
GENERATION OF WEB APPLICATIONS FROM UML MODELS USING
AN XML PUBLISHING FRAMEWORK

Andreas Kraus, Nora Koch

Institute of Computer Science

Ludwig-Maximilians University of Munich
{krausa,kochn}@informatik.uni-muenchen.de

ABSTRACT

In this paper we present a method for the
semiautomatic transition from the design models of a Web
application to a running implementation. The design phase
consists of constructing a set of UML models such as the
conceptual model, the navigation model and the
presentation model. We use the UML extension
mechanisms, i.e. stereotypes, tagged values and OCL
constraints, thereby defining a UML Profile for the Web
application domain. We show how these design models
can automatically be mapped to XML documents with a
structure conforming to their respective XML Schema
definitions. Further on we demonstrate techniques how
XML documents for the conceptual model are
automatically mapped to conceptual DOM objects
(Document Object Model). DOM objects corresponding
to interactional objects are automatically derived from
conceptual DOM objects and/or other interactional DOM
objects. The XSLT mechanism serves to transform the
logical presentation objects representing the user interface
to physical presentation objects, e.g. HTML or WAP
pages. Finally we present a production system architecture
for Web applications using the XML publishing
framework Cocoon which provides a very flexible way to
generate documents comprising XSLT and XSP
(eXtensible server pages) processors.

INTRODUCTION

Software Engineering for Web applications is
already supported by a variety of software tools. The so
called Model-Build-Deploy-Platforms such as for
example Together Control Center or Rational Rose
support the development process of Web applications
relying on the UML as modeling language. The term Web
application here is based on the J2EE specification for
enterprise applications where Web applications have a
three or four tier architecture and are deployed and
executed within an application server. These tools are
capable of deploying a Web application directly to an
application server.

Although these tools claim to support the whole
development process, they offer no much help for

modeling the specialties of Web applications because they
only include low level implementation elements like
Servlets, Java Server Pages or HTML pages as Web
modeling elements. More abstract modeling elements for
navigation, presentation and user interaction are missing.
Therefore, the user needs a method for Web applications
with specific modeling elements and an adequate tool
support ranging from the Web application design to the
implementation.

Many methodologies for Web applications have
been proposed since the middle of the nineties. An
excellent overview is presented in Schwabe (2001) where
the most relevant methods, such as OO-HMethod
(Cachero et al.), WebML (Ceri et al.), OOHDM (Rossi et
al.), UWE (Hennicker et al.) and WSDM (De Troyer et.
al.) are described on the basis of a same case study. Only
some of them support automatic generation of Web
applications. Until now these methods mainly focused on
the design phase; so does our UML-based Web
Engineering approach (UWE).

 UWE proposes an UML extension – a so called
UML profile – and a systematic design method for Web
applications (Koch, 2001). It supports user modeling and
adaptivity, i.e. dynamic adaptation of the Web application
to the user preferences, knowledge or tasks. Here we limit
the use of UWE to non-adaptive applications.

In this paper we extend UWE to include task
modeling and an innovative method for the semiautomatic
generation of an implementation using XML technologies.

The main aspects of the UWE approach as presented
here are:
• the use of a standard notation, i.e. UML through all

the models,
• the precise definition of the method, i.e. the

description of detailed guidelines to follow in the
construction of the models,

• the specification of constraints, i.e. augmenting the
precision of the models,

• the definition of a stable production system
architecture for Web applications,

• the use of an XML publishing framework for
implementing Web applications,

• the semiautomatic implementation generated from
UML models.
This paper is organized as follows: Section two

presents an overview of the UWE development process
for Web applications focusing on generation activities.
Section three gives a brief description of the design
methodology proposed by UWE. Section four introduces
the production system architecture. Section five presents
the semi-automatic generation process of Web
applications. Finally, in the last section some conclusions
and future work are outlined.

UWE PROCESS OVERVIEW

The UML-based Web Engineering (UWE) approach
presented by Koch (2001) and extended in this paper
supports Web application development with special focus
on personalization and systematization. It is an object-
oriented, iterative and incremental approach based on the
Unified Software Development Process (Jacobson et al.,
1999). UWE covers the whole life-cycle of Web
applications focusing on design and automatic generation.
The notation used for design is a “lightweight” UML
profile developed in previous works (Baumeister et al.,
1999, Hennicker et al., 2000, and Koch et al., 2001). A
UML profile is a UML extension based on the extension
mechanisms defined by the UML itself. This profile
includes stereotypes defined for the modeling of
navigation and presentation aspects of Web applications.
The UWE methodology provides guidelines for the
systematic and stepwise construction of models which
precision can be augmented by the definition of
constraints in the Object Constraint Language (OCL).

