to movie scripts. That could look lige thi

<time-line end-of=12s periodical slice=3s>

<slice>
<pa|’ >

34

<open nanme=ne
<par >
<open nane=n>
<slice>
<par >
<cl ose nanme=ne
<par >
<cl ose nanme=n>
<slice end-of =1s>
<open nane=0>
<slice end-of =bs>
<cl ose nane=o0>
</tinme-line>

Product and information integration seems to be another desirable aim. The poodoica
traditional paper catalogue out of apkm —specification, e.g. by compiling the EPC to a word
processor, will play a major role in the future developments.

Acknowledgments

We wish to thank the EPK-fix developer groups of TH-Darmstadt, TU-Dresdefr@RWISS-
Erlangen as well as the people of the Mediatec Company for their helpful commenite on
language. Also Earl Hooddt d2ht ml - andMHonAr c-scripts were a great help.

References

[AG96] Ken Arnold and James GoslingThe Java Programming Language. Addison—
Wesley, Mountain View, May 1996.

[Bal95] Heide BalzertMethoden der objektorientierten Systemanalyse. BI-Wissenschafts-
verlag, Mannheim—Leipzig—Wien—Zurich, 1995.

[Bol94] Dietrich Boles. Das IMRA—modell. Diplomarbeit, Carl von Oszglgt Univerat
Oldenburg, September 1994.

[Bos95] Bosch. Wir bewegen lhre Welt. Bosch—Pneumatik — Das Komplettprogramm
auf CD—ROM Kkatalog nr. 15, May 1995. Made by telemedia interactive software
(Bertelsmann).

[Davo0] Alan M. Davis. Software Requirements. Prentice Hall, Englewood Cliffs, N. J.,
1990.

[Fla96] David FlanaganJava in a Nutshell. O’'Really & Associates, February 1996.

[GM95] James Gosling and Henry McGiltofThe Java Language Environment: A White
Paper. Sun Microsystems, Mountain View, October 1995.

35

[Gol94]
[Gra95]

Charles GoldfarbThe SGML Handbook. Clarendon Press, Oxford, 1994.
lan S. GrahamHTML Sourcebook. John Wiley & Sons, New York—etc., 1995.

[KKMW96] Alexander Knapp, Nora Koch, Luis Mandel, and Martin Wirsing. Die Sprache

[KM96]

[Mac95]

[Mer95]

[Mic95]

[MS93]

[NN92]

[OTT95]
[Pfl91]

[Que9s5]

[RBOS5]

[RBP+91]

[RS]

[Spro5]

[VHO94]

EPKML. Interner Bericht 1:96, LMU Minchen, March 1996.

Nora Koch and Luis Mandel. Catalogues on CD-ROM: The State of the Art. to
appear, Ludwig—Maximilians—Universitat Minchen, 1996.

Macromedia. Macromedia Showcase CD 4.0. CD-ROM, 1995. Made withoMacr
media.

Mercedes-Benz AG. Die neuen E—Klasse Limousinen von Mercedes-éBénz
CD-ROM, 1995. Made with Macromedia.

Microsoft Corporation. Microsoft technet, Technical Information Netkw CD-
ROM, May 1995. Vol 3, Issue 5.

Jim Melton and Alan R. Simornderstanding the new SQL. Morgan Kaufmann,
San Mateo, California, 1993.

Hanne Riis Nielson and Flemming Nielso&emantics with Applications. John
Wiley & Sons, Chichester, 1992.

OTTO. Shopping Interactive. CD-ROM, 1995. Made by Feldmann.

Shari Lawrence Pfleegé&oftware Engineering. Macmillan, New York, 2nd edition,
1991.

Quelle Schickedanz AG & Co. Easy Shopping per CD—ROM, 1995. Made with
Macromedia.

Steven A. Rogers and Mark A. Breland. Hypermedia Authoring - An Experime
January 1995.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen.Object—Oriented Moodelling and Design. Prentice Hall, Engle-
wood Cliffs, N. J., 1991.

RS Components GmbH. RS: Der Katalog. Das Original (september 95 — februar
96). CD-ROM. Made with Virtual Page.

Springer Verlag. Springer in Print 95/96. CD-ROM, 1995. Made with Adobe
Acrobat.

Arthur van Herwijnen.Practical SGML. Kluwer Academic, Boston—Dordrecht—
London, 1994.

36

[VHSS96] Arthur van Hoff, Sami Shaio, and Orca Starbud#ooked on Java. Addison—
Wesley, Reading, Massachusetts, 1996.

A Example

In this section we present an example of the specification of an EPC. Theohaidly of the
catalogue is graphically given by the figures 6 and 7.

