
EPK-�x: Methods and Tools for EngineeringElectronic Product Catalogues?A. Knapp, N. Koch, M. Wirsing (LMU M�unchen)J. Duckeck, R. Lutze (mediatec GmbH, N�urnberg)H. Fritzsche, D. Timm (TU Dresden)P. Closhen, M. Frisch, H.-J. Ho�mann (TH Darmstadt)B. Gaede, J. Schneeberger, H. Stoyan, A. Turk (FORWISS Erlangen)Abstract An electronic product catalogue (EPC) is a computer con-trolled information system with multimedia product presentations andnavigation facilities. The paper presents the results of the EPK-�xproject for the systematic construction of EPCs. These include a soft-ware engineering process model, a high level speci�cation language forEPCs, and an integrated set of tools supporting the entire EPC de-velopment process. The EPK-�x process model supports the classicaldevelopment phases: requirements analysis, speci�cation and design, im-plementation, and test. In each of the phases emphasis is put on theparticular multimedia aspects, human machine interaction, productionof prototypes, and the quality of the produced documents.IntroductionElectronic Product Catalogues (EPCs)1 are computer controlled informationsystems with important multimedia (especially visual) product presentationsand navigation facilities. They are almost always equipped with a shopping bagadministration feature.EPCs are an inexpensive alternative to paper catalogues, but a high qualitydesign is still related to elevated costs, because there are no appropriate pro-duction tools available. There are catalogue providers introducing a multimediapresentation to the market, catalogue developers designing and producing EPCswith the assistance of software and multimedia experts, testers, and users orend-users.State of the art technologies to produce EPCs are still far from being easyto use and e�cient and they show serious weaknesses. New methodologies andspeci�c tools for EPCs are needed. They must support the complete life cycleof EPCs starting with the analysis of the catalogue providers requirements,continuing with the catalogue design up to the functional tests. These tools have? This work was supported by the BMBF project EPK-�x (F�orderkennzeichen 01 IS520). Corresponding author: N. Koch, Institut f�ur Informatik, Ludwig{Maximilians{Universit�at M�unchen, Oettingenstra�e 67, D{80538 M�unchen, kochn@informatik.uni-muenchen.de1 German: EPKe (Elektronische Produktkataloge)

to be easy to use, reduce the amount of EPC development time, and permit alow-cost production of catalogues. These are neccessary prerequisites for theacceptance of a new system, especially in small and medium size organizations.We present the results of the EPK-�x project for the systematic constructionof EPCs. Methods have been developed and a collection of integrated tools(RASSI, SASSI, GASSI, TASSI) has been designed for e�cient speci�cation,production, and validation of EPCs. The requirement analysis is carried outwith the help of structured interviews which are guided and recorded using the�rst tool. The result of this analysis is the base for an EPC design written inthe speci�cation language EpkMl. EpkMl is a high level HTML-like languagethat is particularly designed to support the description of EPCs. The secondtool supports the speci�cation construction with a set of specialized editors. Thethird tool automatically generates di�erent catalogue versions in Java from theEpkMl speci�cation. Finally, the test assistant helps to ensure the quality ofthe produced catalogues. It provides static and dynamic test strategies as wellas strong support for manual testing of media objects.The �rst section of this paper outlines the state of the art of EPCs, thedevelopment process, and the resulting architecture of the EPK-�x system. Sec-tions two to six describe the speci�cation language and the tools respectively. Inthe last section some conclusions are delineated.1 Developing EPCs with EPK-�xThe analysis of about 40 EPCs [6] has demonstrated that they go far beyond pa-per catalogues with cross references. They o�er services like search features, de-mos to show how to use the catalogue, games, query language, enquiries throughtelephone communication and fax, or on-line ordering. The constituents we iden-ti�ed in each EPC are: structure, layout, direction, database, and services.{ The structure is the skeleton of the catalogue; it comprises a graph or hier-archy of themes and pages.{ The layout is the static description of pages and their contents.{ The direction describes the dynamic facilities for pages and themes thatallow for user interaction and the navigation through the catalogue.{ The database component provides all the information about o�ers, in such away that it can easily be searched, exchanged, and maintained.{ The services add comfort to the EPC allowing i.e. administration of orders,user registration, access to help functions, online communications.We observed that working with these EPCs can mainly be divided into installa-tion, presentation, search, selection, and order steps. Depending on their relativeimportance , we distinguish between the following catalogue types: Presentation,Search, and Order catalogues; see [6].The Development Model. The development process for EPCs requires aninformal preanalysis followed by the phases: requirements analysis, design, im-plementation, and test. For each theme a tool has been developed considering the

