
1

The UML-based Web Engineering Approach UWE:

A Case Study

Nora Koch 1,2, Andreas Kraus1, Rolf Hennicker1

1 Institute of Computer Science
Ludwig-Maximilians University of Munich

Oettingenstr. 67, D-80538 München, Germany
{hennicke,kochn,krausa}@informatik.uni-muenchen.de

2 F.A.S.T. Applied Software Technology GmbH
Arabellastr. 17, D-81925 München, Germany

koch@fast.de

1 Overview of the UWE Approach

The UML-based Web Engineering approach UWE supports Web application development with
special focus on methodology, systematisation and personalisation. It is an object-oriented
approach based on the two dimensions principle time and content of the Unified Process
(Jacobson, Booch & Rumbaugh, 1999). The UWE development process covers the whole life-
cycle of Web applications. It is defined on the basis of phases, workflows and milestones. The
five phases (inception, elaboration, construction, transition and maintenance) proposed by the
Unified Process are adapted to Web application development as described in Koch, 2001. The
building stones used in the process definition are workers, activities and artifacts (results).
Workers are expert roles responsible for the activities to be performed during each phase and in
each iteration with the goal to produce defined and incremental results. The set of artifacts
includes models, pieces of code and documents.

Part of the UWE approach is a systematic analysis and design method and a graphical notation.
The notation is a “lightweight” UML profile for the Web that we have developed in previous
works (Baumeister, Koch & Mandel, 1999, and Hennicker & Koch, 2000, and Koch, 2001) by
applying the extension mechanisms defined by the UML itself. This profile includes (descriptive
and restrictive) stereotypes defined for the modeling of navigation and presentation aspects of
Web applications.

The analysis and design method provides guidelines for the systematic and stepwise construction
of models. It consists of four major steps which are the requirements analysis, conceptual,
navigation and presentation design. They produce the following artifacts:

• use case model

• conceptual model

• navigation space model and navigation structure model

• presentation model

The different models are connected by trace dependencies (as shown in Figure 1) which allow to
document design decisions at various levels and therefore facilitate system maintenance as
discussed in Section 3.5.4 of Chapter 1. In the following we briefly describe each development
step. A detailed explanation of the methodological guidelines and notations need in each step is

2

given in the next section in connection with our solution for the sample problem introduced in
Section 2 of Chapter 1.

The goal of the requirements analysis is to identify, in accordance with Section 3.3 of Chapter 1,
the desired functionality of the Web application and to represent these functional requirements as
use cases.

The objective of the conceptual design is to build a conceptual model of the application which
describes, first, the information and their relationships that are relevant for the given problem
domain and, secondly, the operations that can be used to manipulate this information. Thus the
conceptual model shows the data/information aspects of the application (cf. Section 3.1 of
Chapter 1) and the operations that support the application’s functionality (cf. Section 3.3 of
Chapter 1). Traditional object-oriented techniques are used to construct the conceptual model,
such as finding classes and associations and defining inheritance structures. The conceptual
model is represented by an ordinary UML class diagram.

Based on the use case model and the conceptual model our method proposes a set of guidelines to
construct a navigation model which defines the navigation space and the navigation structure; the
latter includes access elements that can be used for navigation. As discussed in Section 3.2 of
Chapter 1 the separate treatment of navigation is a crucial aspect of Web application
development. Our graphical notation for navigation design includes a set of UML stereotyped
modeling elements, like indexes, guided tours, queries and menus. These stereotypes are used in
the construction of the navigation space model and the navigation structure model.

Another important issue concerns interfaces and presentation (cf. Section 3.4 of Chapter 1). Our
techniques for presentation modeling support the design of abstract user interfaces and the design
of the user interaction with the Web application. It consists of two steps: the first step defines
user interface views which sketch the content of the user interface nodes. These user interface
views can then be combined to storyboarding scenarios. The second step focuses on the dynamics
of the presentation represented with UML sequence diagrams.

The UWE method proposes precise methodological guidelines for the transition of one
development step to the other which provide the basis for tool support including a semi-automatic
generation of Web applications. To add precision to the models we use constraints written in the
Object Constraint Language OCL.

 Conceptual
Model

 Navigation
Model

 Presentation
Model

«trace» «trace»

 Use Case
Model

«trace»«trace» «trace»

Figure 1: Models built during the Analysis and Design Process of the
UML-based Web Engineering Approach

3

Many similarities of our approach with other methods for hypermedia and Web design are not a
coincidence. Our goal is not to provide a new methodology defined from scratch, i.e. “yet another
method”. In contrast, our objective is to combine well proved aspects of existing methodologies
and to improve the resulting combination with some new ideas. For example, in our notation we
use some graphical elements of RMM (Isakowitz, Stohr & Balasubramanian, 1995) as stereotype
icons for the navigational modeling elements. We keep the separate construction of conceptual,
navigation and presentation models that stems from OOHDM (Rossi, Schwabe & Lyardet, 2000)
and continue with the user-centred approach of WSDM (De Troyer & Leune, 1997). We
formalise sketching and storyboarding techniques widely used by user interface designers without
a precise notation (Preece et. al., 1994, Sano, 1996, and Schneiderman, 1998). The innovation of
UWE – as indicated by its name - is that all models are UML compliant.

UML is a well-documented modeling language which is a de facto industrial standard and the
most used object-oriented notation nowadays. The benefit of using a UML profile for the Web is
that any practitioner with a general UML background is able to understand a model based on this
specialisation. We agree with Selic (1999), the author of the UML profile for the real-time
domain, who stresses that the resulting language of a UML profile remains compact, because the
refinements fully respect the general semantics of their parent concepts and retain its “universal”
quality. At least with our UML Profile for the Web we have not made the experience Schwabe
describes in Section 3.5.2 of Chapter 1. Another UML extension for Web applications has been
defined by Conallen (1999). In contrast to our approach Conallen focuses more on architecture
aspects and current implementation techniques than on the separation of navigation and
presentation aspects.

The specification of constraints has the advantage to augment the models precision, e.g.
navigation and presentation restrictions. Another currently available formal language, such as
Objective-Z or VDM++ could have been chosen. According to Warmer and Kleppe (1999), OCL
is easy to learn for people who have not a strong mathematical background, although it is
underpinned by mathematical theory and logic.

2 Requirement Analysis with Use Cases

Following the Unified Software Development Process of Jacobson, Booch and Rumbaugh (1999)
we propose use cases for capturing the system’s requirements. It is a user-centred technique that
forces to define who are the users (actors) of the application and offers an intuitive way to
represent the functionality an application has to fulfil for each actor.

2.1 Modeling elements

The main modeling elements used for use case modeling are actors and use cases. They can be
related by inheritance, include or extend relationships. All these modeling elements as well as the
package and view mechanisms are used with the semantics defined in the UML (2001) and
graphically represented with the UML notation.

