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Abstract. Architecture-based approaches have been promoted as a means
of controlling the complexity of system construction and evolution, in
particular for providing systems with the agility required to operate in
turbulent environments and to adapt very quickly to changes in the en-
terprise world. Recent technological advances in communication and dis-
tribution have made mobility an additional factor of complexity, one for
which current architectural concepts and techniques can be hardly used.
The AGILE project is developing an architectural approach in which mo-
bility aspects can be modelled explicitly and mapped on the distribution
and communication topology made available at physical levels. The whole
approach is developed over a uniform mathematical framework based on
graph-oriented techniques that support sound methodological principles,
formal analysis, and refinement. This paper describes the AGILE project
and some of the results gained during the first project year.

1 Introduction

Architecture-based approaches have been promoted as a means of controlling
the complexity of system construction and evolution, in particular for providing
systems with the agility that is required to operate in turbulent environments
and to adapt very quickly to new business requirements, new design technologies,
or even to changes in the enterprise world which, like mergers and acquisitions,
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require new levels of openness and interoperability. However, the architectural
approach offers only a “logical” view of change; it does not take into account
the properties of the “physical” distribution topology of locations and commu-
nication links. It relies on the fact that the individual components can perform
the computations that are required to ensure the functionalities specified for
their services at the locations in which they are placed, and that the coordina-
tion mechanisms put in place through connectors can be made effective across
the “wires” that link components in the underlying communication network.
Whereas the mobility of computations is a problem that we are becoming to
know how to address in the field of “Global Computation”, the effects of mo-
bility on coordination are only now being recognised as an additional factor of
complexity, one for which current architectural concepts and techniques are not
prepared for. As components move across a network, the properties of the wires
through which their coordination has to take place change as well, which might
make the connectors in place ineffective and require that they be replaced with
ones that are compatible with the new topology of distribution. In addition,
updates on the communication infrastructure will lead, quite likely, to revisions
of the coordination mechanisms in place, for instance to optimise performance.

The AGILE project aims to contribute to the engineering of Global Compu-
tation and Coordination Systems. It is funded by EU initiative on “Global Com-
puting”. The partners of the AGILE project are Ludwig-Maximilians-Universität
München, Università di Pisa, Università di Firenze, Istituto di Scienze e Tec-
nologie dell’Informazione “A. Faedo” CNR Pisa, ATX Software SA, Faculdade
de Ciências da Universidade de Lisboa, and more recently the University of
Warsaw and the University of Leicester.

The objective of AGILE is to develop an architectural approach in which
mobility aspects can be modelled explicitly as part of the application domain
and mapped to the distribution and communication topology made available
at physical levels. The whole approach is developed over a uniform mathemati-
cal framework based on graph-oriented techniques that support sound method-
ological principles, formal analysis, and refinement across levels of development.
Application areas of AGILE include E-Business, Telecommunications, Wireless
Applications, Traffic Control Systems and decision support systems which need
to collect global information.

More precisely, AGILE pursues the following three main research topics:

– The development of primitives for explicitly addressing mobility within ar-
chitectural models. This work is based on CommUnity and its categorical
framework [17, 16] supporting software architectures on the basis of the sep-
aration between “computation” and “coordination” with an additional di-
mension for “distribution”. Consequently, primitives for the third dimension
of “mobility”, are developed with which the distribution topology can be
explicitly modelled and refined across different levels of abstraction.

– The definition of algebraic models for the underlying evolution processes,
relating the reconfiguration of the coordination structure and the mobility
of components across the distribution topology. This work is based on graph
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transformation techniques [7] and Tile Logic [18], and is also the basis for
logical analysis of evolution properties as well as for tools for animation and
early prototyping.

– The development of an extension of UML for mobility that makes the ar-
chitectural primitives available to practitioners, together with tools for sup-
porting animation and early prototyping.

The following main aspects are pursued in all three research topics:

– analysis techniques for supporting compositional verification of properties
addressing evolution of computation, coordination and distribution, and

– refinement techniques for relating logical modelling levels with the distribu-
tion and communication topology available at physical levels

In this paper we give an introduction to the approach of the AGILE project
and present some of the results gained during the first project year. In particular,
we present extensions of three well-known formalisms to mobility: extensions of
CommUnity, of UML, and of Graph Transformation Systems. We also introduce
an extension of Klaim, an experimental kernel programming language specifi-
cally designed to model and to program distributed concurrent applications with
code mobility.

In the developed extension of CommUnity, primitives were added to Comm-
Unity that support the design of components that can perform computations in
different locations and be interconnected to other components over a distributed
and mobile network. Patterns of distribution and mobility of components (or
groups of components) can be explicitly represented in architectures through
a primitive called distribution connector. These patterns include coordination
patterns that are location-dependent or even involve the management of the
location of the coordinated parties. The semantics of the architectural aspects of
this extension were developed over the categorical formalisation already adopted
for CommUnity.