above mentioned aspects structure, layout, direction, database, and services. Us-ing a formal speci�cation based on a speci�cation language it is possible to takeinto account the application requirements and to avoid inconsistencies amongthe di�erent tools. Characteristics of the EPK-�x development process are theemphasis put on the multimedia aspects, the human-machine interaction, theproduction of prototypes, and the quality of the produced documents. The re-sulting process is a kind of spiral model [2] that leads to the �nal EPC throughsuccessive revisions and re�nements.Requirements Analysis. Human dialogue is central to the analysis process in engi-neering. The fundamental analysis activity is to carry out structured interviews.This interviewing process is divided into three major steps [8]: preparation, inter-view, and edition. During preparation a questionnaire is assembled consideringall aspects (see Section 1) of an EPC. The selection of the questions is guidedby prede�ned generic checklists. The interview is a complete (audio-)recordingof the conversation between the EPC developer and the catalogue provider. Ar-bitrary multimedia information are attached to the corresponding questions andanswers of the interview. Finally, the edition constructs the resulting analysisdocument from written (transcribed) notes and acoustic data.Design. The informal catalogue description recorded in the analysis documentprovides the basis for the design of an EPC. The catalogue developer carriesout his work with the help of appropiate editors which generate automaticallya formal speci�cation of the catalogue. Work starts with the analysis documentspecifying all the aspects and details of the intended catalogue. The developersupplies the structure and the layout of example EPC pages (or templates).Integrated Software Generation. A general advantage of our approach is thespeedup given to the otherwise time consuming and error-prone implementa-tion phase. A generation assistant produces a prototypical EPC version withadditional interfaces to communicate with the other development tools. Theseinterfaces provide capture and replay facilities that can, for instance, be usedto present a catalogue prototype to the developer in exactly that state which isrefered to by a given analysis document. For testing purpose, catalogue elementscan be addressed by their unique identi�er (provided by the design tool). Eventhandling of the user interactions is done by a separate module allowing to treatsimulated user input generated by the test assistant in exactly the same way asreal end-user input.Testing. Quality assurance is a central point of our development process. We aimat complete not only sample testing. In the generated EPCs the large numberof media-objects are tested automatically via rules. Dynamic tests are used toensure correctness of time-dependent multimedia processes. Manual validationof the layout is supported by test agents. The test reports are fed back to theother development steps.The Architecture of the EPK-�x System. The EPK-�x system componentsrely on the formal description language EpkMl. It integrates the following fourtools: RASSI, SASSI, GASSI, and TASSI.