It is a very simple EPC, which begins with a window of the form table-of-costenbm this
window the end-user can choose between the following actions: navigate to the gtsnpan
presentation or to the product selection, access to the help window, or exittghegeee. The
presentation is the most trivial one, because it only includes a video. The selemtidow gives

a list of all the products available. If one product is clicked, a product windowheilbpened
with an image and a brief description of the product. The “buy” button of this pagestmadd

the product in the shopping bag, which can be seen in a browser including name, dascripti
guantity, and price. Notice that every window includes the possibility to metuthe previous
page with the “back” button. The help window is not graphically represented and thet obje
identifications (oid)s are not included in the example, although they are requoediax to the
DTD document because they will be automatically set by the SASSI tool.

<! DOCTYPE EPKML SYSTEM "epkm . dtd">

<! -- Exanpl e Catal ogue -->
<epkm >
<header
title = Exanpl e Cat al ogue
aut hor = The LMJ Software Corporation Ltd.
date = 25/2/96
| ast-nodi fied = 29/ 2/ 96>
<ext ernal s>

<styl es>
<styl esheet name = exanpl e-cat al ogue-styl e
extends = cat al ogue-styl e>
<def aul t >
<wi ndow>
<ing src = logo.gif align = "top left">
<ing src = exanple.gif align = "top right">

<button name = hel p-button
align = "bottomright"

<on-click>
<open nane = hel p-w ndow>
</on-click>
</ button>
</ wi ndow>
</ defaul t >
</ styl esheet >

\Y

37

[EXAMPLE COMPANY]

The very best Catalogue of the
Example company.

Selection

[EXAMPLE COMPANY]

VIDEO

[EXAMPLE COMPANY]

Prod_1
Prod_2
Prod_3
Prod_4
Prod_5 Ve -
Prod_6

ml

Figure 6: Example catalogue part |

38

[EXAMPLE COMPANY J

Product description
Product description

Photo Product description
Product description
Product description
\
N
[EXAMPLE COMPANY]
Name Description Quantity Price
Name Description Quantity Price
O Name Description Quantity Price
Name Description Quantity Price
Name Description Quantity Price

Figure 7. Example catalogue part Il

39

</styl es>
<definitions>
<wi ndow nanme = mai n style = exanpl e-cat al ogue-styl e>
<p align = left baselineskip = 10pt>
/The very best catal ogue of the Exanpl e Conpany
<p>
<button name = sel ectbutton
align = center>
<ing src = select.gif>
<on-click>
<cl ose nane
<open nane
</on-click>
</ butt on>
<button nane = presentationbutton
align = center>
<ing src = presentation.gif
<on-click>
<cl ose nane
<open nane
</on-click>

mai n>
sel ect >

mai n> _
presentati on>

</ button>
<button nane = exitbutton
align = "bottomleft">

<inmg src = exit.gif
<on-cl i ck>

<cl ose nane = nmi n>
</on-click>

</ button>
</ wi ndow>
</definitions>
<include file = hel p. epk>
<include file = presentation. epk>
<include file = sel ect.epk>
<include file = product.epk>
<include file = buy. epk>
<mai n>
<open nane = mai n>
</ mal n>
</ epkm >
<!-- Help File -->
<wi ndow nanme = hel p-wi ndow styl e = exanpl e- cat al ogue- styl e>
<p>
This is a hel p wi ndow
This is a hel p wi ndow
This is a hel p wi ndow
This is a hel p wi ndow
This is a hel p wi ndow
<ing src = help.gif>
This is a hel p wi ndow
</ p>
<button nane = back align = "bottomleft">

<ing src = back.gif>
<on-click>
<cl ose nane = hel p-w ndow>

40

</on-click>
</ button>
</ wi ndow>

<!-- Presentation File -->
<wi ndow nanme = presentation
styl e = exanpl e-cat al ogue-styl e>

<vi deo name = pres
src = "/videos/sunmmer -vi deo. nov"
format = nov
status = cl osed>

<st op- butt on>
<frame name = vi deo invisible>
</frame>
<on-click>
<cl ose nanme = pres>
</on-click>
</ vi deo>
<button name = back align = "bottom|eft">
<ing src = back.gif>
<on-click>
<cl ose nane
<open nane
</on-click>
</ button>
<open nane = pres>
<on- end- of name= pres>
<cl ose nane presentati on>
<open nane mai n>
</ on- end- of >
</ wi ndow>

presentation>
mai n>

<l-- Select File -->
<t heme nane = general >
<extension result = general-result>
<sqgl >
SELECT name price description photo
FROM products description
WHERE products. code = descri ption. code
</ sql >
</ ext ensi on>
<page nane = all-products>
<wi ndow nanme = sel ect style = exanpl e-cat al ogue-styl e>
<br owser nane = dynam c-br owser >
<meke-options from = general -resul t>