The modeling activities are the requirements analysis,
conceptual, navigation and presentation design. In this
work task modeling is included to model the dynamic
aspects of the application. Currently, an extension of the
ArgoUML tool is being implemented to support the
construction of the UWE design models. We focus on the
semiautomatic generation of Web applications from
models using an XML publishing framework. Figure 1
shows an UML class diagram that represents the UWE
process overview in a generic way including all models
that are built when developing Web applications with an
XML publishing framework. We call this approach
UWEXML

Artifacts within the development process are
depicted as UML packages. The «trace» dependencies
describe which artifacts are historical ancestors of each
other. The process starts with analysis and design models
created by the user in an editor. The design models are
transformed by the UWEXML Preprocessor into XML
representations which are fed – together with XML
documents containing parameters for the generation
process – into the UWEXML Generator. The generator
generates on the one hand artifacts which can directly be

deployed, denoted by the «import» dependency. On the
other hand some of the generated artifacts have to be
adapted before deployment, denoted by the «refine»
dependency. In this process we consider deployment to an
application server providing a physical component model
and to an XML publishing framework

���������	
����������

� � � � � �� �
� ���
����

� � � � � ��
�
�����

�� � ��� �������
��
� � � � �� � � ���� ���� ��!
" ��#

��
�� � � �

�� ����

� � � � �	
� �

���� � � � �
	
�� �

�
� �� � � � �
�

��
�� �� � � 	
�
� 	 �

� � �

� � � � � 	
�

���� � 	
�� � �� � � � �

� �� � � � �

���� �� � � 	
�
� 	

�
� �� � � � �
�

��
�� �� � � 	
�
� 	 �

� � �

� � � � � 	
�

���� � 	
�� � �� � � � �

� �� � � � �

��
�� � � ��

� � �

� � � � � 	
�

��
� � �� � �
� �

� � �

� � � � � 	
�

���� � � �� � � � �

� � � �

���� 	 � � �
� � ��

� � � �

���� � � � �
� 	 �

� � � �

���� �� � � 	
�
� 	 �

� � � �

�� �! � � " �

� � � �

#
�� � � $

#
�� � � $ #
�� � � $

#
�� � � $

#
�� � � $

#�� %�	 � $ #�� %�	 � $ #�� � �
�$ #�� � �
�$

Fig. 1 UWEXML Process Overview

SYSTEMATIC UML-BASED DESIGN OF WEB
APPLICATIONS

As a running example to illustrate the generation of
a Web application from UML models using an XML
publishing framework, the Web site of an online library is
used (Koch, 2001). This Online Library application offers
users information about journals, books and proceedings.
These publications are described by a title, a publisher, a
publishing date, a set of articles and authors for each
article. In addition, a set of keywords is associated to each
article and publication.

In the following we describe the UWE steps for
developing a design model consisting of a conceptual
model, a navigation model, a presentation model and a
task model.

Conceptual modeling. UWE (as a UML-based
approach) proposes use cases for capturing the
requirements. Conceptual modeling is based on these use
cases; a conceptual model includes the objects involved in
the typical activities users will perform with the
application. The conceptual design aims to build a
conceptual model, which attempts to ignore as many of
the navigation paths, presentation and interaction aspects
as possible. These aspects are postponed to the steps of
the navigation and presentation modeling. The main UML
modeling elements used in the conceptual model are:
class, association and package. These are represented
graphically using the UML notation (Jacobson et al.,
1999). Figure 2 shows the conceptual model for the
Online Library example; for corresponding use cases see
(Koch 2001).

Navigation modeling. Navigation modeling

activities comprise the specification of which objects can
be visited by navigation through the Web application and
how these objects can be reached through access
structures. UWE proposes a set of guidelines and semi-
automatic mechanisms for modeling the navigation of an
application (Hennicker et al., 2000). Figure 3 shows the
navigation model for the Online Library application.

Publisher
name: String
address: String...

Publication

title: String
date: Date...

Author

name: String
e-mail: String
picture: Image...

Article

title: String
abstract: String
complete: URL

Library

name: String
address: String

*

1

*

1

1..*

1 ..*

1..*

*
1..*

Keyword

word: String
...

1..*

1 ..*

1..*

1..*

keywords

articles

articlesauthors

authors

publication

publications
publications

publications

library

libraries

publisher

publishers

has

has

writes

has

contacts

publishes

contains

deletePublication()

Publisher
name: String
address: String...

Publication

title: String
date: Date...

Author

name: String
e-mail: String
picture: Image...

Article

title: String
abstract: String
complete: URL

Library

name: String
address: String

*

1

*

1

1..*

1 ..*

1..*1..1..*

*
1..*1..*

Keyword

word: String
...