{ EpkMl is a speci�cation language that makes the description of the staticand dynamic aspects of EPCs possible.{ The Requirements analysis ASSIstant (RASSI) supports the informalrecording of information (text, sound, images, video) that results at therequirements analysis stage based on structured interviews.{ The Speci�cation ASSIstant (SASSI) is responsible for EPC design basedon the results of the RASSI tool and generates an EpkMl speci�cation. Thecatalogue developer is assisted by e�cient and powerful editors.{ The Generation ASSIstant (GASSI) translates the EpkMl description spec-ifying the EPC into a general programming language (e.g. Java).{ The Testing ASSIstant (TASSI) performs static tests on the catalogue de-scription in EpkMl and a dynamic validation on the EPC generated byGASSI, using test data especially prepared for that purpose.2 The Speci�cation LanguageThe design of the EpkMl language was guided by basic aims like easiness oflearning and extensibility as well as more EPC-speci�c considerations like theintegration of database features or navigational support. EPCs on CD-ROM andon the World Wide Web (WWW) create an alternative channel to traditionalpaper catalogues for product sale and service o�er. Since these catalogues maycoexist it was our goal to develop a declarative language that allows an easycommon speci�cation.EpkMl is HTML-like. It is de�ned as an instance of SGML (ISO-stan-dard 8879, [4]). The Standard Query Language (SQL) is integrated into the lan-guage for easy access to relational databases. EpkMl has primitives for naviga-tion
ow and allows connection to external languages via applets like in HTML.The language integrates a conceptual view of EPCs, this means a structured,annotated, multimedia, and highly automatic front-end to a database (see Sec-tion 1). We restrict ourselves in this paper to only a few aspects of the syntaxand pragmatics of the language EpkMl that distinguish it from other mark-uplanguages. A detailed description including a formal structural operational se-mantics is presented in [5]. Appendix A shows one page of the tourist catalogueexample and its EpkMl speci�cation. Below we describe some characteristics ofthe language and reference the lines of the speci�cation.Structure. Products are organized in hierarchies, so-called themes (<theme>, 01).The developer de�nes the products belonging to these themes (<extension>, 02)and the presentation of these products (<template>, 07). These templates areto be �lled with actual product data obtained from the database. Whenever aspecial layout is desired, it is possible to de�ne <exceptions> for those productswith their own <template>. A hierarchical structure is achieved via the de�nitionof sub-themes for a <theme>. It is also used to generate automatic navigationfacilities supported by the command tags <next>, <previous>, <up>, <down>,and <back>, which branch to the next or previous theme in a given hierarchy, tothe �rst one below or above, or back in the history of visited themes, respectively.

Services. EpkMl includes for standard functionalities of a catalogue the fol-lowing tags: <table-of-contents>, <search-form>, <registration-form>,<question-form>, <shopping-bag>, <shopping-list>, <order>. In the exam-ple a <registration-form> (44) is mentioned, that permits the personalizationof the catalogue. A <shopping-bag> is a template for a list of products thathave been selected as \products to buy". For more details see [5].Audio-Visual Elements. The visual (layout) features of EpkMl are a supersetof those of HTML. Introducing e.g. <window> (08) we make EpkMl windoworiented instead of screen oriented. It is worthwhile to mention <flowbox> thatdistributes layout elements surrounding e.g. an image or text. Multimedia isintegrated by adding the time-dependent elements <video> (15), <slide-show>,and <audio>. All these elements may be customized in advance using <style>s(08) by de�ning <stylesheet> for them.Interaction. A large part of EpkMl is concerned with interactive elements, like<button> (28, 41) or <pulldown-menu>. Interactive elements are provided witha speci�able method, e.g. <on-click> (30, 43) for <button> or <on-option> for<browser>. For the navigation through the theme structure, there are precus-tomized elements with standard behaviour like <previous-button> (38), and<next-button> (40). Of course, this behaviour can be changed or extended.Database. Database access is achieved via the <sql> tag (03, 20). Text withinthe scope of this tag must be written in standard SQL.3 The Requirements Analysis AssistantThe Requirements Analysis Assistant (RASSI) is a software tool that supportsthe task of interviewing. It contains �ve integrated submodules, that serve to ma-nipulate and convert the basic object types checklists, questionnaires, interviews,documents, and protocols. Checklists enumerate all important aspects that haveto be addressed during EPC design and development. Interviews with the cata-logue provider are performed on the basis of quetionnaires resulting in protocols.The following are the RASSI submodules: The checklist editor manipulates newor prede�ned generic checklists. The questionnaire editor is used to assemblea questionnaire from a checklist by formulating questions and adding explana-tory documents. The interview assistant performs a complete audio recordingof the interview, allows for synchronously written notes, and links arbitrarymultimedia material. The protocol editor supports revisiting and combining mu-tiple interviews. Finally, the presentation assistant generates an analysis docu-ment. RASSI is well-integrated into the EPK-�x toolbox: the chosen format ofthe analysis document (HTML) ensures immediate document exchange via theWWW enabling distributed workgroups to interact e�ciently.The Tourist Catalogue Example (Figure A) illustrates the development stepsof EPCs throughout this paper. For information elicitation in the system analy-sis phase, a questionnaire has been created starting from a prede�ned checklist.As shown in Figure 1 the questionnaire contains the topic \Screen elements forcity pages" which is part of the main topic \Layout and micro-direction". The

