
Extending UML to Model Hypermedia and DistributedSystems�Luis MandelForschungsinstitut f�ur AngewandteSoftware Technologie (FAST e. V.y)Arabellastr. 17D-81925 M�unchen, GermanyTel: +49 89 920047 39Fax: +49 89 920047 18mandel@fast.de Nora Koch, Christoph MaierInstitut f�ur InformatikzLudwig-Maximilians-Universit�at M�unchenOettingenstr. 67D-80538 M�unchen, GermanyTel: +49 89 2178 2177Fax: +49 89 2178 2152fkochn,cmaierg@informatik.uni-muenchen.de4th February 1999AbstractThe present report presents conservative extensions to UML in order to model dis-tributed aspects and hypermedia systems. Ideas and notation coming from the YAONproject, the EPK-�x project, a methodology for the development of Electronic Prod-uct Catalogs (EPCs), and OOHDM {short for \Object-Oriented Hypermedia DesignMethod"{ have been used. YAON is a notation designed to graphically documentthe implementation decisions embodied in object-oriented programs running in dis-tributed systems. OOHDM is a methodology for modeling hypermedia applicationssuitable to model special aspects such as navigation and user interface. This exten-sion provides the user with all the power of UML plus the capabilities of the YAONwith their locations for the physical encapsulation, the client/server relationship, andsome new class, modi�ers as well as the navigation among these abstractions levelsmodeled using the OOHDM/EPK-�x approach.Keywords: Modeling Language, Object-oriented Design, Distributed Systems, Ob-ject Notation, Multimedia, Hypermedia.�This work was partially supported by the Bayerische Forschungsstiftung.

1 INTRODUCTION 21 IntroductionThe explosion of Internet applications, specially WWW applications with all their multi-media aspects such as the combination of text, hypertext, images, computer animations,video, sound has raised the necessity of formal or semi-formal methodologies for develop-ment such applications. Typically a Web application running on the Internet is based ona client/server architecture and commonly has many distributed aspects. HTML pages aswell as applications (i.e. cgi scripts, java applets, etc.) can be distributed among di�erentservers.In general notations like OMT [Rum95] or even the de facto standard UML [RAT97] donot cover the requirements for the formalisation and graphic documentation of hypermediaand distributed systems described above.This paper aims at presenting an extension of UML to cover this gap. For the distributedaspects di�erent notations like MOSES [RHSL96a, RHSL96b], ION [AI95], yaon [MM97],etc. has been researched and mostly of the notation come from the YAON mainly because itwas easier to adapt to the UML notation. YAON, short for Yet Another Object Notation,is a practical notation designed to graphically document the implementation decisionsembodied in object-oriented programs running in distributed systems and open networksusing di�erent communication protocols derived from the Intermediate Object Notation(ION) (see [AI95]) developed at the NASA by Colin Atkinson and Michel Izygon. Newconcepts have been added in order to specify how systems running in a physical locationcommunicate with other entities physically located in other places. In addition, there arede�ned some new concepts such as synchronized and active classes not present in UML.For modeling hypermedia systems ideas, notation, and concepts coming OOHDM (see [Sch97])and EPK-�x (see [KKW+97]) have been taken on.OOHDM (Object-Oriented Hypermedia Design Method) uses abstraction and compositionmechanisms in an object-oriented framework to allow, on one hand, a concise description ofcomplex information systems, and on the other hand, to permit the speci�cation of complexnavigation patterns and interface transformations. In OOHDM, a hypermedia application isbuilt in a four-step process supporting an incremental and prototyping process model. Eachstep focuses on a particular design concern and builds an object-oriented model. Thesesteps are the Conceptual Design, Navigational Design, Abstract Interface Design and theImplementation.In EPK-�x, a catalogue (viewed as a hypermedia application) comprise four interactingcomponents called structure, layout, direction and services. An extra interactive componentis an existing product database. With structure is meant the skeleton of the hypermediaapplication, layout is the component which comprises the static aspects, i.e. frames, win-dows, etc. of the application whereas direction is the component where the navigationalaspects are described. It is divided into macro and micro navigation. The �rst one is thenavigation through the catalogue while the second one is the navigation inside a frame ora window. Services add some comfort to the application, such as help methods, search