1..*

1 ..*

1..*

1..*

keywords

articles

articlesauthors

authors

publication

publications
publications

publications

library

libraries

publisher

publishers

has

has

writes

has

contacts

publishes

contains

deletePublication()

Fig. 2 Conceptual Model of the Online Library Application

visited
articles

?

ArticleByTitleByAuthor
ByPublication

ArticleByTitle
ByPublication

AuthorByName
ByPublication

Search
ArticleByTitle

publications

authors

AuthorByName

Publication by Title

searchArticles

1..*

1..*

1..*

1..*

1..*

1..*

searchAuthors

Search
AuthorByName

?
SearchVisited
ArticleByTitle

searchVisitedArticles

?

articles

Article
ByTitle

news

NewArticle
ByTitle

1..*

Library Menu

articles
authors

PublicationMenu

articles

AuthorMenu

VisitedArticle
ByTitle

«navigation class»

Library

name: String
address: String
...

Article

title: String
abstract: String

/keywords: Set(String)
complete: URL

«navigation class»

Author

name: String
e-mail: String
picture: Image
...

«navigation class»

inv: /publisher =
self. ConceptualModel::
publication.publisher.name

Publication

title: String
/publisher: String
/keywords: Set (String)

«navigation class»

deletePublication()

Fig. 3 Navigation Model of the Online Library Application

The main modeling elements are the stereotyped

class «navigation class» and the stereotyped association
«direct navigability». These are the pendant to page
(node) and link in the Web terminology.

The access elements defined by UWE are indexes,
guided tours, queries and menus. The stereotyped classes
for the access elements are «index», «guided tour»,
«query» and «menu. All modeling elements and their
corresponding stereotypes and associated icons are
defined in Baumeister et al. (1999).

Note that only those classes of the conceptual model
that are relevant for navigation, are included in the
navigation model. Although information of the omitted
classes may be kept as attributes of other navigation
classes (e.g. the newly introduced attribute publisher of
the navigation class Publication), OCL Constraints are
used to express the relationship between conceptual
classes and navigation classes or attributes of navigation
classes.

Presentation modeling. The presentation modeling

describes where and how navigation objects and access
primitives will be presented to the user. Presentation
design supports the transformation of the navigation
structure model in a set of models that show the static
location of the objects visible to the user, i.e. a schematic
representation of these objects (sketches of the pages).
The production of sketches of this kind is often helpful in
early discussions with the customer.

UWE proposes a set of stereotyped modeling
elements to describe the abstract user interface, such as
«text», «form», «button», «image», «audio», «anchor»,
«collection» and «anchored collection». The classes
«collection» and «anchored collection» provide a
convenient representation of frequently used composites.
Anchor and form are the basic interactive elements. An
anchor is always associated with a link for navigation.
Through a form a user interacts with the Web application
supplying information and triggering a submission event.
(Baumeister et al., 1999). Figure 4 depicts the presentation
sketch of a publication.

Title Date

Publication

Complete
Publication

Authors
...

Articles

...
Keywords

«presentation class»

Title Date

Publication

Complete
Publication

Authors
.......

Articles

...

....
Keywords

«presentation class»

Fig. 4 Sketch of a Publication of the Online Library

Task modeling. To allow automatic generation of a
Web application out of a set of models, task design is
needed in addition to the already presented design
activities. Task modeling builds on the use case model.
Different UML notations are proposed for task modeling.
Wisdom is an UML extension that proposes the use of a
set of stereotyped classes that make the notation not very
intuitive (Nunes et al., 2000). Markopoulus (2000, 2002)
makes two different proposals: an UML extension of use
cases and another one based on statecharts and activity
diagrams. Based on the latter, we use the stereotyped
UML dependency «refine» between activities and activity
diagrams to indicate a finer degree of abstraction. We also
choose a vertical distribution from coarse to fine grained
activities to represent a task hierarchy similar to the
ConcurTaskTrees of Paternó (2000). Figure 5 shows a
task model for the Delete publication task. The directed
dashed lines express the flow of conceptual and
presentation objects during task execution. As
demonstrated at the end of section five the operation
deletePublication() of the class Library (see Figure 2) is
called during task execution.

Delete

publication

Search
publication

Confirm
deletion

not found

found

«refine»

Enter
publication name

Select publication
from list

«refine»
p:Publication

«presentation class»

pl:PublicationList

Delete
publication

Search
publication

Confirm
deletion

not found

found

«refine»

Enter
publication name

Select publication
from list

«refine»
p:Publication

«presentation class»

pl:PublicationList

Fig. 5 Task Modeling in the Online Library Application

PRODUCTION SYSTEM ARCHITECTURE

In this section we describe the production system
architecture into which the generated Web applications
will be deployed. We start by choosing a standard base
architecture which we extend by a Web framework.
Further we discuss the benefits of using an XML
publishing framework. Finally we show how to extend the
particular XML publishing framework Apache Cocoon.