<p>
$general -resul t. name$

</ p>

<on- sel ect ed>
<cl ose nanme = sel ect>
<open name = prod-desc>

</ on-sel ect ed>
</ make- opti ons>
</ br owser >
<button nane = back align = "bottomleft">
<inmg src = back.gif>

41

<on-click>
<cl ose nane
<open nane
</ on-click>
</ button>
</ wi ndow>
</ page>
<exceptions>
<sqgl >
SELECT name price description photo
FROM products description
WHERE products. code = description. code and
price < 100

sel ect >
mai n>

</sql >
<page nane = products-on-sal e>
<wi ndow nane = on-sal e style = exanpl e-cat al ogue-styl e>
<p>
Products ON SALE!
<ing src=on-sale.gif>
</ p>
<br owser nane = dynam c-browser >
<make-options from = general -resul t>

<p>
$general -resul t. name$
</ p>
<on- sel ect ed>
<cl ose nane = sel ect>
<open nane = prod-desc>

</ on-sel ect ed>
</ make- opti ons>
</ br owser >
<button name = back align = "bottomleft">
<inmg src = back.gif>
<on-click>
<cl ose nane
<open nane
</on-click>
</ butt on>
</ wi ndow>
</ page>
</ exceptions>
</t hene>

sel ect>
mai n>

<I--Product File-->
<wi ndow nane pr od- desc
styl e = exanpl e- cat al ogue-styl e
attribs "phot 0"
el ens "desc" >

<p>
$desc$
</ p>
<button nane = back align = "bottomleft">
<ing src = back.gif>
<on-click>
<cl ose name = prod-desc>

42

<open nane = general >
</on-click>
</ butt on>
<button name = buy align = "bottom m ddl e">
<ing src = buy.gif>
<on-click>
<cl ose name = prod-desc>

<sgl >
I NSERT | NTO shoppi ng- bag
VALUES
$general -resul t [$dynani c- br owser . sel ect ed$] . nane
sl $general -resul t[$dynam c- browser. sel ect ed$] . pri ce
</ sqgl >

<open nane = buy>
</on-click>
</ butt on>
</ wi ndow>

<!--Buy File-->
<wi ndow nanme = buy style = exanpl e-cat al ogue-styl e>
<nul ti pl e- browser nane = shoppi ng- bag- br owser >
<make- opti ons from = shoppi ng- bag>
<p>
$general -resul t. name$
</ p>
</ make- opti ons>
</mul tipl e-browser >
<button nane = order align = "bottom ni ddl e">
<ing src = order.gif>
<on-click>

<cl ose nanme = buy>
<open name = order>
</on-click>
</ butt on>
<button nane = back align = "bottomleft">

<ing src = back.gif>
<on-cl i ck>
<cl ose nane = buy>
<open nane = general >
</on-click>
</ button>
</ wi ndow>

B Document Type Definition

The Standard Generalization Markup Languaggn() is the the 1SO standard for document
description. It is designed to enable text interchange and is used mainly in thehpdpliield.
sgm documents have a rigorously described structure separating content from logicalrgt.
Everysgm document has three parts, two formal parts:ggei declaration and the Document
Type Definition, called DTD, and the third part is the document instance.

43

Thesgm declaration usually is common to all documents insgml installation and gives

the details on hovegm will be applied to the document, defining which character set will be
choosen or which characters should be used as delimiters. Exam@gsiofdeclarations can

be found in [vH94], [Gol94].

The DTD is written insgm and defines the structure of the document. The instance contains the
data and the mark up. An example for a document instance corresponding to the DTD defined i
this appendix is shown in Appendix A.

In a DTD we can distinguish elements, attributes and entities. Anesliem marked up with
symbols called start-tag and end-tag and it has associated a namegeal&dl identifier (Gl).
To define ansgm element its content, its attribute list, and the mark-up minimizatioasrul
must be given. The attribute list related to an element specifies furtfeemation and can be
compared to the specification of parameters. Entities are used as acshofof text strings, to
code special characters, to include external files, or as variables inlibe D

The two books already mentioned [vH94] [Gol94] describe the compigid .