Figure 1. Main window of the interview assistant in RASSIinitial checklist mentioned the topic \product pages" which is now replaced by\city pages". The topic \Grouping, placement, and attachment" was discussedwith the catalogue provider asking four speci�c questions. Explanations andmultimedia annotations can be attached without any restriction. After the in-terview, the essential information from lower-level topics is summarized. Theresult of the �nal analysis document (HTML) can be viewed with any standardWWW browser.4 The Speci�cation AssistantThe Speci�cation Assistant supports the transformation of an informal descrip-tion of an EPC to a formal speci�cation. A quali�ed developer uses SASSI'sset of powerful editors to compose an EPC according to the information gainedby the requirements analysis. SASSI is based on an intuitive graphical user in-terface, it is implemented in Smalltalk, and its architecture is based upon thedesign evolution presented in the DIADES user interface builder [3].Main features of the SASSI component are to support a complete speci�ca-tion of the analysis information, to protocol which analysis objects led to whichspeci�cation objects, to make sensible assumptions where analysis informationis incomplete, to provide version information in order to make recovery possible,and to generate syntactically and static-semantically correct EpkMl output.These features are supported by an object-oriented class library of speci�cationobject classes which re
ects the EpkMl elements. When specifying an EPC theuser simply composes a hierarchy of speci�cation objects similar to an abstractsyntax tree which can then be used to generate EpkMl output.SASSI can handle all catalogue aspects (described in Section 1) with thefollowing editors: structure editor, layout editor, also responsible for specifyingdirection and integrating services, and database editor, where database accesscan be formulated using SQL statements. The SASSI application starts with

the structure editor window showing a view of the prede�ned initializing cat-alogue structure, which is subsequently re�ned according to the example. Ondouble-clicking a structural node the layout editor opens a window displayingthe representation part of the node. Layout elements can be placed accordingto the RASSI analysis of customer needs, making up the look of the cataloguepages. Entries, e.g., information describing the various products, images or evenanimations, will be taken mainly from the customer product database and haveto be referenced properly using the SQL editor. The conception of the layout edi-tor is similar to DTP layout applications. In combination with the structure andthe SQL editor the EPK-�x approach goes beyond ordinary DTP applications.
RASSI

Input

EPKML

Output

Figure 2. The SASSI user interfaceTo reference the requirements analysis input there exists an additional win-dow in which analysis units coming from RASSI are displayed. Combined witha third window transcribing the generated EpkMl speci�cation, this results in athree-window approach (see Figure 2) similar to [9] and the split-screen approachused in Oberon [7]. Working in either of the two editor windows, the user simplyhas to highlight the paragraph in the RASSI window corresponding to the workhe actually performs, and all objects created will reference the identi�cator ofthis unique analysis information unit.5 The Generation AssistantThe purpose of GASSI is to generate catalogues based on their formal speci�ca-tion. Targetted output platforms include a paper version (i.e. LATEX), an HTMLversion and an EPC implemented in Java. Within the scope of this paper, wewill concentrate on the presentation of the latter's generation.The generation of EPCs relies on a library of extensible generic classes (thatare reusable, and reliable due to their automated testing by TASSI) providing