Base architecture. Our production system
architecture for Web applications is based on an
application architecture for the Java 2 Platform Enterprise
Edition (J2EE). Figure 6 shows this architecture, where
we have only included the details relevant for Web
applications.

J2EE has a four tier architecture: Client, Web,
Business and Enterprise tier. Web and Business tier
together build the J2EE Server tier provided by an
application server. The Client tier contains the client side
presentation components like a Web browser. Compare to
the Client tier in the Thin Web Client architecture as
described in Conallen (1999). The Client tier is connected
to the Web tier via the HTTP protocol. The Web
Container in the Web tier is a container for Java Servlets
and Java Server Pages, the answer within the Java
Technology to Server Pages. Static pages like HTML
pages can be delivered, too, but if you rely on many static
pages the combination with a conventional high
performance HTTP server would be the better alternative.
So the Web tier performs the server side presentation
functionality. Business logic exclusively resides within
Enterprise Java Beans (EJBs). EJBs are server side
components living in an EJB Container within an
Application Server. Various complexities inherent in
enterprise applications such as transaction management,
life-cycle management and resource pooling are handled
by the EJB Container, thus reducing the complexity of
component development. The Web tier has access to these
components which encapsulate business logic, database
access and access to legacy systems. For more
information about J2EE and it’s application architecture
see J2EE Architecture.

The J2EE application architecture is a well
established standard for enterprise application
development, providing us with a powerful component
model to which the conceptual model will be mapped to.
This also enhances software reusability.

Building on the J2EE architecture there is – besides
of technology constraints – no standard method for
modeling and building Web user interfaces. To a certain
degree separation of concerns is encouraged: business
logic should reside in EJBs and Java Server Pages can be
used to separate presentation from logic.

This is the extension point for appropriate Web
frameworks that improve this situation and establish new
standards for building Web user interfaces.

A very promising approach is the Apache Struts
framework which helps to build applications with Java
Servlets and Java Server Pages based on the Model-View-
Controller (MVC) (Gamma, 1995) design paradigm,
colloquially known as Model 2. The entry point of Struts
within the J2EE architecture is a controller Servlet that
dispatches requests to appropriate handler classes. These
handlers act as adapters between Controller and Model.

Requests are then forwarded to another handler or directly
to a View, i.e. a JSP page.

While Java Server Pages (JSP) technology fulfills
the separation of output and logic, separation of content
and presentation does not hold. Content and presentation
elements are mingled in the same way as in pure HTML,
even when using Cascading Stylesheets (CSS).

User Interface

Web
Browser

Cell
Phone

Web Container

JSPs Servlets

EBJ Container

 Entity
EJBs

 Session
 EJBs

 Database Legacy
 Systems

Client

Enterprise

J2EE Server
for Web

and Business

Fig. 6 J2EE Web Application Architecture

Another approach are XML publishing frameworks
such as Cocoon (McLaughlin, 2001) which are primarily
designed for publishing XML content. Similar to Struts
the entry point is a Servlet. The publishing process is done
by applying eXtensible stylesheets (XSL) to the XML
content thereby transforming it for the presentation for
different output media. An XML publishing framework
has the inherent quality of strict separation of content and
presentation. This is an important requirement when
choosing the appropriate Web framework. A Web artist
thus can handle presentation independently from the
content. Further, for one content unit distinct presentations
for different output channels like HTML, WAP pages or
PDF must be applicable.

In this paper we propose the use of the XML
publishing framework Cocoon within the J2EE
architecture for the semiautomatic generation of Web
application. For the dynamic aspects of a Web application
we have to extend the content production process making
use of the extension facilities of Cocoon.

Extension of Cocoon. The original Cocoon

publishing system engine works as follows (Apache
Cocoon): a Web request is first passed to a Producer
component which produces a DOM (Document Object
Model, see W3C) object from the request parameters that

is then passed to the Reactor. Within the Reactor the
DOM object is processed by Processor components. The
order and type of Processors is determined by the
processing instructions in the DOM object. Finally the
Formatter component is formatting the processed DOM
object to a physical format, optionally making use of
formatting objects (FO).

The framework is to a high degree customizable,
own Producer, Processor or Formatter components can
just be plugged in. The standard shipped Producer
component ProducerFromFile is producing DOM objects
from XML files mapping the request URL to file names.
This is a static process not allowing us to realize our needs
for translating dynamic aspects.