2 THE UNIFIED MODELING LANGUAGE UML 3methods, and bindings to scripts.The resulting notation has been made in an orthogonal way. The amalgamation of theextensions for modeling distributed systems and the ideas and notation coming from theOOHDM/EPK-�x approach for multimedia and hypermedia modeling, brings the user a nat-ural way to describe a system both in its structure and its user interface showing whichinformation is going to be shown and how these information is going to be navigated.Outline:This document is structured as follows. In Section 2, the origin and the intention of UMLis explained, where in sect. 3 the UML extensions for distributed systems are given. Theseextensions are going to be used in the sect. 4 where the proposed extension for hypermediais done. Finally, some conclusions and future research lines are given.2 The Uni�ed Modeling Language UMLThe Uni�ed Modeling Language (UML) is the synthesis of many notations developed forsoftware engineering and object-oriented analysis and design methods appeared in the lasttwenty years. It has been developed by Booch, Rumbaugh and Jacobson, unifying conceptsand ideas coming from OMT [Rum95], the use cases from Jacobson [BC89], the CRC(Class-Responsibility-Collaboration) cards from the smalltalk community [WBWW90], thestatecharts from Harel [Har87], and many other were introduced to UML and now thisuni�ed notation is a de facto industrial standard which has been also aproved by thestandarisation comitte of the OMG (Object Management Group).The result is a modeling language (and not a methodology) for specifying, visualizing,constructing and documenting the artifacts of a system intensive process. Most methodsconsists of both a modeling language and a process. The modeling language is the (mainlygraphical) notation that methods use to express design where the process is their adviceon what steps are to be taken in doing a design.3 Adding Extensions for Distributed SystemsIn this section, the extensions to UML for distributed systems are presented. These ex-tensions are based on the YAON notation. The goal of YAON is to document graphicallyimplementation decisions of distributed systems with a strong bias to the Java language.Therefore some Java-like class, method and attribute modi�ers have been added to the no-tation. Nodes representing classes are extended to specify active and synchronized classes.Basically a new relationship between classes is added: the client/server relationship. Thenodes and arcs are described in the following Section.

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 43.1 ClassesTwo new types of classes are supported using the UL stereotypes. They are the�active�and �synchronized� classes. The class system is restricted to be at, i.e. there is noway to declare local classes inside a class nor anonymous classes. The basic class icon ispresented in Fig. 1: standard classAttribute 1Attribute 2: : :Method 1()Method 2(): : :Figure 1: Standard ClassThe class name, as always, is written on the top part of the rectangle as indicated. Theattributes of the class are described in the middle section of the icon, and the methodsof the class in the lower section. This general arrangement of information is retainedwherever properties of classes or methods are de�ned. The ellipses (: : :) appearing afterthe attributes and methods are signi�cant, and are used to indicate that an annotationonly contains partial information. For example, if a class has exactly two methods, this isindicated by the list method 1(), method 2(). If the class has more methods beside thesetwo, this is indicated by method 1(), method 2(), : : : . Thus it is possible to derive fromthe diagram whether all the information has been included or whether some is missing. Asa shortcut, the attributes and methods may be omitted.The following visibility modi�ers can be speci�ed: public, private, protected and default.These modi�ers are those used in the Java programming language and will be speci�ed asa tagged value (i.e. as a metamodel attribute) between braces under the class name andas a pre�x of the method or attribute name where their corresponding symbols are shownin Fig. 2: If no modi�er is used, the default visibility is assumed.Modi�er Symbolpublic +private -protected #default Modi�er Class Method Attribute�nal * * *native *synchronized * *transient *volatile *abstract * *static * * *Figure 2: Visibility and Special Modi�ers

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 5Also special modi�ers applicable to classes, methods and attributes are available. Thesespecial modi�ers have no representation in UML and therefore they will be used as propertystrings of attributes and methods with the standard representation of UML, i.e. betweenbraces, as the tagged values of classes. Fig. 2 gives an overview. The modi�ers can becombined as for example:+ main (String [] args)This speci�es the public static method main of a given class. An example, which showsthe use of modi�ers, is depicted in Fig. 3.Default values as well as type (or class) of attributes can be speci�ed. The = notation willbe used for that purpose. For example, if an attribute called \counter" should be an inte-ger whose initial value is 1 this will be speci�ed as \counter: Integer=1". If the attribute\counter"' can have only values i1; : : : ; in then those values will be speci�ed using an ex-tensive comma list containing all the possible values, i.e. as \counter: Integer=[i1; : : : ; in]".An active class is one whose instances have an independent thread of control. Thus, theyhave the ability to run methods \spontaneously". In contrast, an instance of a passiveclass executes a method only when it is called by another object. After completing themethod it is passive again. To depict an active class, the basic class icon is extended withthe stereotype as shown in Fig. 3.standard class+ Attribute 1f�nalg- Attribute 2: : :+ Method 1()fsynchronizedg# Method 2(): : : �active�active class ���?fpublicg+ Attribute 1- Attribute 2: : :+ Method 1- Method 2: : : �synchronized�synchronized class L+ Attribute 1# Attribute 2: : :+ Method 1()- Method 2(): : :Figure 3: Standard, Active and Synchronized Classes Using Modi�ersSynchronized classes are those whose methods are protected from concurrent invocationof their methods. A circle with two crossed lines inside has be chosen to annotate thestereotype for synchronized classes (Fig. 3). Some \synchronisation protocol" exists inorder to protect them. The synchronization of the methods is also described in the classbox. Icons for the most common synchronization protocols, such as mutual exclusion,readers/writers, guarded are provided. Actually, the protocol icon must be interpreted asa shorthand of another diagram where the synchronization protocol is speci�ed. Theseprotocols can be speci�ed using Petri nets, state-charts, etc. If the user would like to havea new protocol, he has to chose a new icon and must give the protocol speci�cation using