2.2 Sample Problem

Based on the textual description of the requirements of the Conference Review System (see the
problem statement described in Section 2 of Chapter 1) we recognise that users can act in the
following roles: program committee chair (Chair for short), program committee member

4

(Member for short), Reviewer, Author and Co-author. These are therefore the actors of the use
case model. Reviewers can be modeled as a generalisation of Members (see Figure 4).

The number of identified use cases lead to a set of views of the use case model or, in other words,
the division of the use case model into three packages. Figure 2 shows these use case packages
Submission, Review and Administration, which are detailed in Figure 3 to Figure 5.

Figure 3 depicts the use cases related to the submission of papers. These use cases are initiated
by the Author. Figure 4 shows the actors and use cases that are identified as relevant for the
review process performed by the Members and the Reviewers. Figure 5 shows the Administration
package. The Chair is responsible for the use cases included in this package.

register

pre-register co-author

submit paper

change paper
confirm registration

Author

Co-Author

browse papers

Figure 3: Submission Use Case Package

AdministrationReviewSubmission

Figure 2: Use Case Model Overview

5

indicate preferences
 for topics and subjects

indicate interest/conflicts
 in papers

re-assign paper to reviewer

evaluate paper

pre-register reviewer

browse reviews

Member

enter review close review

change reviewconfirm registration
(from Submission)

Reviewer

browse papers
(from Submission)

Figure 4: Review Use Case Package

Member

Author

pre-register
PC Reviewer

notify
PC Members

notify authors

create conference

<<include>>

assign papers
to PC members

<<include>>

change topic of paper browse papers
(from Submission)

browse reviews
(from Review)

determine conflictsfinalise conference
 review process

<<include>>

close review process

mark papers for
acceptance/rejection

Chair

Figure 5: Administration Use Case Package

6

2.3 The Method

We apply the steps suggested by many use case driven processes (Kruchten 1999, Conallen,
1999, etc.) to build the use case model of a Web application. These steps are:

1. Find the actors.
2. For each actor search the text for activities the actor will perform.
3. Group activities to use cases.
4. Establish relationships between actors and use cases.
5. Establish “include” and “extend” relationships between use cases.
6. Simplify the use case model by defining inheritance relationships between actors and/or

between use cases.

For each use case a detailed description can be provided in terms of (primary and secondary)
scenarios, for instance following the guidelines of Schneider and Winters (1998). The flow of
activities related to a use case can be represented by a UML activity diagram.

3 A UML Representation of the Conceptual Model

The conceptual design of UWE is based on the requirement analysis of the previous step. It
includes the objects involved in the interaction between the users and the application specified in
the use cases. Thus the conceptual model shows the data/information aspects of the application
and the operations that support the application’s functionality as outlined in Sections 3.1 and 3.3
of Chapter 1. The conceptual design aims to build a class model with these objects, which
attempts to ignore as many of the navigation paths, presentation and interaction aspects as
possible. These aspects are postponed to the navigation and presentation steps of the design
method.

3.1 Modeling Elements

The main UML modeling elements used in the conceptual model are: class, association and
package. These are represented graphically using the UML notation (2001). If the conceptual
model consists of many classes, it is recommended that they are grouped using the UML package
modeling element.

• Class

A class is described by a name, attributes, operations and variants. The optional compartment
named variants can be added to classes (Koch, 2001). It contains additional information used
for adaptive content functionality, i.e. to present different or additional content to the users
according to their user profile.

• Association and Package

Associations and packages are used as in standard UML class diagrams.

Classes defined in this step are used during navigation design to derive nodes of the hypermedia
structure. Associations will be used to derive links.

7

3.2 Sample Problem

The Conference Review System offers information about papers, paper reviews and users of
the Web application. The users are the actors identified during the requirement analysis.
Depending on the role of the user and on the current status of the conference the users perceive
different information, navigation or layout, i.e. the system administrates time and user dependent
access permissions. This way the Conference Review System is a personalised Web
application (c.f. Section 3.6 of Chapter 1) as the content and the links are personalised for each
role (Chair, PC Member, Author, etc.).

Based on the textual description and the use case based requirements analysis of the previous step
we identify objects, relationships and operations required to construct the conceptual model of the
application. We identified three packages in the conceptual model of the Conference Review
System; we called them Paper View, User View and Session View (see Figure 6). The UML
class diagrams of these packages are shown in Figures 7 to Figure 9. We use packages for the
only purpose of a more intuitive and clearer modeling.

Figure 7 depicts the package Paper View, which includes the main classes Conference, Subject,
Topic (conference track), Paper and Review. The Conference class contains information about
the conference, such as name of the conference and the deadlines of the conference.

A paper is described by a title, an abstract, a submission date, etc. It has associated a file that
contains the uploaded document and a paper ID generated by the system. For each paper at least
three reviews will be provided by the reviewers. Each review is defined by a number (generated
by system when the chair assigns the paper), a set of valued evaluation items, comments for the
author and confidential comments, a review date and a status indicating whether this review is
final or is still in progress. Variants in class Paper can be used to present or hide information
about a paper in case of conflicts of interests between a member and a paper.

The OCL invariant added to the class Paper expresses that only the users in the role Author can
submit papers. In analogy, we can add other OCL invariants expressing rights for the roles Chair,
Reviewer and Member. As an example for pre-conditions/post-conditions for methods a pre-
condition for changeSubmission() is included in Figure 7.

 Paper View

 User View

 Session View«access»

«access»
«access»

Conceptual Model

«access»

Figure 6: Conceptual Model Overview

8

Figure 8 depicts the classes that represent the User View of the conceptual model. In the
personalised (adaptive) Web application terminology this view is called the user model or user
profile (Koch, 2001). The user is modeled by tracking her interest in conference subjects,
expertise in conference topics and preferences on papers to review (in case of reviewers).

* 1

EvaluationItem
-itemType
- value

context Pape r:: changeSubmission()

pre: conference.submissionDeadline >
Session.getCurrentDate()

Conference
- name
- submissionDeadline
- reviewDeadline
- notificationDeadline
/- status

+ createConference()
+ closeReviewProcess()
+ registerUser()
+ submitPaper()
+ preregisterUser()
+ determineConflicts()
+ closeReviews()
+ finaliseReview()

+ ...()

Topic
- topicName

1..*1..*

Subject
- subjectName

 *

Paper
- paperID
- file
- title
- abstract
- date

+ changeSubmission()
+ changeTopic()
+ evaluate()
+ assignReviewers
+ assignPCMembers

 papers

1

1..*< isAboutTopic

.