So we plug in our own ControllerProducer which is
an equivalent to the Controller component (a Servlet) in
the Struts framework, extending this way the Cocoon
framework. This Producer extends the mere Publishing
Framework by a runtime layer. It is controlling the
presentation flow, i.e. in terms of the MVC pattern
producing the View. Figure 7 depicts the flow within the
customized Cocoon publishing engine. This View is
actually an XML document which is transformed by a
nested ProducerFromFile component into a DOM object.
Further on this DOM object is processed by the XSP
(eXtensible Server Pages) Processor, thereby
communicating with the runtime layer (i.e. the Model in
terms of the MVC pattern) to fill the View with content.
Then the XSLT (eXtensible Stylesheets Language
Transformations) Processor is transforming the logical
View into a physical View. Finally the Formatter
component is formatting the physical View into the
physical output format.

SEMIAUTOMATIC GENERATION OF WEB
APPLICATIONS

As illustrated in Figure 1 (Process Overview) the
design models for a Web application are directly fed into a
generator which automatically generates an
implementation for further deployment in Cocoon.
Implementation and deployment of EJB components is
not automatically performed, this has to be done by the
component developers and system integrators. Also the
final physical presentation of pages for various output
channels still has to be performed by the web artist.
Nevertheless the generator is generating templates for
these activities.

The generator program is expecting a set of XML
documents as input describing the design models, and a
set of XML documents containing parameters for the
generation process. As interface between UML modeling
tools and the generator we use the XMI-Format, a
standardized XML format to interchange UML models. In
a preprocessing step the models described in the XMI
format are extracted and transformed into input XML

documents for the main generation process. The
advantages of using our own description format for the
models instead of using the XMI format directly are
• the generator does not depend on the XMI format,

other (even non UML) modeling tools which don’t
produce XMI format may as well be used,

• the complexity of the model description format is
reduced to a complexity supported by the generator
thereby easing the following processing steps.

� � � �

& �� '

� 	
� ��� �

� 	
� ��� �� � � � � � �

� � � � � � �(� � (���

� � � �� � � � � � �

� � � ! �� � � � � � �

(�� �

� �

� � � �

& �� '

� 	
� ��� �

� 	
� ��� �� � � � � � �

� � � � � � �(� � (���

� � � �� � � � � � �

� � � ! �� � � � � � �

(�� �

� �

Fig. 7 Flow within the customized Cocoon engine.
(Standard Cocoon components have a gray background)

The preprocessing step may as well be plugged into the
modeling tool directly, skipping transformations of the
model into intermediate formats as XMI.

In the following paragraphs we show for the Online
Library example how a XML document of the conceptual
model is transformed first to a XML document of the
navigation model and then to a XML document of the
presentation model. We thereby restrict the XML
documents to the Publication element. Further we neglect
XML namespaces and XML Schema specifications. Each
transformation step corresponds to a «trace» relation
between the design models.

Conceptual model The conceptual model in our

example is described by the following XML document
conceptual-model.xml:

<?xml version=”1.0”?>
<conceptual-model ...>
 ...
 <conceptual-class name=”Publication”>
 <attribute name=”title”
 type=”java.lang.String”/>
 <attribute name=”date”
 type=”java.lang.String”/>
 <association name=”publisher”
 to=”Publisher” mult=”1”/>
 <association name=”articles”
 to=”Article” mult=”1..*”/>

 ...
 </conceptual-class>
 ...
</conceptual-model>

Every element of the conceptual model is

represented as conceptual-class node within the
conceptual-model root node. It may contain attribute and
association definitions. Attributes have a name and a Java
type parameter, associations are always directed, the name
parameter is corresponding to the role name of the
corresponding UML association end (Parameter to). The
parameter mult is equivalent to the UML multiplicity
construct. Attributes and associations always have public
visibility and instance scope. Read only behavior can be
archived by setting the read-only parameter to “true” and
key field behavior by setting the key parameter to “true”.

Now we take a look at a typical conceptual model
instance document:

<?xml version=”1.0”?>
<conceptual-model-instance ...>
 ...
 <Publication cm-id=”cm-Publication´-1”>
 <title>Java and XML</title>
 <date>2001</date>
 <publisher>
 <link cm-ref=”cm-Publisher-1”/>
 </publisher>
 <articles>
 <link cm-ref=”cm-Article-1”/>
 <link cm-ref=”cm-Article-2”/>
 </articles>
 </Publication>
 ...
</conceptual-model-instance>

The structure of the model instance should be self

explanatory. Attribute and association name parameters in
the model description are translated to tag names. These
tags are now filled with the content, i.e. with the attribute
values of the EJB components. Former associations now
have embedded link tags, corresponding to the link UML
construct in object diagrams. The cm-ref parameter
references another conceptual model instance element
with the same value of the corresponding parameter cm-
id.