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 6one of the formalisms mentioned above. Examples of synchronized classes are given in[MM97].3.2 Clientship RelationA clientship relation exists between a class called client and a class called server. Thisrelation is unidirectional and there exists an arrow from the client class to the server class ifthe client uses a method from the server. This is a static relation denoted by the stereotype�client/server�, and then it can be detected at compilation time (see Fig. 4).client class �client/server� - server classFigure 4: Client Server RelationshipIn the following di�erent stereotypes for the Client/Server relationships are presented.Permanent versus Transient RelationshipsIf the client has the data in its main structure, the relation is said to be permanent.Otherwise, if the client objects have visibility only during the method call, the relation issaid to be transient. A permanent relation is denoted with a circle inside the class symboland by the stereotype�perm�; a transient relation with a circle outside the class symboland the stereotype �trans� (see Fig. 5). Using these relationships, one can specify theinterval of time a relation exists.perm client �perm� -g server class �trans�� g trans clientFigure 5: Permanent versus Transient Relationships

3 ADDING EXTENSIONS FOR DISTRIBUTED SYSTEMS 7Attached versus Detached RelationshipsIt can also be distinguished whether the client holds a reference to the server or if it holdsthe actual state of the server (a value). In the �rst case the relationship is said to bedetached, whereas in the second case, it is said to be attached. A detached relationshipis useful in the following situation: A client requests information from the server. Thisinformation is stored as an object inside the server. If the server passes a reference to thisobject, the client can use this reference to change the object inside the server directly. Toavoid this, the server must send the value of the object to protect it from unproper use(see [Atk91]).Det client �detached�-g server class �attached�� w Att clientFigure 6: Attached versus Detached Clientship RelationEvery clientship arrow has a small circle at the client's end (i.e. the tail). If the circle istransparent the clientship is detached whereas if the circle is a black bullet the clientshipis attached. The server is in a sense a part-of, or stored within it. Also the stereotypes�attached� and �detached� will be added to the respective arcs.There are in YAON more stereotypes for clientship annotations which are optional, suchas the stereotype for procurement annotation, stereotype for call annotations, stereotypefor asynchronously executed methods, stereotype for reference annotations, stereotype formultiple clientship relation. For more information about these steretypes see [MM97].3.3 Virtual NodesThe concept of virtual node is introduced to YAON as Atkinson did in [Atk91]. This conceptis missing in UML and it is indispensable in order to specify \real" distributed systems.Virtual nodes are clusters of classes (or packages) represented bas bevel-edges.These clus-ters are the set of nodes/classes which will potentially be distributed to physical locations.In this way remote client/server relationships can be speci�ed. An example of this nota-tion is given in Fig. 7. It includes three virtual nodes: node 1, node 2 and node 3. node 1only contains the Class B, node 2 contains the Class Y and Class Z and node 3 contains apackage Pack A which contains the Class X. The Class B from node 1 is in a client/serverrelationship with the Class Y from node 2 and it is also in a client/server relationship withthe Class Z from the same node. The Class X from package A from node 3 is also in a

4 ADDING EXTENSIONS FOR HYPERMEDIA 8
�client/server�
�client/server��client/server� --@@��@@��

-Class Bnode 1@@�� @@�� method ZZClass Znode 2Class Y
@@ ��

@@��
node 3Class XPack A Figure 7: Virtual Nodesclient/server relationship with the Class Z of node 2. The communication between vir-tual nodes can be done by normal method invocation as described in 3.2 or, if the virtualnodes are to be distributed, remote communication mechanisms can be used as describedin [MM97].Note that using the client/server relationship and the virtual nodes one can specify dis-tributed multimedia applications with client and server-side applications such as dynamicgenerated pages via CGI-applications, links to CGI-scripts or servlets running on remoteservers, embedded applets. Also synchronization between multimedia objects can be spec-i�ed, like the speci�cation of a video which should begin when a link is activated.4 Adding Extensions for HypermediaIn this section the extensions to UML for multimedia and hypermedia design are pre-sented. These extensions are based on the EPK-�x and OOHDM methodologies as describedin [KKW+97] and [Sch97] respectively. Basically UML will be extended with navigationalmodeling features i.e. a graphic notation will be added to UML in order to describe whichobjects and how are going to be visited and in which contexts. Also a notation for theLayout or Abstract User Interface will be given.For the Conceptual Design the extensions already presented in Section 3 will be used.