EPC-speci�c components ranging from simple layout elements up to modulesthat perform services (e.g. online-help ordering-facilities). The generation of soft-ware implementing a formally speci�ed multimedia system is done by analogywith compiler phases [1] as follows:Parsing comprises lexical and syntactical analysis of a given speci�cation. AnEpkMl conform document de�nes a tree structure of EpkMl elements that canbe parsed by a standard SGML parser yielding a more easily processable textoutput.GASSI calls the parser nsgmls and uses its output for further processing.An Intermediate Representation of syntactically correct speci�cations allowsfor semantic analysis and optimization. The internal representation of a speci-�cation consists of speci�cation objects, that are nodes of a tree re
ecting thespeci�cations structure. Each node contains an SGML element allowing to accessthe attributes of this element which had been set in the speci�cation.The objects are speci�c to the EpkMl element they represent by providingspecialized methods to generate code implementing the desired layout and be-haviour for this element. These methods encapsulate implementation details likedi�erent classes of the library an EpkMl element is mapped to depending onits content. Besides, methods for restructuring the tree are available.Sourcecode Generation is done according to the syntax of the output formatand the results of the speci�c optimization. The basis of the code generation isa class library realizing common features of EPCs which are used for a speci�cimplementation either by direct instantiation or by subclassing and instantia-tion of the new subclass. Speci�cation objects have access to a mapping tablede�ning which library class has to be used for the elements implementation. Forthese classes miscellaneous Java-syntax-conform expressions can be retrieved orcomposed, e.g. unique Java identi�ers; constructor calls; variable declarations ortemplates for subclasses.The structure of the speci�cation that implies a default structure for the EPCby the nesting of <themes> and therein contained instances for <templates>is used to build a module realizing the navigational primitives (e.g. <next> or<up>). For that purpose, a method returns the concatenation of Java instructionsthat sequentially build a corresponding tree. In the example speci�cation (Ap-pendix A), there is only one <theme> (01) visible. The <template> (07) de�nesa common layout for the instances to create from the database entries, which arereturned by the SQL statement (04{05) within this theme's <extension> (02).The default navigation enables the user to switch from one instance to anotherusing either the <next-button> (40) or the <previous-button> (38).Compilation is �nally accomplished by existing tools that are integrated inthe GASSI system via facilities for their invocation on all generated �les in thetarget directory and input/output redirection.6 The Test AssistantTASSI serves the analytical quality assurance within the EPK-�x developmentprocess. With TASSI all those quality features are examined, which can not

constructively be ensured by the other EPK-�x tools. TASSI especially inspectsthe features that are important for an EPC user, i.e. functionality, robustnessand usability of the catalogue.TASSI should enable a tester to systematically and mostly automaticallyscrutinize static and dynamic aspects of an EPC without the help of othertools. A strong support for manual tests is given. TASSI includes the follow-ing features: fully graphical user interface, declarative speci�cation of generaland catalogue-speci�c automatic tests via rules, automatic execution of statictests of all media-objects, support of dynamic tests by a test agent (automaticnavigation of the EPC to untested objects, automatic execution of static testsof dynamic objects), error classi�cation via browser, context-sensitive speci�ca-tion and requirements presentation, capture and replay of manual test input,complete test state administration, and automatic test document generation.In more detail, �rstly the EpkMl instance is fed into an automatic staticanalysis which aims at a rule-based static test of each EpkMl element and eachused database object. To determine most used database objects and at least oneused set of attributes and elements of most EpkMl elements a dynamic modelof the EpkMl instance is automatically generated. This model only excludesoutcomes of applets and text inputs.In the Tourist Catalogue Example all database objects of the shown page,i.e. one video reference (15), one image reference (12), eight texts (11, 29), andseven link (31) destinations, are determined. The type of a database object is ob-tainable from the surrounding EpkMl element at its usage point. Type-speci�ctests are carried out on all atomic EpkMl elements, e.g. if \To other cities" (39)is spelled correctly or if $cities.video$ (15) references an AVI video. Top-levelgrouping EpkMl elements, i.e. pages and windows (08), are examined for grouperrors each time the container contents changes, i.e. in the example anytime anew city page is entered. Group errors are those errors which only occur if someelements are used simultaneously. In the example for instance it could be ver-i�ed, that the text colours are in adequate contrast to the background coloursor that not too many di�erent fonts are used on the page. Each error found isrecorded. Each tested EpkMl element and database object is marked.In a second phase the actual EPC is dynamically tested. The aim is to test theexecution of each branch of the EpkMl instance, to inspect manually all media-objects and to validate automatically media-objects and elements that have notbeen recognized in the static analysis. The EPC is navigated to untested partsby a test agent. A tester essentially only acknowledges the end of manual testingof a set of elements, enters errors into a form and requests the navigation tothe next element set. In the case of text input and applet calls, the tester isresponsible for choosing sensible input for systematic testing.The test agent tries to carry out all tests of an element set before navigatingto the next one and also attempts to follow intuitive navigation paths. In theexample, �rst the city page (07) is shown. After the execution of the video (15)the tester is asked to con�rm the end of manual testing. Then clicking one of thebuttons which lead to untested parts is simulated. If there was no such material,