*

< isAboutSubject UserView :: User
 author

*

< submits

*

< evaluates
**

< /reviews

Review

- final : Boolean
- finalRecomendation
- reviewNumber
- authorComments
- confidentialComments
- date
- status

*
 reviews

1

1

1

< enters

 evaluationItems

1..*

inv:
author.userRoles -> exists (r:UserRole
| r.oclIsTypeOf (Author))

 users

 member

 reviewer

 reviewer
*

*
*

- reviewID : Integer

+ enterReview
+ changeReview
+ closeReview

1

Figure 7: Package PaperView of the Conceptual Model

9

At a particular session a user of the system uses the system in one of the following roles: chair,
member, reviewer or author, but he can be registered to the system for more than one role, e.g.
author and member. The user role is modeled with the aggregated class UserRole to the class
User. Constraints are added to some associations to show that these associations are only valid if
the invariants expressed by the constraints are satisfied, e.g. a conference has only one chair.

The third view is the Session View that shows the associations between the conference, a current
session and a current user of a session. This view models run-time information that is relevant for
the conceptual model. The Session View is depicted in Figure 9.

3.3 Method

The developer can follow well-known object-oriented modeling techniques to construct the UML
class models for the domain (see Figures 7 to 9), such as:

1. Finding classes, such as Conference, User, Paper, and Review.
2. Specifying the most relevant attributes and operations, e.g. title, abstract, paperID, etc.

Interest

- degree

Preference

- degree

Registered User

+ confirmRegistration()

Chair

+ assignPapers()
+ determine conflicts()

Reviewer
Member

11

Topic
(from Paper Vi...

Subject
(from Paper Vi...

Paper
(from Paper Vi...

User

- username
- password
- affilation
- contact

+ indicatePreference()
+ changePassword()
+ ..()

*
*

* 1

UserRole

- userID : Integer

1

1..*

1

userRoles1..*

hasUserRole

conflictedUsers
Interest

- degree

Preference

- degree

RegisteredUser

+ confirmRegistration()

Chair

+ assignPapers()
+ determineConflicts()

Reviewer
Member

11

1 < hasCoordinator

Author CoAuthor

PaperView ::
Topic

PaperView ::
Subject

PaperView ::
Paper

User

- username
- password
- affilation
- contact

+ indicatePreference()
+ indicateInterest()
+ changePassword()
+ ..()

conflictsWith >

*

1< prefers

UserRole

- userI :Integer

1

1..*

1

1..*

hasUserRole

conflictedUsers

*

*

*

coordiknator

- userID

Figure 8: Package UserView of the Conceptual Model

10

3. Determining associations between classes, such as submits, enters, isAboutTopic, etc.
4. Aggregating classes and identifying composition of classes, such as between Conference

and Topics and between Review and EvaluationItems.
5. Defining inheritance hierarchies, e.g. the user role hierarchy.
6. Defining constraints, such as the precondition for the operation changeSubmission of class

Paper.

4 Systematic Building of a Navigation Space Model

UWE considers navigation modeling as a crucial step in the design of a Web application as
discussed in Section 3.2 of Chapter 1. On the one hand, links improve navigability; on the other
hand, however, they increase the risk of loss of orientation. Building a navigation model is not
only helpful for the documentation of the application structure, it also allows a more structured
increase in navigability. The navigation model comprises the navigation space model and the
navigation structure model. The former specifies which objects can be visited by navigation
through the Web application. How these objects are reached is defined by the navigation structure
model. In this section we present the modeling elements used and the method applied to construct
the navigation space model. The steps to follow for the construction of the navigation structure
model and the UML stereotypes defined and used in this construction are described in the Section
5.

In the process of building the navigation space model the developer takes crucial design decisions,
such as which classes of the conceptual model are needed for the application and what navigation
paths are required to ensure the application’s functionality. The designer’s decisions are based on
the conceptual model and the application requirements defined in the use case model.

A set of guidelines is proposed for modeling the navigation space. A detailed specification of
associations, their multiplicity and role names, establish the base for a semi-automatic generation
of the navigation structure model.

UserView ::
UserRole

UserView ::
User

PaperView ::
Conference

Session

+ getUser()
+ getUserRole()
+ getCurrentDate()
+ getCurrentSession()

1

11

/currentUser

 sessions

* 1

1

1

 currentUserRole

1

users

userRoles1..*

*

 inv:
users.userRoles.oclIsTypeOf
(Chair) -> size = 1

+ ...

Figure 9: Package SessionView of the Conceptual Model

11

«navigation class»
Class Name

attributes

operations

variants

Figure 10: Navigational Class

4.1 Modeling Elements

Two modeling elements are used for the construction of the navigation space model: navigation
classes and navigation associations, which express direct navigability. They are the pendant to
page (node) and link in the Web terminology.

• navigation class

A navigation class models a class whose instances are
visited by the user during navigation. Navigation
classes will be given the same name as the
corresponding conceptual classes. For their
representation the UML stereotype «navigation class» is
used (see Figure 10). Navigation classes may contain
derived attributes. These attributes are traced from
conceptual classes that are not included in the
navigation model. The formula to compute the derived
attribute can be given by an OCL expression. A derived
attribute is denoted in UML by a slash (/) before its
name.

• direct navigability

Associations in the navigation space model are interpreted as representing direct navigability
from the source navigation class to the target navigation class. Hence, their semantics are
different from the associations used in the conceptual model. To determine the directions of
the navigation the associations of this model are directed (possibly bi-directed). This is shown
by an arrow that is attached to one or both ends of the association. Moreover, each directed
end of an association is named with a role name and equipped with an explicit multiplicity. If
no explicit role name is given, the following convention is used: if the multiplicity is less than

 inv: author =
Session.getCurrentSes
sion().getUser()

Paper
 <<navigation class>>

- paperID
- file
- ..
/- subject[0..*] : Subject
- topic : Topic

Conference
 <<navigation class>>

- name
- submissionDeadline
- ...
/- subjects[0..*] : Subject
/- topics[1..*] : Topic

*

1

+papers *

1

 Figure 11: Navigation Space Model
of an Author

12

 reviewer -> exits (r: User |
Session.getCurrentSession().
geUser() = r)

Review
 <<navigation class>>

Conference
 <<navigation class>>

Paper
 <<navigation class>>

0..1 review 0..1

* papers *

User
 <<navigation class>> authors

1..*

 paper

inv:

 - /evaluationItems

reviewer

1..*

Figure 12: Navigation Space Model of a Reviewer

or equal to one, the target class name is used as the role name; if the multiplicity is greater
than one, the plural form of the target class name is used. In the UML diagrams shown in
Figures 11 to Figure 15 all associations are implicitly assumed to be stereotyped by «direct
navigability».