The extensions of UML cover class diagrams, sequence diagrams, and activity
diagrams. The idea for all of these extensions is similar to the idea of ambients
or Maude, in that a mobile object can migrate from one host to another and
it can be a host for other mobile objects. It may interact with other objects.
Like a place, a mobile object can host other mobile objects, and it can locally
communicate and receive messages from objects at other places. Objects can be
arbitrarily nested, generalising the limited place-agent nesting of most agent and
place languages.

Graph Transformations Systems are used to give an operational semantics to
the UML extensions. Object diagrams and the actions of activity diagrams are
represented using Typed Hyperedge Replacement Systems. Each action of an ac-
tivity diagram is modelled by a unique graph transformation rule. We can show
that under suitable assumptions a set of graph transformation rules implements
correctly the dependencies in an activity diagram. In case stronger synchronisa-
tion is necessary, we use a specialisation of the tile model: Synchronised Typed
Hyperedge Replacement Systems.
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As for Klaim, although designed for dealing with mobility of processes lo-
cated over different sites of local area networks, it lacked specific primitives
for properly handling open systems, namely systems with dynamically evolving
structures where new nodes can get connected or existing nodes can disconnect.
In the paper we present OpenKlaim, an extension of Klaim with constructs
for explicitly modeling connectivity between network nodes and for handling
changes in the network topology.

The paper is organised as follows. The next section introduces the airport
case study, which serves as a running example for the material in the following
sections. Section 3 presents our UML extensions for modelling mobile systems.
Next, in Sect. 4 we present our research on the structural aspects of the architec-
tural approach. The starting point for this research are CommUnity (Sect. 4.1)
and Klaim (Sect. 4.2). Section 5 presents the way graph transformation and its
synchronised version (which is a specific instance of the Tile Mode) can be used
for the specification of a fragment of the airport case study. Finally, in Sect. 6 a
conclusion and an outlook to future work is presented.

2 The Airport Case Study

As an example of mobile objects we consider planes landing and taking off from
airports. These planes transport other mobile objects: passengers. In a simplified
version of this scenario, departing passengers check in and board the plane. After
the plane has arrived at the destination airport, passengers deplane, and claim
their luggage. We consider also actions performed by the passengers during the
flight, like the consumption of a meal, or making and publishing pictures.

Figure 1 shows these requirements as a UML use case diagram. A use case
diagram consists of use cases and actors. The identified actors are the Airport,
the Passenger and the Plane. The actor Airport starts the use cases Departure
and Arrival, which allow passengers to check in and to deplane, respectively, and
allow planes to take off and land, respectively (included use cases TakingOff and
Landing). Planes control the use case Flying.

The flow of events of a use case can either be detailed textually or graphically
using UML activity diagrams or UML sequence diagrams. The objects involved
and their classes are described by class diagrams.

Parts of this case study serve as running example for the modelling techniques
presented in the following sections.

3 UML for Global Computation

UML is extended using the extension mechanisms provided by the UML itself,
i.e. stereotypes, tagged values and OCL constrains as well as by improvements
in the visual representation used in activity and sequence diagrams.

The objective of this research is to develop an extension of the UML to sup-
port mobile and distributed system design. This includes linguistic extensions
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<<include>>

Check in

<<include>>

<<include>>

Departure Take off

Arrival Landing

Airport

PlanePassenger

Flying

Fig. 1. Use Case diagram

of the UML diagrammatic notations using the extension mechanisms provided
by the UML itself, i.e. stereotypes, tagged values, and OCL constrains, as well
as introducing new visual representations. Further, the objective includes exten-
sions of the Unified Process and a prototype for simulating and analysing the
dynamic behaviour of designs of mobile and distributed systems.

In this section, we give a UML (Unified Modeling Language) [34] specification
of the flight. The specification consists of use case diagrams, class diagrams,
activity diagrams and sequence diagrams. In the following we show only a part
of the solution; a more comprehensive solution can be found in [3, 27].

3.1 Class Diagrams

We model the simplified airport problem domain using UML class diagrams. We
identify the following classes: Airport, Plane, Flight, Passenger and Country,
where:

– Airport is an origin or destination location.
– Flight is the trip that happens along a particular route on a particular day.
– Plane is the machine that operates a flight.
– Passenger is a person who is waiting for boarding a plane at an airport, is

on a plane or has just arrived at the airport.
– Country is a place where an airport is located.