the quit button would be chosen. The tester can always steer the test agent toplaces of her choice.7 Conclusions and Further StepsWe support the whole life cycle of the development process of EPCs by de-veloping an integrated package of tools for the production of electronic productcatalogues. These tools aim at the e�cient production of low cost electronic prod-uct catalogues. Through the features and services observed in current EPCs [6],we identi�ed the components and characteristics of the language EpkMl andthe features of each assistant. The catalogue developer is assisted from the be-ginning of the �rst interview by special editors and a presentation assistant.During the catalogue design and generation phase the assistance is realized withother editors and class libraries. Tests accompany the entire development processincluding the �nal EPC.In our approach, an EPC is the result of cooperating experts working atvarious places on di�erent aspects of the catalogue. In order to keep track ofthe correct versions of the documents and programs produced so far, versionmanagement is required. We are currently implementing a WWW based projectserver, which allows to de�ne and manage users and projects with appropriateaccess capabilities. Furthermore, the server manages revisions of documents andidenti�es o�cial releases of software modules.References1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers|Principles, Techniques, andTools. World Student Series. Addison-Wesley, 12 edition, 1995.2. B. Boehm. A spiral model of software development and enhancement. IEEE Com-puter, 21(5):61{72, May 1988.3. I. Dilli and H.-J. Ho�mann. DIADES II: A Multi-Agent User Interface DesignApproach with an Integrated Assessment Component. SIGCHI bulletin, ACM Press,April 1991.4. C. Goldfarb. The SGML Handbook. Clarendon Press, Oxford, 1994.5. A. Knapp, N. Koch, and L. Mandel. The Language EPKML. Technical report 9605,LMU M�unchen, November 1996.6. N. Koch and L. Mandel. Catalogues on CD-ROM: The State of the Art. Technicalreport 9610, Ludwig{Maximilians{Universit�at M�unchen, December 1996.7. M. Reiser. The Oberon System|User Guide and Programmer's Manual. AddisonWesley, 1991.8. A. Turk and H. Stoyan. Erfassung, Verarbeitung und Dokumentation nat�urlich-sprachlicher �Au�erungen in der Anforderungsanalyse. In E. Ortner, B. Schienmann,and H. Thoma, editors, Nat�urlichsprachlicher Entwurf von Informationssystemen,pages 32{46. Universit�atsverlag Konstanz, May 1996.9. A. Wasserman and P. Pircher. A Graphical, Extensible Integrated Environment forSoftware Development. ACM SIGPLAN Notices 22:1, 1987.

A ExampleIn this section we present the EpkMl speci�cation of the tourist catalogue page.Note, that some detailed layout information is omitted.
Allersberg

 Tourist Information

 City Map

 Accomodations

 Food & Drink

 Shopping

 Entertainment

 Sightseeing

To other

cities01 <theme name="general">02 <extension result="cities">03 <sql>04 select name,vid,img05 from tourist06 </sql>07 <template name="city-page">08 <window name="city-window"style="bavaria">09 <set name=city value="$cities.name$">10 <frame name="header">11 <p>$city$12 13 </frame>14 <frame name="left-col">15 <video src="$cities.vid$">16 <stop-button>17 </video>18 </frame>19 <frame name="right-col">20 <sql result="out">21 select issue subtheme22 from tourist23 where theme='$city$'24 </sql>25 <itemize>26 <make-items from="out">27 <frame>28 <button>

29 $out.issue$30 <on-click>31 <open name="$out.subtheme$">32 </on-click>33 </button>34 </frame>35 </make-items>36 </itemize>37 </frame>38 <previous-button>39 <p>To other cities40 <next-button>41 <button name="to-reg"style="city">42 43 <on-click>44 <open name="reg-form">45 </on-click>46 </button>...59 </window>60 </template>61 </extension>62 </theme>63 <main>64 <open name="general">65 </main>