<l--

Docunent Type Definition for the EPKM. -->

<l-- 04.12.1996 -->

<! ELEMENT epkm - - (header, externals, styles, definitions, nmin)
+(include | expand | variant)>
<l-- Sone definitions -->
<IENTITY % | DENT " CDATA ''">
<IENTITY % | DENTS " CDATA '’ ">
<IENTITY % REF " NAME" >
<IENTITY % BOCL "NUMBER 0" >
<IENTITY 9% ALI GN " CDATA "' ">
<IENTITY % DI MEN "NUTOKEN 0" >
<IENTITY % Tl ME "NUTOKEN 0" >
<IENTITY % COLOR "NMIOKEN ' bl ack’ ">
<IENTI TY % SHAPE " CDATA">
<IENTITY % SOURCE "CDATA './'">
<IENTI TY % HEADI NG "NUMBER 1" >
<IENTITY % o0id "oi d CDATA #REQUI RED"' >
<IENTITY %attributes "nane % DENT;
styl e % DENTS;
i nvisible (invisible) # MPLIED
[ayer NUMBER O
xpos %l MEN,
ypos %D MEN,
w dt h %Ol MEN;
hei ght %Dl MEN;
| ftpad %Ol MEN,
rgt pad %Ol MEN,
t oppad %O MEN,
bot pad %I MEN,
[ftnrg %D MEN;
rgtnrg %Ol VEN;
topnrg % MEN;
botnrg %O MEN, ">
<IENTITY % properties "properties CDATA '’
status (opened | closed | suspended) opened

attribs % DENTS;

44

el emrs % DENTS; ">

<IENTI TY
<IENTITY

% halign "(left
% valign "(top |

| center |
m ddl e |

CDATA "rgh’ ">
CDATA "au’ ">
CDATA "avi’' ">
CDATA ’avi’' ">
CDATA "' ">

right |
bottom |

justify |

<IENTI TY
<IENTI TY
<IENTI TY
<IENTITY
<IENTITY

"f or nat
"f or nat
"f or nat
"f or mat
"end- of

% i ng- f or mat
% audi o- f or nat
% vi deo- f or nat
% sl i de-f or nat
% end- of

<IENTI TY
<IENTI TY

% f ont
% fontstyle

"font
"fontstyl e CDATA ' normal’

<IENTI TY
<IENTITY
<IENTITY
<IENTITY
<IENTI TY
<IENTI TY
<IENTI TY
<IENTITY
<IENTITY

% def - | ang "’ german’ ">
% def - background "' grey’ ">

% def-bul l etstyle "' *" ">

% def - enunstyl e arabic' ">
% begi n- number "1">

% def - max!| engt h "1t >

% def - col spec "'right’ ">

% def - numof pics "1">

% def - pi cpersec "16">

<IENTITY %void """ ">

<IENTITY % defaults ' 640x480’
" pi xel”’

"client’">

"di spl ay CDATA
units CDATA
user - nrode NAME

<IENTITY % 1SA at1 PUBLIC
"] SO 8879-1986// ENTI TI ES Added Latin 1//EN/HTM"
"added-iso-latin-1.dtd">

% SA at 1;

<l-- Inclusion of files and macros -->
<! ELEMENT i ncl ude -
<! ATTLI ST i ncl ude
%i d;
file CDATA #REQUI RED>

O EMPTY>

<! ELEMENT expand - O (attribute |
<I' ATTLI ST expand
%i d;
name CDATA

el ement) *>

#REQUI RED>

<l ELEMENT variant - -
<! ATTLI ST vari ant

(and | or | elenent |

%0i d;
name CDATA %void
obj ect CDATA #REQUI RED

attri bute CDATA %oi d

val ue CDATA %voi d>
<IENTITY % operator "and | or">
<! ELEMENT (%operator;) - O (and | or | elenent)*>
<I ATTLI ST (%®operator;)

%i d;

name CDATA %voi d

obj ect CDATA %voi d

attri bute CDATA %oi d

45

CDATA ' hel vetica ">

deci mal)

"

variant)*>

left"

basel i ne) basel i ne">

>

val ue CDATA %voi d>

<! ELEMENT attri bute - O EMPTY>
<! ATTLI ST attri bute

%0i d;

nane CDATA #REQUI RED

val ue CDATA #REQUI RED>

<l ELEMENT el enent - O (#PCDATA) >
<! ATTLI ST el enent

%0i d;

nanme CDATA #REQUI RED>

<l-- Declaration of |ayout elenments -->

<IENTITY %flow "p | heading |
listing | item ze | enunerate |
tabular | ing | video | slide-show |

flowbox | frame">
<IENTITY % interactive "button | next-button | previous-button |
back-button | hyperlink | input | scribble |
pop-up | browser | nultiple-browser |
radi o-button | checkbox | pull-down |
vertical -slider | horizontal-slider">
<IENTITY % toplevel "wi ndow | deno |
registration-form| question-form|
search-form| shopping-bag | shopping-list |
t abl e- of -contents">