4 ADDING EXTENSIONS FOR HYPERMEDIA 9These extensions are powerful enough for the speci�cation of object-oriented systems anddistributed systems such as web applications.
banPack

platform: String illustration: Image

HardwareSoftware Book

BookServer

title: String

editorial: String

ISBN: String

logoProd: Image

Banner

address: Hyperlink

timeout: Intger

name: String

company: String

address: String

code: Integer

Supplier

*
name: String

Person

address: String

phone: String

isAuthorOf

*

*

code: Integer

price: Float

description: String

name: String

Product

hourPrice: Float

basicPrice: Float

OnlineService

1

suppliedBy

Figure 8: An EPC of a Software-HouseFollowing the approaches presented above we assume that a Conceptual Design made ofclasses and relationships between classes already exists. The presentation of the extensionswill be made by using an example of a simpli�edEPC of a Software House. The conceptualdesign of such catalogue is depicted in Fig. 8. The class diagram shows the class Productthat has four subclasses, namely Software, Hardware, OnlineService and Book. For eachproduct there are many suppliers represented by the Supplier class. Each product has aname, a code, a price and a description. Software products have an attribute platform whichis a string representing the platform where the product runs. For Hardware products thereis an image of the product, OnlineService have a basic price and an hour price and Bookhave attributes representing the author, the title and the editorial. Book are encapsulatedin a package called BookServer located in a remote server.The class Banner is a subsystem having an aggregation relationship with the Productsclass. This banner is actually an application which during an amount of time showssome advertisement in the following way: An image of a given product (of the samecategory) is displayed and the whole image is a button which when clicked will activatethe corresponding hyperlink to that product. After the timeout limit is reached a new

4 ADDING EXTENSIONS FOR HYPERMEDIA 10hyperlink and a new timeout is set and a new image corresponding to another product (ofthe same category) will be visible. This is done in a cyclical way, that is, when the lastproduct is reached the banner application will begin with the �rst product again.We begin the description of the extensions with the Direction or Navigational Design,which is followed by Abstract Interface Design or Layout.4.1 Notation for the NavigationNavigation is constructed as a view (in the database way) over the conceptual model orstructure. The navigational model is obtained from the conceptual model through elimi-nation or addition of classes as well as the de�nition of new attributes and relationships.In OOHDM, navigational design is expressed in two schemas: The navigational class schemaand the navigational context schema. Navigable objects of an application are de�ned byclasses in a navigational class schema, whose classes reect the chosen view over the appli-cation domain. In OOHDM there is a set of prede�ned types of navigational classes: nodes,links, contexts and access structures. The semantic of nodes and links is the natural onein hypermedia applications whereas access structures, such as indexes represent possibleways of accessing nodes.A navigational object, also called navigational node or simply node is an instance of a classin the navigational class schema.Three new attributes have been added here to the navigational objects. They are therefresh of type link and the timeout of type integer. They work together and the intendedsemantics is that the current navigational object will load the link speci�ed by the attributerefresh after the time speci�ed by the timeout attribute is reached. If no timeout is speci�edan in�nite amount of time will be assumed. The link refresh can have a special valuewhich is self. In this case the same navigational object will be reloaded after the timeout isreached. This is special useful for navigational objects which have information dynamicallygenerated, like scoreboards.Yet another new attribute has been included and it is the expiration one, which is of typedate. The intended semantics is that the information contained by that navigational objectwill expire after the date speci�ed by this attribute. Speci�c browser can use this attributein order to display with special layout (or not display at all) the expired information.User speci�c attributes can also be added, like name of the navigational object, language,author, keywords, etc.In an analogous way, links reect relationships, as already said, intended to be exploredby the �nal user and are also de�ned as views on relationships in the conceptual schema.The general syntax for de�ning the attributes of navigational objects is shown in Fig. 9,where:� nodeName is the name of the class of nodes we are creating.

4 ADDING EXTENSIONS FOR HYPERMEDIA 11NODE nodeName [FROM className:varName] [INHERITS FROM nodeClass]attribute1:type1 = [SELECT name1][FROM class1:varName1, : : : classj :varNamej[WHERE logical-expression]attribute2:type2 = [SELECT name2] : : :: : :attributen:typen = [idem]refresh:Linktimeout :Integerexpires:DateEND Figure 9: Node De�nition� className is the name of a conceptual class (from which the node is being mapped);� nodeClass is the name of the super-class;� attributei are the names of attributes for that class, typei the attribute's types;� namei are the subjects for the query expression and varNamei are existentially quan-ti�ed variables used to express logical conditions;� logical-expression allows de�ning classes whose instances are a combination of objectsde�ned in the conceptual schema when certain conditions on their attributes and/orrelationships hold;� timeout is an integer specifying the amount of time to be waited in order to load thenode speci�ed by the attribute refresh;� refresh is a link to a node. A special value self is allowed which is equivalent to alink to itself;� expires is a date specifying the expiration of the information contained by the currentnode.As an example, consider the EPC of Fig. 8. In addition the navigational class schema willbe designed (see Fig. 10).Note that in this \view" Person has been eliminated as a class and that information aboutpersons will be added to the class Book via an sql-like query. The right-hand-side of thequery (author) is a new attribute of the Book class whereas the left-hand-side is a set whosecardinality is given by the cardinality of the relation in the conceptual design. TheWHEREclause of the query uses the name of the relationship isAuthorOf for determining which arethe authors of the given book. Similarly for the Supplier class.