4.2 Sample Problem

Each actor, i.e. Chair, Member, Reviewer and Author has a different view of the navigation
space. These views are represented as UML class models built with navigation classes and direct
navigability stereotypes. OCL constraints are added for a precise description of classes and
associations. Some of these constraints are shown in the diagrams within the UML note symbol
that are attached to the corresponding modeling elements.

Starting from the conference review system homepage an author can only navigate to the papers
submitted by himself. He can eventually change the submitted version or some data informed
about the paper before submission deadline is reached. Figure 11 shows the navigation space of
an author. For a more intuitive visual representation we only display some attributes and
operations in the UML class diagrams in Figure 12 to Figure 15.

A reviewer can navigate through a navigation space that includes the start page of the
Conference Review System, the papers that he reviews and the review comments and
evaluation items he already entered. The navigation space model of a reviewer is shown in Figure
12.

The UML class diagram for the navigation space of a program committee member (see Figure
13) includes the start page of the conference review, all papers and the reviews corresponding to
papers assigned to him by the Chair under the pre-condition that he entered his own review and
marked it as final (if he is an assigned review of this paper). This constraint is included as a note
in the navigation space model shown in Figure 13. After the review process is closed by the chair
the members can access the list of accepted and rejected papers.

13

The navigation space of the chair allows for administration of the conference information and the
papers as it includes the conference start page, all papers, reviews and the list of users of the
system. The navigation space of the Chair is shown in Figure 14.

Review
 <<navigation class>>

Paper
 <<navigation class>>

*

1

 reviews

1

Conference
 <<navigation class>>

*

1

 acceptedPapers

1

1

 rejectedPapers

*

1

11

 papers*

 paper

User
 <<navigation class>>

*

1

 reviews

*

*

1

 reviewers *

1

let u = Session.getCurrentSession().
 getUser()
in paper.conference.reviewers.

coordinator = u

and
paper.reviews -> exists (r:Review |
r.reviewer = u implies r.final)

inv :

 reviewer

Figure 13: Navigation Space Model of a Member

Review
 <<navigation class>>

Conference
 <<navigation class>>

1

 reviews *

1

User
 <<navigation class>>

*

1

reviews

1

1..*

1

 users 1..*

1

1

coordinator

1Paper
 <<navigation class>>

*

1

 reviews

*

1

 papers *

11

 *

1

acceptedPapers

*

11

 rejectedPapers

*
1

 preferedPapers member
1

* 1

 evaluatedPapers

*

 member

1

**

 members conflictedPapers

*

 **

 authors authoredPapers

1

 paper
reviewer

Figure 14: Navigation Space Model of the Chair

14

The UML class diagram shown in Figure 15 summarises the navigation space views of authors,
reviewers, members and the chair in a global navigation space model for the Conference Review
System.

The constraints associated to the navigation associations are only referenced by an invariant name
in the diagram due to space problems. The complete specification of these two OCL constraints
referenced in the diagram are listed below.

context Conference

inv “papers presented depending on current user”:

let ur = Session.getCurrentSession().getUserRole()

 in let u= Session.getCurrentSession().getUser()

 in if ur.oclIsTypeOf(Author)

 then papers-> excludesAll (p:Paper | p.author <> u)

 else if ur.oclIsTypeOf (Reviewer)

 then papers -> excludesAll (p:Paper | p.reviewer<> u)

 else true

 endif

 endif

context Paper

inv “reviews presented depending on current user”:

let ur = Session.getCurrentSession().getUserRole()

 in let u= Session.getCurrentSession().getUser()

 in if ur.oclIsTypeOf(Author)

 then reviews -> isEmpty

 else if ur.oclIsTypeOf (Reviewer)

 then reviews ->excludesAll (r:Review | r.reviewer<>u)

 else if ur.oclIsTypeOf (Member)

 then reviews -> excludesAll (r:Review | r.reviewer.coordinator<>u)

 excludesAll (r:Review | r.paper.reviews

-> exists (r1:Review | r1.reviewer = u and not r1.final)

 else true

 endif

 endif
 endif

The number of OCL constraints that can be added within notes to an UML diagram is limited. If
the models require more than two or three constraints it is recommended to list them separately.
In such a case, the model element that the constraint applies to has to be explicitly mentioned as
context.

4.3 Method

The navigation space model that is built with the navigation classes and navigability associations
is graphically represented by a UML class diagram as shown in Figures 11 to Figure 15.
Although there is obviously no way to fully automate the construction of the navigation space
model, UWE proposes several guidelines that can be followed by the developer:

1. Include classes of the conceptual model that are relevant for the navigation as navigation
classes in the navigation space model (i.e. navigation classes can be mapped to conceptual

15

classes). If a conceptual class is not a visiting target in the use case model, it is irrelevant in
the navigation process and therefore omitted in the navigation space model, such as the
classes Topic, Subject and UserRole in this example.

2. Keep information of the omitted classes (if required) as attributes of other classes in the
navigation space model (e.g. the newly introduced attributes evaluationItems of the
navigation class Review). All other attributes of navigation classes map directly to attributes
of the corresponding conceptual class. Conversely, exclude attributes of the conceptual
classes that are considered to be irrelevant in the navigation space model, e.g. user address.

3. Associations of the conceptual model are kept in the navigation model. Additional
associations can be added for direct navigation to avoid navigation paths of length greater
than one. Examples are the newly introduced navigation associations between Conference
and User (see Figure 14).

4. Add additional associations based on the requirements description or the scenarios described
by the use case model. Hence associations for accepted papers and rejected papers (see
Figure 15).

5. Add constraints to specify restrictions in the navigation space, e.g. invariants for classes
conference and paper (see Section 4.2).

5 Generation of a UML Navigation Structure Model

The navigation structure model describes how the navigation is supported by access elements
such as indexes, guided tours, queries and menus. Technically, the navigation paths together with
the access elements are presented by a class model which can be systematically constructed from
the navigation space model in two steps: the first consists in enhancing the navigation space

Conference

 <<navigation class>>

Review
 <<navigation class>>

1

 reviews

Paper

<<navigation class>>

*

 accepted
Papers

1

 rejected
Papers

1

1

 papers

1

 reviews

User

<<navigation class>>

11

 users *

1 *
 member

1
 preferedPapers

1
 member

1
 evaluatedPapers

*

1

 reviews

 conflictedPapers
 members

 1..*

1

 coordinator

1

 *

 *

 *

 *

 *

 authoredPapers author
 *

 *

invariant
„papers presented
depending on user“

 *

 reviewer paper

invariant
„reviews presented
depending on user“

Figure 15: Navigation Space Model of the Conference Review System

16

*

 Index

«navigation class »
 Navigation Class

«index»
 Index

name: String

 IndexItem * 1 «navigation class »
 Navigation Class

 Figure 16: Index Class and Shorthand Notation for
Index Class

{ordered}

«navigation class»
 Navigation Class

1

«guidedTour»
 GuidedTour

name: String

 NextItem
*

 GuidedTour

* «navigation class»
 Navigation Class{ordered}

Figure 17: Guided Tour Class and Shorthand for Guided Tour Class

model by indexes, guided tours and queries. The second one consists in deriving menus directly
from the enhanced model. Menus represent possible choices for navigation. The result is a UML
class diagram built with UML stereotypes, which are defined according to the extension
mechanism of the UML.