<l-- Declaration of actions -->

<IENTITY % open "open">

<IENTITY % cl ose "suspend | close">

<IENTITY % dat abase "sql ">

<IENTITY % navi gation "next | previous | up | down | back |

additional | exit">

<IENTITY % action "%open; | %l ose; | %latabase; | %avigation; |
audio | applet | set | wait | enpty | non-enpty |
foreach | order | tine-line | on-end-of">

<l-- Declaration of contents of elenents -->
<IENTITY % contents "% low, | % nteractive; | %oplevel; | %ction;">
<l-- Actions -->

<! ELEMENT (%open;) - O (attribute | elenent)*>
<I ATTLI ST (%open;)

%i d;

nanme CDATA #REQUI RED>

<l ELEMENT (%l ose;) - O EMPTY>
<I ATTLI ST (%l ose;)
%i d;
name CDATA #REQUI RED>
<! ELEMENT (%lat abase;) - O (#PCDATA) >
<I ATTLI ST (%lat abase;)
%i d;
result 9% DENT; >

<! ELEMENT (%avigation;) - O EMPTY>

46

<I ATTLI ST (previous | next)
%i d;
theme (thene) #l MPLIED
circular (circular) #l MPLIED>

ATTLI ST back
%i d;
hi erarchi cal (hierarchical) #l MPLI ED>

<l ATTLI ST exi t
%0i d;
deno (deno) #l MPLI ED>

<

<! ELEMENT applet - - (param*>
<! ATTLI ST appl et
%i d;
Y%attributes;
%properties;
functi on CDATA #REQUI RED
result 9 DENT; >

<!l ELEMENT param - O EMPTY>
<I ATTLI ST param
%i d;
nane CDATA #REQUI RED
val ue CDATA #REQUI RED>

<! ELEMENT set - O ANY>
<! ATTLI ST set
%0i d;
nanme CDATA #REQUI RED
val ue CDATA %oi d; >

<! ELEMENT wait - O EMPTY>
<! ATTLI ST wai t

%i d;

%end- of ; >

<!l ELEMENT (enpty | non-enpty) - O (%ontents;)*>
<I ATTLI ST enpty

%0i d;

whi ch CDATA #REQUI RED>

<l ELEMENT foreach - O (%ontents;)+>
<I ATTLI ST foreach

%0i d;

i n CDATA #REQUI RED>

<! ELEMENT order - O EMPTY>
<! ATTLI ST order

%0i d;

orders CDATA %voi d; >

<IELEMENT tinme-line - - (slice)+>
<IATTLIST tine-line
%i d;
%end- of ;
peri odi cal (periodical) #l MPLIED
slice %l ME; >

<IELEMENT slice - O ((%ontents;)+ | (par)+)>
<! ATTLI ST slice

%end- of ;

peri odi cal (periodical) #l MPLI ED>

a7

<!l ELEMENT par - O (%ontents;)*>

<! ELEMENT on-end-of - - (%action;)*>
<! ATTLI ST on- end- of

%i d;

name CDATA #REQUI RED>

<

-- Text elenments -->

<IENTITY %fonts "u | b | s | i | tt | big]| smll">
<IENTITY % phrases "em | strong">
<IENTITY % positionings "sub | sup">
<IENTITY % specials "br">
<IENTITY %msc "q | lang">
<IENTITY % text "#PCDATA | %onts; | font | Y%ositionings; | %hrases; |
%specials; | %rsc;">
ENTITY % font props "% ont;
fontsize % MEN,
% ont styl e;
fontcol or ¥COLOR, ">

<

<IELEMENT (% onts; | Y%hrases;) - - (%low)+>
<I ATTLI ST (% onts; | Yhrases;)
%i d;
%roperties; >
<!l ELEMENT (%positionings;) - - (%1low)+>
<! ATTIaI ST (%posi tionings;)
%i d;

%properties;
di stance 9%l MEN; >

<! ELEMENT br - O EMPTY>
<I ATTLI ST br

%0i d;

%r operties; >

<IELEMENT q - O (% low, | %ext;)+>
<I ATTLI ST ¢q

%i d;

%pr operties; >

<IELEMENT lang - O (%l ow, | %ext;)+>
<! ATTLI ST | ang

%i d;

%properties;

nanme NAME %def - | ang; >

<IELEMENT font - O (%low, | %ext;)+>
<I ATTLI ST font

%i d;