Navigation model. The navigation model in our

example is described by the following XML document
navigation-model.xml:

<?xml version=”1.0”?>
<navigation-model ...>
 ...
 <navigation-class name=”Publication”
 conceptual-class=”Publication”>
 <attribute name=”title” expr=”title”/>
 <attribute name=”date” expr=”date”/>
 <attribute name=”publisher”
 expr=”publisher.name”/>
 <attribute name=”keywords”
 expr=”Set(articles.keywords.word)”/>

 <access-primitive
 name=”PublicationsByTitle”>
 <index>
 <discriminator expr=”title”/>
 </index>
 </access-primitive>
 ...
 </navigation-class>
 ...
</navigation-model>

The coarse structure of this document is similar to

the conceptual model document. Every navigation-class
element is related to one (or none) conceptual-class
element in the conceptual model, corresponding to the
«trace» relation between these two design models. The
expr parameter of the attribute tag contains an OCL
expression fragment to derive an attribute value from the
conceptual instance values (compare with the OCL
constraint in Figure 3). Access primitives for navigation
elements are specified by the access-primitive tag
containing the concrete access primitive. In this example
an “index” access primitive on the conceptual instances
“title” attribute is specified.

Transforming the conceptual model instance produces
the following navigation model instance:

<?xml version=”1.0”?>
<navigation-model-instance ...>
 ...
 <Publication nm-id=”nm-Publication-1”>
 <title>Java and XML</title>
 <date>2001</date>
 <publisher>O’Reilly</publisher>
 <keywords>
 <word>Java</word>
 <word>XML</word>
 <word>DOM</word>
 </keywords>
 </Publication>
 ...
</navigation-model-instance>

Note how links are transformed into derived

attributes.

Logical presentation model. The presentation

model XML document presentation-model.xml is similar
to the other two documents:

<?xml version=”1.0”?>
<presentation-model ...>
 ...
 <presentation-class name=”Publication”
 navigation-class=”Publication”>
 <text name=”title” expr=”title”/>
 <text name=”date” expr=”date”/>
 <text name=”publisher” expr=”publisher”/>
 <collection name=”keywords”
 expr=”keywords”/>
 </presentation-class>
 ...
</presentation-model>

Here the stereotype names utilized in the
corresponding presentation design model are used as tag
names to specify presentation elements. Again the relation
to the navigation model document is established by a
navigation in the OCL expression fragment in the expr
parameter of the presentation elements.

Finally, by transforming the navigation model
instance we get the presentation model instance (the
structure should be self explicatory):

<?xml version=”1.0”?>
<presentation-model-instance ...>
 ...
 <Publication pm-id=”pm-Publication-1”>
 <text name=”title”>Java and XML</text>
 <text name=”date”>2001</text>
 <text name=”publisher”>O’Reilly</text>
 <collection name=”keywords”>
 <coll-item>Java</coll-item>
 <coll-item>XML</coll-item>
 <coll-item>DOM</coll-item>
 </collection>
 </Publication>
 ...
</presentation-model-instance>

Generating the logical presentation documents.

So far we showed how to map the conceptual objects to a
conceptual-model-instance XML document. This
document was first transformed to the navigation-model-
instance document and then, finally to the presentation-
model-instance document. Now we can generate a
presentation document for each presentation class in the
presentation model; see the XML Publishing Framework
part in Figure 1. This is demonstrated in the following
listing showing the presentation document
Publication.xml. Although this looks rather complicated
the basic idea is very simple and explained below.

<?xml version=”1.0”?>
<?cocoon-process type=”xsp”?>
<?cocoon-process type=”xinclude”?>
<?cocoon-process type=”xslt”?>
<?xml-stylesheet href=”Publication.xsl”
 type=”text/xsl”?>

<xsp:page language=”java” ...>
 <page>
 <xsp:logic>...</xsp:logic>
 <include xinclude:parse="xml">
 <xsp:attribute name=”xinclude:href”>
 presentation-model-instance.xml \
 #xpointer(//Publication[@pm-id=' \
 <xsp:expr>pm_id</xsp:expr>'])
 </xsp:attribute>
 </include>
 </page>
</xsp:page>

The document is sequentially processed by three

Cocoon processors:
First the eXtensible Server Page (XSP) processor is

performing some logic (omitted), i.e. communicating with

the runtime layer and determining which Publication
presentation object has actually to be presented. The
pm_id expression inside the xsp:expr tag evaluates to the
pm-id attribute of this presentation object. By using the
xsp:attribute tag the attribute xinclude:href for the next
processing step is thereby constructed.

Second then xinclude processor is including the
corresponding presentation node from the presentation-
model-instance document using an XPointer (see W3C)
expression.

Third the XSLT processor is transforming the logical
presentation to the physical presentation, see the following
sections.