In our extension of class diagrams for mobility, we distinguish between objects
and locations which are movable and which are not (cf. [3]). Movable objects
are denoted with the UML stereotype �mobile�, and objects which can serve
as locations are indicated with the stereotype �location�. Movable objects and
locations are required to have a unique attribute atLoc whose value is the location
they are at. We require that the relation given by the atLoc attribute is acyclic.
Note that this implies that locations form a hierarchy.
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We can only move objects and locations that are movable. In our example,
Passenger and Plane are mobile objects. In addition, Plane has a location role,
the same as Airport. The problem domain is visualised as a UML class diagram
as it is shown in Fig. 2. Note that OCL constraints [34] can be attached to
modelling elements to express semantic conditions.

Plane

Country

Flight Passenger

Airport

<<mobile�location>>

<<location>>

<<location>>

<<mobile>>

type
numberOfSeats
land()
takeOff()

number
date
boardingTime
gate

name
eat()
board()
deplane()

operate

origin destination

has*

name

1

* *

1

1

**

name

* *

Luggage
<<mobile>>

1

*

Ticket

1
11

* 1

1

TakeOff is�only�
possible�when�
all�passengers
have�boarded

Fig. 2. Class diagram of the airport example

3.2 Activity Diagrams

In this section we introduce two variants of activity diagrams for modelling
mobility. These diagrams were introduced in [3]. The first variant is responsibility
centered and uses swimlanes to model who is responsible for an action. The
second is location centered and uses the notation of composite objects to visualise
the hierarchy of locations.

A typical activity of mobile objects is the change of location, i.e., the change
of the atLoc attribute. An object can move from one location to another. In
our UML extension, we distinguish these activities by representing them as a
stereotyped activity that we call �move�. (cf. 4). Not included in the example,
but not less important is the stereotyped activity called �clone� that first clones
the object to be moved afterwards.

Figure 3 shows the activity diagram corresponding to the Departure use case.
Note that the fact that the plane can only take off if the passenger boarded and
the luggage is loaded is expressed by the use of joins in the UML activity diagram.
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boards

PlaneMunich
Airport

Passenger

loads
luggage

takesOff

Airport

<<move>>

<<move>>

Fig. 3. Activity diagram of the departure scenario

Compare this with the CommUnity approach presented in Sec. 4.1. Note that
partitions marked with actor’s names are defined to organise responsibilities for
these activities. Such an activity diagram with partitions gives a responsibility-
centred view of the flow of events.

Once the objects are identified, the activity diagrams can be enhanced with
object flows, showing relationships among successive loci of control within the
interaction. Figure 4 shows such an enhanced activity diagram. The objects are
attached to the diagram at the point in the computation at which they are suit-
able as an input or produced as an output. In our example, the in-going objects
to an activity are very often the same as the outgoing. The corresponding state
of the objects is specified in the square brackets (cf. objects Plane and Passenger
in Fig. 4). This is what we call responsibility-centred view; the responsibilities
are given by swimlanes and the locations are represented indirectly by object
states.

We present here also another kind of view, the so called location-centred view,
with the goal to visualise a location directly by object box containment: states of
objects are not longer needed to represent locations. We eliminate the swimlanes
and we place the activities inside the locations. This UML extension gives a direct
presentation of the topology of locations. Figure 5 shows the Departure and the
Flight scenario.

3.3 Sequence Diagrams

In this subsection we consider again a flight from Munich to Lisbon. We specify
the flight from two different perspectives. The first perspective is the perspective
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Fig. 4. Activity diagram departure scenario: Responsibility centered view

of an observer in Munich. The second perspective refines the first one adding
several details. We use here the extension of UML sequence diagrams proposed
in [27] for modelling mobile objects. The behaviour of mobile objects is modelled
by a generalised version of lifelines which allows us to represent directly the
topology of locations within a sequence diagram. For different kinds of actions
like creating, entering or leaving a mobile object stereotyped messages are used.
This notation provides also a zoom-out, zoom-in facility allowing us to abstract
from specification details.

Figure 6 shows a simple story of a passenger x who boards an airplane in
Munich airport, flies to Lisbon and publishes a picture in a WAN. The domain
model of this sequence diagram is based on the class diagram of Fig. 2 and uses
additionally the class Network. The story is described from the perspective of
an observer on the German side. The person x together with other passengers
enters the airport and then boards the airplane A7. The airplane flies to Lis-
bon (the flight number is 99), but the only thing the observer can see is that
the airplane is airborne, but not what happens inside the airplane nor further
details of this flight. The next event which the observer is able to notice is the
appearance of a picture in the WAN. To model several passengers (i.e. objects
of class Passenger), we use the UML multi-object notation, which allows us to
present in a compact way several passengers playing the same role. Person x
is distinguished using the composition relationship. The observer does not care
about the order in which the passengers board or leave the plain and what they
do during the flight. We abstracted here also from the architecture of WAN and
the person’s position. This simple view shows some of the barriers person x has
to cross while flying from Munich to Lisbon. In the view presented in Fig 7,
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Fig. 5. Activity diagram: Location centered view