%properties;

% ont props; >

<IELEMENT p - O (% nteractive; | %low, | %ext;)*>
<I ATTLI ST p

%0i d;

Y%attributes;

%properties;

% ont props;

basel | neski p %D MEN;

48

i ndent %Ol MEN,
align %align;>

< ELEMENT heading - - (%nteractive; | %low, | %ext;)*>
<! ATTLI ST headi ng

Y%oi d;

Yattributes;

%pr operties;

% ont pr ops;

nunmber %HEADI NG,

basel i neski p %O MEN;

[ef t margi n %I MEN,

align %align;>

<IENTITY % listprops "leftmargi n %Ol MEN,

itensep %0l MEN,

align %al i gn; ">

<IELEMENT listing - - ((tern?, item | neke-itens)*>
<I ATTLI ST listing

%i d;

Y%attributes;

%properties;

% i stprops; >
<IELEMENT itenmze - - (tern?, (item| nake-itens)*)>
<I ATTLI ST item ze

%0i d;

Yattributes;

%properties;

% i st props;

bul | et styl e CDATA %def -bul | et styl e>

<! ELEMENT enunerate - - (item| nake-itens)*>
<I ATTLI ST enuner at e

%i d;

Y%attributes;

Oﬁfroperti es;

% i st props;

enunstyl e CDATA %lef - enunstyl e

nunber CDATA %begi n- nunber; >

<IELEMENT term- O (%l ow;) +>
< ATTLI ST term

%0i d;

Yattributes;

%pr operties; >

<IELEMENT item- O (% ow;) +>
<I ATTLI ST item

%0i d;

%ttributes;

%pr operties; >

<! ELEMENT nake-itens - O (%l ow;) +>
<I ATTLI ST nake-itens
from CDATA #REQUI RED>

<!l ELEMENT tabular - - (row)*>
<! ATTLI ST t abul ar

%0i d;

Yattributes;

%properti es;

col spec CDATA %lef - col spec;

49

align %align;>

<IELEMENT row - O (cell)*>
<I ATTLI ST r ow

Y%attributes;

%pr operties;

l1ne (line) #l MPLI ED>

< ELEMENT cell - O (%l ow)*>
<I ATTLI ST cel

Y%attributes;

%properti es;

col span NUMBER 1

rowspan NUMBER 1

align %ALI G\, >

<!-- lmages, Video, Audio and Effects -->

<IELEMENT img - O EMPTY>
<! ATTLI ST i ng

Y%i d;

Yattributes;

%properties;

% ng-f or mat ;

align %ALI GN,

src CDATA #REQUI RED>

<

ENTITY %cntrl btns "play-button | stop-button | pause-button
forward-button | rew nd-button">

<!l ELEMENT video - O (%ntrlbtns;)*>
<! ATTLI ST vi deo
%0i d;
Y%attributes;
%properties;
%vi deo-f or mat ;
nunof pi cs NUMBER %ef - nunof pi cs;
pi cper sec NUMBER %ef - pi cper sec;
align %ALI GN,
src CDATA #REQUI RED>

<IELEMENT audio - O (%ntrlbtns;)*>
<! ATTLI ST audi o

%i d;

name % DENT;

%properties;

%audi o- f or mat ;

durati on %l MVE

src CDATA #REQUI RED>

<! ELEMENT sl ide-show - O (%ntrl btns;)*>
<I ATTLI ST sl i de-show

%0i d;

%attributes;

%poroperties;

%sl i de-fornmat;

i nterval %l ME

align %ALI GN;

src CDATA #REQUI RED>

<l ELEMENT demo - - (%action;)* +(click)>

<! ATTLI ST denp
%i d; >

50

<l ELEMENT (%ntrlbtns;) - O (disabled?, clicked?, (%]!low)?*,

on-click?)>
<I ATTLI ST (%entrl btns;)
%0i d;
Y%attributes;
%pr operties;
di sabl ed (di sabl ed) #I MPLI ED>

<! ELEMENT click - O EMPTY>
<! ATTLI ST click
nanme CDATA #REQUI RED>

<l-- Buttons and Hyperlinks -->

<l ELEMENT button - - (disabled?, clicked?, (%!low)*, on-click?)>

<! ATTLI ST button
%i d;
Y%attributes;
%pr operties;
di sabl ed (di sabl ed) #l MPLI ED
align %ALI GN; >

<l ELEMENT (next-button | previous-button)

- - (disabled?, clicked?, (%Ilow)*, on-click?)?>

<I ATTLI ST (next-button | previous-button)
Y%i d;

Yattributes;