5.1 Including Access Primitives

Access primitives are additional navigation nodes required to access navigation objects. The
following access primitives are defined as UML stereotypes: index, guided tour, query and menu.
In this section the first three are described and used to refine the navigation space model. Menu is
treated separately in the next subsection.

5.1.1 Modeling Elements

The following modeling elements are
used for describing indexes, guided
tours and queries. Their stereotypes and
associated icons are defined in (Koch &
Mandel, 1999); some of the icons stem
from Isakowitz, Stohr and
Balasubramanian (1995).

• index

An index allows direct access to
instances of a navigation class. This
is modeled by a composite object,
which contains an arbitrary number
of index items. Each index item is in
turn an object, which has a name that identifies the instance and owns a link to an instance of
a navigation class. Any index is a member of some index class, which is stereotyped by
«index» with a corresponding icon. An index class must be built conform to the composition
structure of classes shown in Figure 16 (above). Hence the stereotype «index» is a restrictive
stereotype in the sense of Berner, Glinz and Joos (1999). In practice, we will always use the
shorthand notation shown in Figure 16 (below).

Note that in the short form the association between Index and NavigationClass is derived
from the index composition and the association between IndexItem and NavigationClass.

17

*

« navigation class »

 Navigation Class{xor}

0..1

 Index

1

«query »

 Query

inputField : String

 QueryForm 1

?

 Query

? * « navigation class »
 Navigation Class

 Index

1

 Query

? * « navigation class »
 Navigation Class

 GuidedTour

1

 Figure 18: Query Class and Shorthand for Query

• guided tour

A guided tour provides sequential access to instances of a navigation class. For classes,
which contain guided tour objects we use the stereotype «guidedTour» and its corresponding
icon depicted in Figure 17 (above). Any guided tour class must be built conform to the
composition structure of classes shown in Figure 17 (above). Each NextItem must be
connected to a navigation class. Guided tours may be controlled by the user or by the system.
Figure 17 (below) shows the shorthand notation for a guided tour class.

• query

A query is modeled by a class which has a query string as an attribute. This string may be
given, for instance, by an OCL select operation. For query classes we use the stereotype
«query» and the icon depicted in Figure 18 (above), where it is shown that any query class is
the source of two directed associations related by the constraint {xor}. In this way a query
with several result objects is modeled to lead first to an index supporting the selection of a
particular instance of a navigation class. The query results can alternatively be used as input
for a guided tour.

Figure 18 (below) also shows the shorthand notation for a query class in combination with an
index class or with a guided tour.

5.1.2 Sample Problem

Figure 19 shows how the navigation space model of the Conference Review System can be
enhanced by indexes, guided tours and queries.

Note that the access to all papers submitted to the Conference Review System is modeled with
two indexes and two search items: search by title and by subject, and lists of indexes by paper ID
and by topics.

18

5.1.3 Method

UWE supports the enhancement of the navigation space model by access elements of type index,
guided tour and query following certain rules, which can be summarised as follows:

1. Replace all bi-directional associations, which have multiplicity greater than one at both
association ends by two corresponding unidirectional associations.

2. Replace all bi-directional associations, which have multiplicity greater than one at one
association end with one unidirectional association with an directed association end at the
end with multiplicity greater than one.

3. Consider only those associations of the navigation space model, which have multiplicity
greater than one at the directed association end.

4. For each association of this kind, choose one or more access elements to realise the
navigation. In our example, e.g. for the association with role papers two queries and two
indexes are selected. The query allows for the search of papers by subject and by title. One
index offers a list of topics, where each topic is a link to papers of that topic. The other
index is a list of the papers ordered by paper ID.

<<navigation class>>

Conference

<<navigation class>>

Paper

<<navigation class>>

Review

<<navigation class>>

User

Rejected
Papers

Accepted
Papers

Papers
ByPaperID

Topics

Reviews
ByPaper

PapersBy
Topic

Search
PaperByTitle

PapersBy
Title

?

PreferedPapers

EvaluatedPapers

ConflictedPapers

Users

Reviews
ByReviewer

Reviews
ByStatus

Search
PaperBySubject

PapersBy
Subject

?

AuthoredPapers

AuthorsByPaper

rejected
Papers

accepted
Papers

papers
ByTitle

topics
ForPapers

papers
BySubject

papers
ByPaperID users

coordinator

authors

reviews

reviewsreviews

authoredPapers

preferedPapers

evaluatedPapers

conflictedPapers

*

* * *

*

*

* *

* 1

1

11

1 1 1 1 1 1

1 1 1

1

1

*

1

* * 1

1

1

{xor} {xor}
11

Figure 19: Navigation Structure Model (First Step) of the Conference Review System

19

«menu»

 Menu

name=“menuItem”
 {frozen}

 MenuItem *

?

1

1

1

1

1

{xor}

{xor}

{xor}

{xor}

? Menu

item2
item1

item3
item4
item5

Figure 20: Menu Class and Shorthand for Menu Class

5. Enhance the navigation space model correspondingly. Role names of navigation in the
navigation space model are now moved to the access elements (compare Figure 15 and
Figure 19). If two or more alternatives are introduced in step 3, distinguish them by
changing the role names of the associations by the search or index criteria used.

In item 2 the task of the designer is to choose appropriate access elements. However, note that it
is also possible to fully
automate this step by making
the choice of an index a
default design according to an
attribute with the property
{key} of the target navigation
class.

5.2 Adding Menus

In this step, access primitives
of type menu are added to the
navigation structure model.

5.2.1 Modeling Elements

The modeling element menu is
an additional access primitive
that can be added to the list
presented in the previous step.
Its UML stereotype is defined
by Koch and Mandel (1999).

• menu

A menu is an index of a
set of heterogeneous
elements, such as an
index, a guided tour, a
query, an instance of a navigation class or another menu. This is modeled by a composite
object which contains a fixed number of menu items. Each menu item has a constant name
and owns a link either to an instance of a navigation class or to an access element. Any menu
is an instance of some menu class which is stereotyped by «menu» with a corresponding icon.

A menu class must be built in accordance with the composition structure of classes shown in
Figure 20 (above). Hence the stereotype «menu» is again a restrictive stereotype according to
the classification of stereotypes given by Berner, Glinz and Joos (1999). The property
{frozen} is attached to each name attribute in a menu item class to indicate that menu items
have fixed names. Nevertheless, the same menu item class may have different instances since
there may be menu items with the same name but linked to different objects.