4 ADDING EXTENSIONS FOR HYPERMEDIA 12
banPack

platform: String
hourPrice: Float

basicPrice: Float

Software Hardware OnlineService

illustration: Image

sup: String =

description: String

price: Float

code: Integer

name: String

Product

logoProd: Image

Banner

address: Hyperlink

timeout: Integer SELECT supName

FROM Supplier:Sp

WHERE

self suppliedBy Sp

Book

author: String =

FROM Person:Pr

SELECT name

WHERE
Pr isAuthorOf self

ISBN: String

title: String

editorial: StringFigure 10: Navigational Class Schema of an EPC of a Software-HouseOn the other hand the class Banner still appears in the navigational class schema havingan aggregation relationship to Product. This class is treated as a subsystem and thereforeits navigation will be de�ned in its own navigational class schema.Up to now the navigation was possible only between single objects but navigation withinset of navigational objects and between sets of navigational objects is needed. To addressthis problem the \navigational contexts" have been de�ned. Normally such informationare back-links, class hierarchies, menues, etc. In OOHDM, the main structuring primitive ofthe navigational space is the notion of navigational context . A navigational context isa set of navigational objects and other (nested) navigational contexts. It may be de�nedintensionally or extensionally, by either de�ning a property that all nodes and links in thecontext possess, or by enumerating its members. The de�nition of a context also includesa traversal order of its elements, and the existence or not of associated access structures.In this way a new kind of diagram is introduced: The \navigational context schema".Whereas the \navigational class schema" of above shows which information is going tobe visited the \navigational context schema" shows how this information is going to beaccessed.Queries come in two avours. Normally a query takes a user input and either generates

4 ADDING EXTENSIONS FOR HYPERMEDIA 13an index with the result or directly goes to the �rst result node which has a link to thefollowing and so on. Icons for such queries are shown in Fig. 11.
Query

& Index
QueryFigure 11: Query and Index Query

MAIN

Query

By ISBN

Hardware

By Name

By Supplier

By Supplier
Name

OnlineServices

By Code

By Publisher

By Supplier

By Name

By Keyword

Products

By Code By Name

Books

By Name

Software

Index

Index

Presentation
Index

Index

IndexFigure 12: Navigational Context Schema of an EPC of a Software-HouseNavigational contexts organize the navigational space into consistent sets that can betraversed following a pre-established order. Fig. 12 shows the navigational context schemaof the EPC whose conceptual design has been presented in Fig. 8 and whose navigationalclass schema has been depicted in Fig. 10. In this schema, it can be observed that thereis a Presentation that will be shown only once. No back-navigation is possible to thepresentation. A Query possibility is presented and a link to OnlineServices is displayed.The query directly interacts with the navigational node Products, i.e. input queries madeby the user will generate a mixed index of products with the matching results. Navigationinside Products can be done from the context Code to any other context but not viceversa. From the MAIN node one can directly reach the OnlineServices node. It is thoughtthat OnlineServices has only a context where the user can access to online services, likeencyclopedias, dictionaries. TheMAIN node has links to three indexes (Software, Hardwareand Book). Using those indexes the user can access the respective products \inside" theName context. Navigation among contexts de�ned for the same class is permitted as well as

4 ADDING EXTENSIONS FOR HYPERMEDIA 14navigation from Software-Products to Hardware-Products and navigation from Software-Products to Book-Products. That is, given a Software-Products the user can access torelated Hardware-Products and to related Book-Products. Navigation from Hardware-Products to related Book-Products is also possible but neither navigation from Book-Products to Hardware-Products nor navigation from Book-Products to Software-Productsis allowed in this model.4.2 Notation for the LayoutThe Abstract Data Views (ADV) design model was originally created to specify the sepa-ration of the user interface from the application components of a software system [CCL93].This interface can be exercised through messages (in particular external events generatedby the user).ADVs have been conceived to represent interfaces between di�erent media such as networks,users, or as interface among Abstract Data Objects (ADOs). Both have a state given bytheir attributes and methods or actions which can change or query the state. ADVs haveadditionally an interface and they are an abstract representation of the behaviour, not theimplementation.Typically for one Abstract Data Object there are de�ned one or more Abstract Data Viewswhich describe how some aspects of its state is presented to the external world.
ADV TextField

ADV ImageField

ADV OnlineService

Back

ADV Navigation Buttons

Previous Next

ADV-ApplicationFigure 13: Composition of ADVsUser interfaces can be viewed as a composition of behaviour and structure of simple visual