%pr operties;

di sabl ed (disabl ed) #l MPLI ED

align %ALI GN,

circular (circular) # MPLIED

theme (thene) # MPLI ED>

<! ELEMENT back-button - - (disabled?, clicked?,

<! ATTLI ST back- button
%0i d;
Y%attributes;
Y%roperties;
hi erarchi cal (hierarchical) #l MPLI ED
di sabl ed (di sabl ed) #I MPLI ED
align %ALI GN; >

<! ELEMENT (disabled | clicked) - - (%low)+>
< ELEMENT on-click - - (%action;)*>
<! ELEMENT hyperlink - - (%] ow;)*>
<I' ATTLI ST hyperlink
%i d;

Y%attributes;

%properti es;

ref CDATA #REQUI RED

di sabl ed (di sabl ed) #I MPLI ED
align %ALI GN; >

<l-- Sliders -->

<!

<

(% 1ow)*, on-click?)?>

ENTITY % slider "vertical-slider | horizontal-slider">

ELEMENT (%l ider;) - O (slider-previous?, slider-next?,

sl i der-box?, on-reposition?)>

<

ATTLI ST (%l i der;)
%0i d;
%attributes;

51

%pr operties;

posi ti on NUMBER O

step NUMBER 1

di sabl ed (disabl ed) #l MPLI ED
align %ALI GN, >

<! ELEMENT (slider-previous | slider-next | slider-box) OO (%Il ow)*>
<! ELEMENT on-reposition - - (%action;)*>
<l-- Form El enents -->

<! ELEMENT i nput - O EMPTY>
<! ATTLI ST i nput
%0i d;
Yattributes;
%properties;
maxl engt h NUMBER %ef - max| engt h;
di sabl ed (di sabl ed) #I MPLI ED
val ue CDATA #REQUI RED
align %ALI GN; >

<! ELEMENT scri bble - O EMPTY>
<! ATTLI ST scri bbl e

%0i d;

Y%attri butes;

%pr operties;

src Y%OURCE

di sabl ed (disabl ed) #l MPLI ED

align %ALI GN, >

<l ELEMENT browser - - (option | nake-options)* +(on-no-option)>
<! ATTLI ST br owser

%0i d;

Yattributes;

%properties;

di sabl ed (disabl ed) #l MPLI ED

align %ALI GN, >

<! ELEMENT nul ti

<I ATTLI ST nul ti
%0i d;
Y%attributes;
%properti es;
col spec CDATA %lef - col spec;
align %ALI GN; >

| e-browser - - (browser-row | nmake-options)* +(on-no-option)>
| e- browser

©T T

<! ELEMENT browser-row - O (browser-cell, on-sel ected?, on-desel ected?)*>
<I ATTLI ST br owser - r ow

Y%attributes;

%properties;

[1ne (line) #l MPLIED

align %ALI GN; >

<! ELEMENT browser-cell - O (%l ow;)*>
<I ATTLI ST br owser-cel |

Y%attributes;

%properties;

i nput (input) #l MPLIED

col span NUMBER 1

rowspan NUMBER 1

align %ALI GN; >

<! ELEMENT checkbox - - (option*)>

52

<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

ATTLI ST checkbox

%0i d;

Yattributes;

%properties;

di sabl ed (disabl ed) #l MPLI ED
align %ALI GN; >

ELEMENT radi o-button - - (option*)>
ATTLI ST radi o- button

%i d;

Y%attributes;

%properties;

di sabl ed (di sabl ed) #l MPLI ED

align %ALI GN; >

ELEMENT pop-up - - (option*) -(on-desel ected)>
ATTLI ST pop-up

%0i d;

Yattributes;

%pr operties;

di sabl ed (di sabl ed) #l MPLI ED

align %ALI GN; >

ELEMENT pul | -down - - ((nenu-title)*)>
ATTLI ST pul | - down
%0i d;

Yattributes;
%pr operties;
align %ALI GN, >

ELEMENT nenu-title - - (option)* -(on-desel ected)>
ATTLI ST menu-title

Yattributes;

%pr operties;

di sabl ed (di sabl ed) #l MPLI ED

align %ALI GN, >

ELEMENT option - O ((% 1 ow;)+, on-selected?, on-desel ected?)>
ATTLI ST option

Yattributes;

%pr operties;

sel ected (sel ected) #l MPLIED

di sabl ed (disabl ed) #l MPLI ED

align %ALI GN, >

ELEMENT nake-options - O ((% 1 ow,)+, on-sel ected?, on-desel ected?)>
ATTLI ST nmake- opti ons
fr om CDATA #REQUI RED>