Optimizations. Until now our storage layer for the

conceptual objects view consists just of a XML document,
or: a DOM object, depending on the implementation. We
retrieve the presentation DOM object by applying a
sequence of transformations. While this works well as
proof of concept, for a production system solution we
need some optimizations because every time the
conceptual objects (i.e. EJB components) are changing the
conceptual DOM object has to be changed. Afterwards the
transformation sequence has to be performed again. The
situation is even worse because we don’t know when and
which conceptual objects have changed because we don’t
want to force a Observer pattern (Gamma, 1995) on every
conceptual object just for presentation reasons. In
conclusion the conceptual DOM object has to be recreated
on every request.

The solution is to perform the sequence of
transformations in the model layer thereby generating
code for the dynamic lookup of the components attributes
and associations. As example consider the following XSP
page. This page together with the corresponding stylesheet
will automatically be precompiled and cached by the
Cocoon engine. Note that the resulting content of this
presentation document is the same as without optimization
so that the stylesheet introduced in the next paragraph will
be the same in both cases.

<?xml version=”1.0”?>
<?cocoon-process type=”xsp”?>
<?cocoon-process type=”xslt”?>
<?xml-stylesheet href=”Publication.xsl”
 type=”text/xsl”?>

<xsp:page language=”java” ...>
 <page>
 <xsp:logic>...</xsp:logic>
 <Publication ...>
 <text name=”title”>
 <xsp:expr>title</xsp:expr>
 </text>
 ...
 <collection name=”keywords”>
 <xsp:logic>
 for(Iterator i = keywords.iterator();
 i.hasNext();) {
 <xsp:content>

 <coll-item>
 <xsp:expr>
 ((Keyword)i.next()).getWord()
 </xsp:expr>
 </coll-item>
 </xsp:content>
 }
 </xsp:logic>
 </collection>
 </Publication>
 </page>
</xsp:page>

Generating stylesheets for the physical

presentation. As already mentioned the transformation
from the logical to the physical presentation is realized
through application of an XSL stylesheet by the XSLT
processor within Cocoon. The generator generates a basic
stylesheet which has to be adjusted to the desired layout
by the Web artist; see the XML Publishing Framework
part in Figure 1. The corresponding XML Schema for the
logical presentation determines the possible
transformations. A deeper introduction in XSL which is
based on XPath (see W3C for the specification) is out of
scope of this paper. In the following listing we give you
an example for a very simple stylesheet Publication.xsl
for the physical presentation of the Publication element.

<?xml version=”1.0”?>
<xsl:stylesheet ...>
 <xsl:template match=”page”>
 <xsl:processing-instruction
 name=”cocoon-format” type=”text/html”/>
 <html>
 <head><title>Publication</title></head>
 <body>
 <h1>Publication</h1>
 <table>
 <tr>
 <td>Title:</td>
 <td><xsl:value-of
select=”Publication/text[@name=’title’]”</td>
 </tr>
 <tr>
 <td>Date:</td>
 <td><xsl:value-of
select=”Publication/text[@name=’date’]”</td>
 </tr>
 <tr>
 <td>Publisher:</td>
 <td><xsl:value-of
select=”Publication/text[@name=’publisher’]”
 </td>
 </tr>
 <tr>
 <td>Keywords:</td>
 <td>
 <xsl:for-each select=”Publication/
 collection[@name=’keywords’]/
 coll-item”>
 <xsl:value-of select=”text()”/>
 <xsl:text> </xsl:text>
 </xsl:for-each>
 </td>
 </tr>
 </table>
 </body>

 </html>
 </xsl:template>
</xsl:stylesheet>

Note the processing instruction in this stylesheet which

selects the HTML Formatter component for the following
formatting process.

Supporting different presentation media. When

the Web application has to support different presentation
media such as Web browsers or WAP devices you profit
by using a XML publishing framework instead of server
page technologies like Java Server Pages. Because of the
mingling of presentation and presentation logic – in the
best case – one has to duplicate pages and modify the
contained presentation logic for every presentation media.
Using Cocoon there is only one set of these server pages
but you can assign different stylesheets for different
presentation media including distinguishing between
browser types, see the listing below.

<?xml version=”1.0”?>
...
<?cocoon-process type=”xslt”?>
<?xml-stylesheet href=”Publication-html.xsl”
 type=”text/xsl”?>
<?xml-stylesheet href=”Publication-wap.xsl”
 type=”text/xsl” media=wap?>
...

The set of different presentation media to be supported

is supplied as parameter to the generation process. A
stylesheet is generated for each presentation media.

Mapping task models. The task model is also

mapped to an XML document which is not included here.
Within the activity diagrams of task models we allow only
activity states and no action states, we call them task
activities. Task execution is performed within the runtime
layer basing on the one hand on the task description in the
XML document and on the other hand on user defined
classes for performing activities on conceptual objects.