For a convenient notation of menu classes in navigation structure models the shorthand
notation shown in Figure 20 (below) is used. This is a somewhat more flexible extension than
the extension mechanisms of UML allows, since it includes a variable number of
compartments with the names of the menu items. To remain hundred percent UML

20

compatible, we have to use the notation shown in Figure 20 (above) with the disadvantage of
being space consuming. This shorthand is the only not strict UML notation used in this work.

5.2.2 Sample Problem

Figure 21 shows how the navigation structure model of the previous subsection of the Conference

Review System is enricheed by menus. Each menu class is associated with a composition
association to a navigation class. Note that the role names occurring in the previous model
(Figure 19) are now names of corresponding menu items.

<<navigation class>>
Conference

<<navigation class>>
Paper

<<navigation class>>
Review

<<navigation class>>
User

Rejected
Papers

Accepted
Papers

Papers
ByPaperID

Topics

Reviews
ByPaper

PapersBy
Topic

Search
PaperByTitle

PapersBy
Title

?

PreferedPapers

EvaluatedPapers

ConflictedPapers

Users

Reviews
ByReviewer

Reviews
ByStatus

Search
PaperBySubject

PapersBy
Subject

?

AuthoredPapers

AuthorsByPaper

authoredPapers

preferedPapers
evaluatedPapers

conflictedPapers

rejectedPapers
acceptedPapers
searchPaperByTitle

searchPapersBySubject
topicsForPapers

users
reviews
paperMenu

authors
reviews

coordinator
userPaperMenu
reviews

Main
Menu

MainPaper
Menu

Paper
Menu

User
Menu

UserPaper
Menu

papersByPaperID

*

* * *
*

* *

*

*

* 1

**

1

{xor}

1

{xor}

Figure 21: Navigation Structure Model (Second Step) of the Conference Review System

21

Index

 MenuItem

 NavigationClass

{xor}

*

Access Element

Menu

?
Query GuidedTour

{xor}
*

Figure 22: Pattern for Access Structures

5.2.3 Method

UWE supports the enhancement of the navigation space model by access elements of type menu
following certain rules which can be summarised as follows:

1. Consider those associations, which have as their source a navigation class.

2. Associate to each navigation class, which has (in the previous model) at least one outgoing
association, a corresponding menu class. The association between a navigation class and its
corresponding menu class is a composition. In our example the navigation classes that
require a menu are Conference, Paper and User. We introduce a MainMenu, a PaperMenu,
and a UserMenu.

3. Reorganise a menu in a menu with sub menus. In our example this is done for the
MainMenu, where the MainMenu item paper is replaced by the sub menu MainPaper menu.

4. Introduce for each role, which occurs in the previous model at the end of a directed
association a corresponding menu item, such as acceptedPapers, searchPaperBySubject
and preferredPapers. By default, the role name is used as the constant name of the menu
item.

5. Any association of the previous model which has as its source a navigation class now
becomes an association of the corresponding menu item introduced in step 4.

Note that all the steps in the above method can be performed in a fully automatic way. As a result
we obtain a comprehensive navigation structure model of the application. The method guarantees
that this model conforms to the pattern shown in Figure 22.

6 Using UML for Storyboarding and Presentation Flow

Another important issue in the design of Web applications concerns interfaces and presentation as
outlined in the Section 3.4 of Chapter 1. Presentation design of UWE supports the construction of
a presentation model based on the navigation structure model and additional information collected
during the requirements analysis. The presentation model consists of a set of views that show the
content and the structure of the single nodes (i.e. how each node is presented to a user) and how

22

Presentation
Class

Text

Image

Collection
...

Anchor

Form

UI View

UI Element

1..*

1..*

1..*

Anchored
Collection

......

11

*
*

Figure. 23: Metamodel for the Abstract User Interface Elements

the user can interact with them. UWE proposes the construction of sketches, storyboards and a
presentation flow model.

First, the Web designer proposes a sketch of each main user interface view, i.e. the design of
abstract user interfaces. These are rough drawings of a couple of relevant elements of each
navigation node. This sketching technique is frequently used by Web designers, but without
having a precise notation for it as described by Sano (1996). We propose to use an appropriate
extension of UML for this purpose. These sketches are used for the storyboard model.

In the second step based on the storyboard model the designer can decide whether he wants to
choose a multiple-window technique and/or whether he wants to use frames. The objective of the
presentation flow model is to show where the user interface views of the storyboard model are
presented to the user, i.e. in which frame or window they are displayed. It also shows which
contents are replaced when the user interacts with the system.

6.1 Storyboarding

The storyboarding design may be considered as an optional step as the design decisions related to
the user interface can also be taken during the realisation (prototyping) of the user interface.
Sketches give a first look and feel of the user interface. After having produced the different user
interface views (sketches) storyboarding scenarios can be developed which show sequences of
user interface views in the order in which a user can navigate from one view to another (Pinheiro
da Silva & Paton, 2000). The objective is to visualise the organisation of the Web application
structure in a more intuitive manner than the navigation structure model does.

Both, the sketches of user interface views as well as the storyboarding scenarios are a useful
means for the communication between a customer and a Web designer. In particular, they can be
validated w.r.t. the use cases identified during the analysis phase. We model sketches with UML
classes and UML associations of type composition. For the visualisation we choose the nested
composition graphical representation, which is an alternative offered by UML to the composition
drawn with the black diamond symbol.

23

6.1.1 Modeling Elements

For the construction of the sketches we propose a set of modeling elements, some of which are
shown in Figure 23. As for the navigation elements in Sections 4 and Section 5, each class in
Figure 23 defines a stereotype which will be used in concrete sketches. The associations and the
inheritance relation show again the well-formedness rules; the notation of the interface elements in
form of icons stems mainly from Baumeister, Koch and Mandel (1999).

• user interface view

A user interface (UI) view specifies that each instance of this class is a container of all the
abstract user interface elements which are presented simultaneously (i.e. at one moment in
time in one window) to the user. For user interface view classes we use the stereotype «UI
view» and its corresponding icon depicted in Figure 23.

• presentation class

A presentation class is a structural unit which allows to partition a user interface view into
groups of user interface elements. For presentation classes we use the stereotype
«presentation class» and its corresponding icon depicted in Figure 23.

• user interface element

A user interface element is an abstract class which has several specialisations describing
particular interface elements (Figure 23).

For instance, the stereotyped classes «text», «image», «video», «audio», «anchor», and «form»,
are subclasses of UI elements for modeling texts, images etc.. The classes «collection», and
«anchored collection» are also subclasses of user interface element which provide a convenient
representation of frequently used composites. Anchor and form are the basic interactive elements.
An anchor is always associated with a link for navigation. Through a form a user interacts with
the Web application supplying information and triggering a submission event.