4 ADDING EXTENSIONS FOR HYPERMEDIA 15objects. A window, for example, is a composition of menus, dialogue boxes, text �elds,images, and applications. Aggregation and inheritance mechanisms are used to de�ne in-terface perceivable objects as composition of lower-level ADVs and to provide a frameworkfor de�ning hierarchies of interface objects, respectively. Fig. 13 is an example of struc-tural and behavioural nesting. Static and dynamic aspects of the abstract interfaces arepresented graphically in con�guration diagrams and ADV Charts respectively.4.2.1 Con�guration DiagramsColeman [CHB92] de�nes con�guration diagrams in the context of Objectcharts. They areintroduced in the ADV model to specify communication between the data views and thedata objects, thus ADVs provide services to the user and require services from the ADO.If the Data View is an interface to the user, it also will receive stimuli from the user inform of mouse click, mouse focus or keyboard input (Fig. 14).
ADV ADO

getDisplay

KeyboardFigure 14: General Con�guration Diagram of an ADVThe con�guration diagram shows also the composite structure and composite behaviour ofthe user interface. OOHDM uses the ADV approach and has improved the original notation[CHB92] as follows:� A dashed line is used to permit representation of relationship between enclosed ADVs,e.g. user mouse click on Show related Books will display the ADV ADVBook associatedwith the corresponding navigational context (see Fig. 15). As result of this invocationa list of bools is displayed. Optional elements are indicated with an o in the rightcorner.� Objects that are not reactive to user's activities are de�ned as ADV's attributes.� Composition of type AND and XOR are represented by placing objects side by sideand lightly superposed respectively.OOHDM proposes to use the size of the included ADVs to indicate relative importance anduse this in the implementation phase. We think that such decisions are to be taken in theimplementation as they may be dependent of the chosen medium, e.g. images or videosare central point of attention in a hypermedia application on CD-ROM while in the sameapplication implemented for the Web performance aspects have to be considered.

4 ADDING EXTENSIONS FOR HYPERMEDIA 16
String: name

Integer: code

String: description

Float: price

Context

Software

by name

ADVBook

ADV Software

is an anchored list
Show

related Software

Image

Show

related Books

ADV Hardware

Object

Hardware

Navigation

get image

mouse clicked

display

get text

Previous Next Back

Navigation Buttons

Index of

Software

Anchor Selected

Anchor Selected

Banner

Figure 15: Con�guration Diagram for ADV ProjectNeither size, position nor other layout characteristics are speci�ed in the ADV approachdesign. Therefore, ADV objects that are placed side by side in the con�guration diagrammay be placed in the same place in implementation, i.e. an anchor hidden by a video andwith the reaction capability to start the video on mouse click.A con�guration diagram for the ADV Hardware of the Software-House example usingthe OOHDM notation is presented in Fig. 15. Two kinds of reaction to user's actions canbe observed. The �rst type only produces changes in the content and layout of the samecomposite ADV. The second one is of type navigation, in which case a hyperlink is followedreaching other nodes of the hyperspace. In the EPK-�x methodology [KS97] these twotypes of reaction are described as micro-direction and macro-direction.4.2.2 ADVchartsADVcharts provide a visual schema for the speci�cation of the dynamic aspects of the userinterface. They contain one or more states and transitions as well as may contain attributes

4 ADDING EXTENSIONS FOR HYPERMEDIA 17and other ADVs to describe their behaviour. They are an extension of Statecharts [Har87]and Objectcharts [CHB92] supporting nesting of states and ADVs. Nesting of states ex-presses behavioural nesting while nesting of ADVs is the expression of structural nesting.ADVcharts also use notation from VDM and Petri-nets.As in Statecharts the di�erent states are represented with boxes with rounded corners andthe transitions between states with arrows from one state to another. The transition isspeci�ed by four �elds: transition's name, pre-condition, event and post-condition. Theconditions that must be satis�ed to �re the transition are given in the pre-condition. Theevent-�eld speci�es the event that will �re the transition (e.g. mouse click). The post-condition gives the conditions that hold once the transition is �red (Fig. 16).
Transitions:

1: Precondition:

 Event: display

 Postcondition: self.show

2: Precondition: Focus

 Event: Mouseclick

3: Precondition: Focus

 Event: Mouseclick

4: Precondition: Focus

 Event: Mouseclick

5: Precondition: Focus

 Event: Mouseclick

 Postcondition: PerceptionContext=

 PerceptionContext-Hardware

 Postcondition: PerceptionContext =

 PerceptionContext + zoomed(Image)

 Postcondition: PerceptionContext=

 PerceptionContext + Software-Book

 Postcondition: PerceptionContext=

 PerceptionContext + Book-SoftwarePrevious Next Back

Non-active

Book

Software

Image

Book

Software

Active

Hardware

1 2

3

4

5

BannerFigure 16: ADV Chart for ProjectADVs allow the representation of synchronisation among di�erent objects using the symbolfor synchronisation of Petri-nets (L) to join those transitions that must be synchronised.4.2.3 Improvements to the ADV NotationAlthough the ADV con�guration diagrams of OOHDM are more intuitive than the originalones, we consider that additional improvements are required. For certain frequently useduser interface objects, such as anchors or input �elds as well as for lists of objects a specialnotation is helpful, even in complex con�guration diagrams needed.