ELEMENT (on-selected | on-deselected | on-no-option) - - (%action;)*>
-- Boxing -->

ELEMENT fl owbox - - (around?, (%low, | % nteractive; | %action;)*)>
ATTbIST f | owbox

%i d;

Y%attributes;

WTroperties;

al i gn %ALI GN;

di stribute (distribute) #l MPLI ED
background CDATA %lef - backgr ound; >

ELEMENT around - - (% low, | % nteractive;)+>
ATTLI ST ar ound

53

align %ALI GN; >

<l-- Frames and W ndows -->
<l ELEMENT frame - - (%low, | %nteractive; | %action;)*>
<! ATTLI ST frame

%0i d;

Yattributes;
%properti es;
align %ALI GN,
background CDATA %lef - backgr ound; >

<l ELEMENT wi ndow - - (% low, | % nteractive; | %action;)*>
<I ATTLI ST wi ndow

%i d;

Y%attributes;

%properti es;

titl e CDATA %voi d;

i coni zed (iconized) #l MPLIED

background CDATA %lef - backgr ound; >

<l-- Thenes -->

<l ELEMENT thene - - (extension, page+, exceptions?, thene*)>
<! ATTLI ST t hene

%i d;

nanme CDATA #REQUI RED>

<! ELEMENT extension - - (sqgl)*>
<! ATTLI ST ext ensi on

%0i d;

result 9 DENT; >

<! ELEMENT page - - (%low, | window | %nteractive; | %ction; | page)*>

<I ATTLI ST page
%i d;
nane CDATA #REQUI RED>

<! ELEMENT exceptions - - (sql, page?)+>
<! ATTLI ST excepti ons

%i d; >
<l-- Services -->
<! ELEMENT tabl e-of -contents - - (%low, | % nteractive; | %ction;)*>
<! ATTLI ST tabl e-of -contents

%i d;

name % DENT, >
<l ELEMENT regi stration-form- - (%low, | %nteractive; | %ction;)*>
<I ATTLI ST regi stration-form

%i d;

name % DENT;

users YSOURCE; >
<l ELEMENT question-form- - (%low, | %nteractive; | %ction;)*>
<! ATTLI ST question-form

%i d;

name % DENT;

users %SOURCE; >
<!l ELEMENT search-form- - (%low, | % nteractive; | %action;)*>
<I ATTLI ST search-form

%i d;

54

<!

<

<I

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<!
<!

<I
<!

<I
<!

<I

<!

nanme % DENT;
entri es Y%BOURCE; >

ELEMENT (shoppi ng-bag | shopping-list) -
ATTLI ST (shoppi ng-bag | shopping-Ilist)
%i d;

name % DENT;

orders %SOURCE; >

-- Header -->

ELEMENT header - O EMPTY>
ATTLI ST header

title CDATA #REQUI RED
aut hor CDATA #REQUI RED
date CDATA #REQUI RED
[ast-nodi fi ed CDATA #REQUI RED>

-- Externals -->
ELEMENT externals - O (class | schene)*>

ELEMENT cl ass - O EMPTY>
ATTLI ST cl ass

%0i d;

nane CDATA #REQUI RED

sl ot s CDATA %oi d;

met hods CDATA %oi d; >

ELEMENT schene - - (table)+>
ATTLI ST schene

%0i d;

name CDATA #REQUI RED>

ELEMENT table - O EMPTY>
ATTLI ST table

%0i d;

nane CDATA #REQUI RED

col utms CDATA #REQUI RED>

-- Styles -->
ELEMENT styles - O (styl esheet)*>

ELEMENT styl esheet - - (default)*>
ATTLI ST styl esheet

%i d;

name CDATA #REQUI RED

ext ends 9% DENTS; >

ELEMENT default - O (% low, | % nteractive;

ATTLI ST def aul t
%0i d;
ext ends % DENTS; >

-- Definitions -->

ELEMENT definitions - O (nacro | audio |
% nteractive; |

ATTLI ST definitions

%i d; >

ELEMENT var - O ANY>

55

(%Blow, | %nteractive;
%action;)*>

| % opl evel;)>

theme | %1 ow |
% opl evel ;)* +(var)>

<! ATTLI ST var
%0i d;

name CDATA #REQUI RED

val ue CDATA %voi

<! ELEMENT nacro -
<! ATTLI ST macro
%0i d;

d; >
- ANY>

name CDATA #REQUI RED

attri bs % DENTS
el ens % DENTS; >

<l-- The Main Element -->

<IELEMENT main - O (var

<! ATTLI ST mai n
%i d; >

%action;) +>

56