Home

Papers

...
Users

Reviews

<<presentation class>>
PaperMenu

PaperID

<<presentation class>>
Paper

Submission
Date

PaperTopic

PaperTitle

PaperAuthors

PaperAbstract

PaperSubjects

View
Document

Review
Document

<<UI View>>
PaperView

context ChangeDocument::display()
pre: Session.getCurrentSession().
 conference.submissionDeadline >
 Session.getCurrentDate() and
 Session.getCurrentSession().
 getUserRole().oclIsTypeOf(Author)

Change
Document

Figure 24: User Interface View of a Paper

24

6.1.2 Sample problem

Figure 24 show a UI view of the Conference Review System. It is the composite of the
presentation of a paper (showing information about a paper, such as paperID, title, abstract) and
a navigation tree build on the basis of the main menu and the paper menu (which in turn is
composed by a set of anchors).

Figure 25 shows a storyboard scenario which shows how a chair can find information about
papers and authors of papers.

PaperAuthors
Authored
Papers

UserIndex
PaperIndex

Home

Papers

Users

Home

Papers
...

Users

Reviews

PaperMenu Paper

PaperView

...

...

Home

Papers

Users

Reviews

UserMenu User

UserName

UserView

...

UserAffilation

Papers
...

Users

Reviews

PaperIndexMenu PaperIndex

PaperIndexView

Home

Papers

...
Users

Reviews

UserIndexMenu UserIndex

UserIndexView

Preregister
Member

Reviews

Conf.Menu Conf.Info

Conf.
Logo

ConferenceView

Conf.Name

Sub.Deadline

Not.Deadline

Accepted
Papers
Rejected
Papers

...

Fig. 25: Example of Storyboard Scenario for the Conference Review System

25

6.1.3 The Method

To design a storyboard model we start with the navigation model of the Web application. UWE
proposes to represent each abstract user interface as a composition of classes. The following
rules can be used as guidelines for the construction of the storyboard model (UML class diagram)
based on the user interface views:

1. Construct a presentation class for each navigation class occurring in the navigation structure
model. The presentation class defines a template suited to present the instances of the class
by taking into account the given attributes. Stereotyped interface elements, such as «text»,
«image», «audio», «video» are used for attributes of primitive types and «collections» are
used for lists, etc. Figure 24 depicts the presentation class for a paper.

2. Construct a presentation class for each menu and index occurring in the navigation structure
model. The presentation of a menu or an index class usually consists of a list of anchors.
Use stereotypes «anchor» or «anchored collection» for this purpose. An example for the
presentation of a menu is the PaperMenu in Figure 24.

3. Construct a presentation class for each query and guided tour. For queries use a «form»
stereotype and for guided tours use a menu with items “next” and “previous” (allow to
navigate to the next and to the previous object within a guided tour).

4. Construct presentation classes for navigation support as composition of the presentation
classes derived from the access structures. They are used to reflect the navigation path. It is
the designer’s decision where to include these derived presentation classes (see Figure 24).

5. Add buttons to the presentation classes to allow creation, destruction and execution of
operations on objects of the conceptual model – for example the submission of a paper by an
author, the upload function of a review (Figure 24) or when the chair pre-registers a
member. The functional requirement of these buttons stem from the use case model.

6. Determine which presentation elements should be presented together to the user (in one
window). The corresponding presentation classes must be composed in a user interface view
(stereotyped by «UI view»). Since the user needs always a combination of conceptual data
and navigation facilities, typically a user interface view consists of the presentation class
constructed for a navigation class and of a presentation class constructed for navigation
facilities.

7. Add OCL constraints, if needed, as shown in Figure 24 for the ChangeDocument button.

8. Construct storyboarding scenarios represented by sequences of user interface views
(optional). For this purpose introduce links that connect an anchor (within a UI view) with
another UI view thus showing the possible flows of presentations that can be caused by user
interactions. An example for a storyboard model is the scenario shown in Figure 25.

6.2 Building the Presentation Flow

The focus of this step of the UWE design method is to model the dynamics of the presentation
showing where the navigation objects and access elements will be presented to the user, i.e. in
which frame or window the content is displayed and which content will be replaced when a link is
activated. First of all, the designer has to specify whether a single or multiple-window technique
is used, whether frames are used and, if so, into how many frames framesets are divided. In the
case of one window without frames the result is obvious (no further graphical representation is
needed). Each click produces just a complete replacement of the window content by a new
content. The presentation flow is visualised with UML interactions models, i.e. UML sequence
diagrams.

26

1
 Frameset

 Frame
2..*

*
«frameset»

«frame»

Figure 27: Frameset and
Frame

«window»
 Window

Figure 26: Window

6.2.1 Modeling Elements

A presentation flow model of a Web application is built with stereotyped classes «window»,
«frameset» and «frame». We use these stereotypes to indicate the location of the presentation.
The user interface elements defined in Section 5 are used as well in the messages sent in an UML
interaction model.

• Window

A window is the area of the user interface where presentation
objects are displayed. A window can be moved,
maximised/minimised, resized, reduced to an icon and/or
closed. For performing these actions a window contains
special buttons. In addition, windows include two scrollbars: a
horizontal and a vertical scrollbar that allow visualisation of
the whole content of the window. Any window is an instance
of a class stereotyped by «window» with a corresponding icon
(see Figure 26).

• Frameset

A frameset is a modeling element used to define multiple
visualisation areas within a window. It is divided into lower
level location elements – so called frames – and may also
contain an arbitrary number of nested framesets. A frameset
is an instance of a frameset class stereotyped by «frameset»
with a corresponding icon (see Figure 27).

• Frame

A frame is always part of a frameset, it defines an area of the
corresponding frameset where content is displayed. A frame
is an instance of a frame class stereotyped by «frame» with a corresponding icon (see Figure
27).

Conference

1

 1

11

1 mainWindow

Navigation Body

1

1

1

subWindow

«window»
 Window1

«frameset»

«frame» «frame»

«window»
 Window1

Figure 28: User Interface Location Elements for the Conference Review System

27

6.2.2 Sample Problem

Figure 28 shows the selected windows and the structure of the frameset. This representation gains
in relevance when the Web application has several windows and many different framesets.

Figure 29 shows a presentation flow representing a scenario for a sequence of possible navigation
activities that can be performed by the chair of a conference.

6.2.3 The Method

The presentation model requires that the designer takes some decisions, such as number of
windows to be used and number of frames each frameset is divided into. Hence the construction
of the presentation structure cannot be fully automated, but there are certain guidelines provided
by UWE that the designer can follow:

1. Choose between a single or multiple-window technique. In case of a multiple-window
technique plan how many windows will be used.