4 ADDING EXTENSIONS FOR HYPERMEDIA 18Not only users may generate events but also the system. For example timeout events, likethe scoreboard of a live match or the rate of the stock market.In the following a speci�c notation for User Input, Collections, Anchors, Applications,Sound and System Events are presented.User InputHypermedia applications are changing from being totally passive applications, which o�erto the user only the possibilities to read, contemplate and take decisions about which linkto follow next, to more active ones. Interactive applications additionally give the users thepossibility to query databases, to select and to store data.We de�ne a notation for ADV input, specifying which information the users are requestedto supply. Notice that there is no indication made, if the users are using the keyboard toentry the data or selecting options from a browser or a checkbox. These are implementa-tion aspects to be decided in the corresponding implementation phase. The semantics ofthis ADV includes the display of the ADV content, the waiting for the user activity, theevaluation of the input and the trigger of the de�ned event. The graphical notation forthe ADV input is a dotted lined box as shown in Fig. 17.
Field1

Field2

Field3

Collection of ObjectsADV InputFigure 17: ADV for User Input and Collection of ObjectsCollectionsA composite ADV contains a list of anchors, a set of options or a list of other interactiveADVs. To avoid the textual description by comprehension or by extension of this kind ofcomposite we introduce a box with a special notation for collections (shown in Fig. 17). Ifthe list is of inputs, the box will be dotted. It is not speci�ed if the list will be horizontalor vertical, objects may even be arranged as a table. In case of a collection of anchors, anavigation path for each object has to be de�ned.AnchorsAnchors are the start points of the navigation. There are seldom presented in the literatureas independent objects [CB97, HS94] mostly as part of hyperlinks. They comprise at least

4 ADDING EXTENSIONS FOR HYPERMEDIA 19a presentation and an associated hyperlink. The presentation may be either a text (evensingle character), an image, a video, a group of mixed media, a special interactive objectlike a button, or a whole document. In OOHDM they are speci�ed as classes that inherit fromclass text, image, video, etc. and referenced by anchored text, anchored image, anchoredvideo. Our purpose was to �nd an intuitive notation for anchors since they are one ofthe most frequently used objects in the hyperspace model, thus we use an underlineddescription in analogy to the usually notation used by browsers (see Fig. 18).
Image ApplicationFigure 18: An anchor and an Application BallotApplicationsApplications are incorporated to hypermedia nodes with increasing frequency. This is thecase of applets or embeded objects in WWW. It makes sense to distinguish them with aspecial notation. We choose a balloon as shown in Fig. 18. Applications can also havenavigation, e.g. an application could display a hyperlink. Applications are modeled assubsystems in the conceptual design and in case that an application has a navigationalobject then it will appear also in the navigational design.SoundA special notation for embeded sound has been added to the proposed extension. Wechoose a speaker to represent that an user interface object has associated a sound �le (Fig.19). This sound �le will be loaded by a sound player running in background. Additionalinformation can be speci�ed with notation, i.e. to indicate autostart by node loading ablack triangle is used and cyclical play with a loop.System EventsChanges between states can be the result of internal or external events. Internal eventsare generated by the transitions. We consider that external events may be caused bythe system as well by the user. External events generated by the user are mouse over,mouse click or double click, before, during and after click. External events generated by

4 ADDING EXTENSIONS FOR HYPERMEDIA 20
Figure 19: Sound Iconsthe system are timeout or refresh for example. They are represented in same way as userevents.

String: name

Integer: code

String: description

Float: price

Context

Software

by name

ADV Software

ADVBook

Show

related Software

Image

Show

related Books

ADV Hardware

Object

Hardware

Navigation

get image

mouse clicked

display

timeout

get text

Banner

Navigation Buttons

Index of

Software

Anchor Selected

Anchor SelectedPrevious Next BackFigure 20: Improved Con�guration DiagramFig. 20 shows the ADV for the Hardware class of the example of the EPC Software-Houseusing the improved notation.