We sketch some ideas of task execution within the
runtime layer:
• Task hierarchy composition and decomposition is

done automatically.
• For each session the task execution state is stored.
• The task activity which is the lowest one in the active

task hierarchy path is the active task activity which
will be executed in one user interaction step.

• When a task activity has an incoming presentation
object flow associated to it then this presentation
object is displayed. If this presentation object does
not contain an input form task execution terminates,
otherwise task execution is suspended until the user
submits the input form.

• When there is any conceptual object flow the execute
method of a user task class is invoked. A template for

this class is generated which has to be filled by the
task developer. The signature of the method execute
is determined by the ingoing and outgoing object
flow for the corresponding activity in the task model.
The corresponding objects are passed as parameters.
Such a class for the task activity Confirm Deletion in
Figure 5 may look like this:

public class ConfirmDeletion implements
 TaskActivity
{
 public void execute(Publication p);
 {
 ...
 p.getLibrary().deletePublication(p);
 ...
 }
}

CONCLUSIONS AND FUTURE WORK

In this work we showed how to semiautomatically
generate implementations for Web applications from
UML design models using an XML publishing
framework. We first presented the design activities of the
UML based Web Engineering approach (UWE) thereby
extending it by introducing task modeling which plays an
important role within the interactional modeling. Then we
presented a standardized, stable and scaleable production
system architecture including a component model for use
in the generated implementation. We showed how to plug
the XML publishing framework Cocoon into this
architecture and how to extends Cocoon to fit our needs.
Then we demonstrated the generation process.

The next step is to complete the ArgoUML/UWE
tool that is currently built to support the semiautomatic
transition from design models to a running
implementation of Web applications as proposed. There
are many open issues, which still need to be addressed in
Web engineering. This includes for example task
modeling combined with user modeling, semi-automatic
implementation of adaptive applications, handling
complex presentation structures with windows and
framesets. These open issues will be topics for future
works.

REFERENCES

ArgoUML. http://www.tigris.org.
Apache Cocoon XML Publishing Framework,

http://xml.apache.org/cocoon/index.html.
Apache Struts Project, http://jakarta.apache.org/struts
Baumeister H., Koch N., Mandel L., 1999, “Towards a

UML Extension for Hypermedia Design”, Proceedings of
The Unified Modeling Language Conference: Beyond the

Standard (UML´1999), France R. and Rumpe B. (Eds),
LNCS 1723, Springer Verlag, 614-629.

Conallen J., 1999, “Building Web Applications with
UML”, Addison Wesley.

Gamma E., Helm R., Johnson R., Vlissides J., 1995,
“Design Patterns”, Addison Wesley.

Hennicker R., Koch N., 2000, “A UML-based
Methodology for Hypermedia Design”, Proceedings of
the Unified Modeling Language Conference, UML´2000,
Evans A. and Kent S. (Eds.). LNCS 1939, Springer
Verlag, 410-424.

Jacobson I., Booch G., Rumbaugh J., 1999, “The
Unified Software Development Process”, Addison
Wesley.

J2EE, Java 2 Enterprise Edition, http://java.sun.com/
j2ee.

McLaughlin B., 2001, “Java & XML”, O’Reilly
Publishing Company.

Kamm C., Reine F., Wördehoff H., 2001,
“Basisarchitektur E-Business”, Workshop E-Business,
Informatik 2001, Wien.

Koch N., 2001, “Software Engineering for Adaptive
Hypermedia Applications”, PhD. Thesis, Reihe
Softwaretechnik 12, Uni-Druck Publishing Company,
Munich.

Koch N., Kraus A., Hennicker R., 2001, “The
Authoring Process of the UML-based Web Engineering
Approach”, First International Workshop on Web-
Oriented Software Technology, Valencia/Spain.

Markopoulos P., 2000, “Supporting Interaction Design
with UML, Task Modelling” , TUPIS’2000 Workshop at
the UML'2000.

Markopoulos P., 2002, “Modelling User Tasks with
the Unified Modelling Language”, to appear.

Nunes J. N., Cunha J. F., 2000, “Towards a UML
Profile for Interaction Design: The Wisdom approach”,
Proceedings of the Unified Modeling Language
Conference, UML´2000, Evans A. and Kent S. (Eds.).
LNCS 1939, Springer Publishing Company, 100-116.

Paternò F., 2000, “ConcurTaskTrees and UML: how
to marry them?”, TUPIS’2000 Workshop at the
UML'2000.

Rational Rose, http://www.rational.com/products/rose
Schwabe D., 2001, “A Conference Review System.”,

1st Workshop on Web-oriented Software Technology,
Valencia, to appear and http://www.dsic.upv.es/~west
2001/iwwost01.

Together Control Center, http://www.togethersoft.com
W3C, The World Wide Web Consortium,

http://www.w3c.org.