2. Choose the frame style, i.e. with or without frames. In the first case specify how many
frames each frameset has.

 : Chair window1 :
Window

 : Navigation : Body

display (ConferenceView)
display(ConferenceMenu)

display(ConferenceInfo)

select(AcceptedPapers)

display(PaperIndexMenu)

select(Paper)
display(Paper)

select(View Document)

open()

display(PaperContent)

window2 :
Window

select(Home)
close()

display(PaperIndexView)

display(PaperIndex)

display(ConferenceView)

Figure 29: View of the Presentation Flow of the Conference Review System

28

3. Represent the presentation structure with a UML class diagram (optional).

4. Set the scenario for the interaction model, i.e. define which navigation path of the
navigation structure diagram will be modeled. A navigation path is always related to a use
case.

5. Represent the user, the windows and/or frame objects in the horizontal dimension.

6. Specify a display message for each presentation object that should be presented to the user
(in a window or frame). The parameter of the display message is the corresponding
presentation object (described in previous sections).

7. Include a select message for each user action which selects an anchor or a button. The
anchor or button names are the parameters of the message.

8. Specify a fill and a submit message for each user action, which consist of supplying data in
a query form. This form is the parameter of the message.

9. Include a message for each open and each close of a window.

10. Use “balking” to specify the period of time that a window or frame is active.

UML sequence diagrams are used to represent the presentation control flow. Note that this
representation does not include additional classes needed in the implementation, such as client
pages and server pages (Conallen, 1999). These more implementation-oriented modeling elements
can be introduced in further refinements.

7 Conclusions and Future Work

In this work we describe the design method of the UML-based Web Engineering (UWE)
approach using the running example of a conference review system. This approach focuses on a
systematic construction of the design models for a Web application using exclusively UML
notation and techniques. In particular, we use stereotypes of our UML profile for Web
applications, which is constructed according to the extension mechanisms defined by the UML.

Our methodology is built on many concepts, modeling elements and steps defined in other
methods for hypermedia and Web design, which proved to be useful to support Web
development. A comparison of hypermedia design methods is presented in (Koch, 1999).

The UWE approach differs from other methods as UWE adds precision to the notation, to the
models and to the process. Precision in the notation is obtained by the use of UML. Even more
precision in the models is obtained by the use of OCL constraints applied to the modeling
elements used in the diagrams. Precision in the process is obtained by detailed guidelines that
support the stepwise construction of the models. We also identified those steps that can be
performed in a automatic way, thus providing the basis for tool support in Web development.

Our future work focuses on the one hand on further refinement of the modeling of the dynamic
aspects of Web applications; on the other hand we aim to develop a tool that supports systematic
design modeling and allows semi-automatic generation of Web applications. We are working on
an extension of the ArgoUML case tool named ArgoUWE to support the systematic building of
the here proposed design models of Web applications. At the same time we are examining the use
of an XML publishing framework for the semi-automatic generation of Web applications from
design models. Another aspect of our present and future work is personalisation of Web
applications.

29

References

ArgoUML (2001). http://www.tigris.org

Baumeister H., Koch N.& Mandel L. (1999). Towards a UML Extension for Hypermedia Design.
Proceedings of The Unified Modeling Language Conference: Beyond the Standard
(UML´99). France R. and Rumpe B. (Eds). LNCS 1723, Springer Verlag, 614-629.

Berner S., Glinz M. & Joos S. (1999). A Classification of Stereotypes for Object-oriented
Modeling Languages. In Proceedings UML’99 – The Unified Modeling Language
Conference: Beyond the standard. France R. and Rumpe B.(Eds.).LNCS 1723. Springer
Verlag, 249-264.

Conallen J. (1999). Building Web Applications with UML. Addison-Wesley.

De Troyer O. & Leune C. (1997). WSDM: A User-centered Design Method for Web Sites.
Proceedings of the 7th International World Wide Web Conference.

Hennicker R. & Koch N. (2000). A UML-based Methodology for Hypermedia Design.
Proceedings of the Unified Modeling Language Conference, UML´2000, Evans A. and
Kent S. (Eds.). LNCS 1939, Springer Verlag, 410-424.

IEEE (1991). Standard Glossary of Software Engineering Terminology. Springer Edition.

Isakowitz T., Stohr E. & Balasubramanian P. (1995). A Methodology for the Design of
Structured Hypermedia Applications. Communications of the ACM, 8(38), 34-44.

Jacobson I., Booch G., & Rumbaugh J. (1999). The Unified Software Development Process.
Addison Wesley.

Koch N. (1999). A Comparative Study of Methods for Hypermedia Development. Technical
Report 9905, Institute of Computer Science, Ludwig-Maximilians-University Munich.

Koch N. (2001). Software Engineering for Adaptive Hypermedia Applications. PhD. Thesis.
FAST Reihe Softwaretechnik 12, Uni-Druck Verlag, Munich.

Koch N. & Mandel L. (1999) Using UML to Design Hypermedia Applications. Ludwig-
Maximilians-University Munich, Institute of Computer Science, Technical Report 9901.

Kruchten P. (1999). The Rational Unified Process: An Introduction. Addison Wesley.

Lowe D. & Hall W. (1999). Hypermedia & the Web: An Engineering Approach. John Wiley &
Sons.

Pinheiro da Silva P., Paton N.: UMLi: The Unified Modeling Language for Interactive
Applications. In Proceedings «UML» 2000, Evans, A., Kent, S. (Eds), LNCS, Vol. 1939.
Springer-Verlag (2000) 117-132.

Preece J., Rogers H., Benyon D., Holland S., Carey T.: Human-Computer Interaction. Addison
Wesley (1994).

Rossi G., Schwabe D., & Lyardet F. (2000). Web Applications Models are More than Conceptual
Models. Web Engineering Workshop at WWWCM´99.

Sano D.: Lare-Scale Web Sites – A Visual Design Methodology. Wiley Computer Publishing
(1996).

30

Schneider G. & Winters J. (1998). Applying Use Cases: A Practical Guide. Addison-Wesley,
Object Technology Series.

Schneiderman B. (1998). Designing the User Interface: Strategies for effective Human-Computer
Interaction. Addison Wesley.

Schwabe D. & Rossi G. (1998). Developing Hypermedia applications using OOHDM.
Proceedings of Workshop on Hypermedia development Process, Methods and Models,
Hypertext´98.

Selic B. (1999). Using UML in the Real-Time Domain. Communications of the ACM, 42 (10),
46-54.

UML Version 1.4 (2001). Unified Modeling Language. The Object Management Group.
http://www.omg.org

Warmer J. & Kleppe A. (1999). The Object Constraint Language. Addison Wesley.