5 CONCLUSIONS AND ONGOING WORK 215 Conclusions and Ongoing WorkAn extension to the UML notation, useful for modeling multimedia and distributed aspectsof computation has been presented. The notation includes primitives for static de�nitionsof classes, packages and virtual nodes. Classes can have di�erent avors. They can bedeclared as standard, active, �nal, abstract and synchronized. Also visibility class modi�erssuch as public, private and protected can be used in order to declare a class. Methods andattributes can be declared with the same semantics as in Java. That is, it is supportedthe same visibility and special modi�ers for classes, methods and instance variables as theJava programming language does.The client/server relationship has been de�ned and di�erent variants of this relationshipare supported. A variant of this relationship can be further detailed with annotations. Forexample, for a remote client/server relationship it can be speci�ed if the communicationwill be done using sockets or if it is intended to be done using Remote Method Invocation.Multimedia aspects have been added to UML in these extensions by using ideas and nota-tion coming from OOHDM and EPK-�x. Given a conceptual design of a system a navigationaldesign is generated by adding some sql-like queries in order to generate the nodes to benavigated. The Navigational Class Schema shows which information is going to be visitedwhereass the Navigational Context Schema how those nodes are going to be navigated.Finally, using Abstract Data Views, it is shown how the abstract user interface is composed.In this way a web site can be modelled describing the layout of the html pages. This pagesmay contain applications, like applets in WWW, which will be modeled as subsystems intheir conceptual design.This is a �rst approach of modelling multimedia systems with UML notation. In a futurework it will be ported the whole notation and diagrams to UML in order to have a 100%UML complaint.Acknowledgements: We thanks Hubert Baumeister and Mar��a Victoria Cengarle for thefruitful discussions and useful comments about the subject.

REFERENCES 22References[AI95] Colin Atkinson and Michel Izygon. ION A Notation for the Graphical Depic-tion of Object Oriented Programs. Cooperative agreement ncc 9{30, NASA,July 1995. Available at http://ricis.cl.uh.edu/atkinson/ion/.[Atk91] Colin Atkinson. Object{Oriented Reuse, Concurrency and Distribution { AnAda{Based Approach. Addison{Wesley Publishing Company, 1991.[BC89] Kent Beck and Ward Cunningham. A laboratory for teaching object-orientedthinking. In Proceedings of OOPSLA'89, volume 24, 1989.[CB97] Licia Calvi and Paul De Bra. Improving the Usability of Hypertext Course-ware Through Adaptive Linking. In Proceedings of The Flexible HypertextWorkshop, 1997.[CCL93] L. M. F. Carneiro, D. D. Cowan, and C. J. P. Lucena. Introducing ADVcharts:A Visual Formalism for Describing Abstract Data Views. Technical report,PUC-Rio, July 1993.[CHB92] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How toUse Statecharts in Object-Oriented Design. IEEE Transactions on SoftwareEngineering, 18(1), 1992.[Har87] D. Harel. Statecharts: a Visual Formalism for Complex Sytems. Science ofComputer Programming, 8(3), 1987.[HS94] F. Halasz and M. Schwarz. The Dexter Hypertext Reference Model. Com-munications of the ACM, 37(2), 1994.[KKW+97] Alexander Knapp, Nora Koch, Martin Wirsing, Jochen Duckeck, RainerLutze, Hartmut Fritzsche, Dietrich Timm, Patrick Closhen, Martin Frisch,Hans-J�urgen Ho�mann, Bernd Gaede, Josef Schneeberger, Herbert Stoyan,and Aandreas Turk. EPK-�x: Methods and Tools for Engineering ElectronicProduct Catalogues. In R. Steinmetz and L.C. Wolf, editors, Interactive Dis-tributed Multimedia Systems and Telecommunication Services, Lecture Notesin Computer Science 1309, pages 199{209. Springer-Verlag Berlin-Heidelberg,September 1997.[KS97] Nora Koch and Joseph Schneeberger. Integrated Assistance for the Develop-ment of Electronic Product Catalogues. In Proceedings of the Symposium onSoftware Technology, SADIO, August 1997.[MM97] Christoph Maier and Luis Mandel. YAON { a Static Diagram Technique forObject Oriented Distributed Systems. Technical Report 9709, Institut f�urInformatik der Ludwig-Maximilians-Universit�at M�unchen, 1997.

REFERENCES 23[Oes97] Bernd Oestereich. Objektorientierte Softwareentwicklung mit der Uni�edModeling Language. Oldenbourg, 1997.[RAT97] RATIONAL Software Corporation. UML Notation Guide, September 1997.Version 1.1. Available at http://www.rational.com/.[RHSL96a] G. Rasmussen, B. Henderson-Sellers, and G.C. Low. Extending the MOSESmethodology to distributed systems. Journal of Object Oriented Program-ming, pages 39{46, July{August 1996.[RHSL96b] G. Rasmussen, B. Henderson-Sellers, and G.C. Low. An object{oriented anal-ysis and design notation for distributed systems. Journal of Object OrientedProgramming, pages 14{27, October 1996.[Rum95] J. Rumbaugh. Modeling and design { omt: The functional model. Journalof Object Oriented Programming, 8(1):10{14, 1995.[Sch97] Schwabe, Daniel and Rossi, Gustavo. An Object Oriented Approach to Web-Based Application Design. Technical report, Departamento de Informatica,PUC-RIO, Brazil, 1997.[WBWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. DesigningObject-Oriented Software. Prentice Hall, 1990.