we show much more details. We show political boundaries which regulate the
movement of people and devices, like airplanes, computers and so on. Within
those boundaries, there are other boundaries like those protecting airports and
single airplanes against intruders. Only people with appropriate passports and
tickets may cross those boundaries. Therefore, in our model we make explicit
those boundaries and moving across them. The airplane A7 is a very active
mobile computing environment, full of people who are talking, working with
their laptops, calling their families, making pictures or connecting to Web via
phones/modems provided in the airplane. We can see here, what happens inside
the airplane during the flight; the jump arrow contains the action box of the
airplane A7. Passenger x makes pictures with his digital camera, the pictures
are send then to the WAN. As usual, a digital camera does not allow him to send
pictures directly to WAN. It is also forbidden to use mobile phones during the
flight. Therefore the passenger safes the pictures to his notebook nb, logs into
the onboard network and then transmits the pictures to WAN via the onboard
network. We abstract here from the structure of the WAN network (indicated by
dashed line). Let us point out that the sending of the picture by passenger x is
not temporally related to crossing any border like those of Germany, or Munich
and so on. The only thing we can say is that it happens between the start of the
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Fig. 6. Sequence diagram with mobility
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Fig. 7. Sequence diagram with mobility: zoom in

airplane and its landing. Finally, all the passengers leave the airplane and the
airport. The passenger can see that the airplane is boarded by new passengers.

3.4 Statechart diagrams

In this section we show the use UML statecharts for the design and the specifi-
cation of the dynamic behaviour of the airport system. A statechart diagram is
defined for each class of the model, providing a complete operational description
of the behaviour of all the objects of the class. The full system is then represented
by a set of class objects. The UML semantics [34, 37, 31, 38] associates to each
active object a state machine, and the possible system behaviours are defined by
the possible evolutions of these communicating state machines. All the possible
system evolutions can be formally represented as a bi-labelled transition system
in which the states represent the various system configurations and the edges
the possible evolutions of a system configuration. The topology of the system
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is modelled by an atLoc attribute, associated to each class, which represents
its locality. Mobility is realized by all the operations which update the atLoc
attribute of an object (the �move� operations).

The verification of the system is done with a prototypal “on-the-fly” model
checker (UMC) (cf. [20]) for UML statecharts. On-the-fly verification means
intuitively that, when the model checker has to verify the validity of a certain
temporal logic formula on one state, it tries to give an answer by observing the
internal state properties (e.g. the values of its attributes) and than by checking
recursively the validity of the necessary subformulas on the necessary next states.
In this way (depending on the formula) only a fragment of the overall state space
might need to be generated and analysed to be able to produce the correct result
(cf. [5, 14]). The logic supported by UMC, µACTL+ (cf. [20]) is an extension
of the temporal logic µACTL, (cf. [13]) which has the full power of µ-calculus
(cf. [28]). This logic allows both to specify the basic properties that a state should
satisfy, and to combine these basic predicates with advanced logic or temporal
operators. More precisely the syntax of µACTL+ is given by the following syntax
where the χ formulae represent evolution predicates over, signal events sent to
a target object (here square parenthesis are used to denote optional parts):

χ ::= true | [target.]event[(args)] | ¬χ | χ ∧ χ
φ ::= true | φ ∧ φ | ¬φ | assert(VAR = value) |EXτφ | EXχφ |EFφ | µY.φ(Y ) | Y

∗

where Y ranges over a set of variables, state formulae are ranged over by φ, EXχ
is the indexed existential next operator and EF is the eventually operator.

Several useful derived modalities can be defined, starting from the basic ones.
In particular, we will write AGφ for ¬EF¬φ, and νY.φ(Y ) for ¬µY.¬φ(¬Y ); ν
is called the maximal fixpoint operator.

The formal semantic of µACTL+ is given over bi-labelled transition sys-
tems. Informally, a formula is true on an LTS, if the sequence of actions of the
LTS verifies what the formula states. We hence say that the basic predicate
assert(VAR = value) is true if and only if in the current configuration the at-
tribute VAR has value equal to value. The formula EXχφ holds if there is a
successor of the current configuration which is reachable with an action satisfy-
ing χ and in which the formula φ holds. The formula AGφ, illustrates the use
of the ”forall” temporal operator and holds if and only if the formula φ holds in
all the configurations reachable from the current state.

Following the above syntax we will write using µACTL+ formulae such as:

EX {Chart.my event} true

that means: in the current configuration the system can perform an evolution in
which a state machine sends the signal myevent to the state machine Chart. Or
the formula:

AG ((EX {my event} true)→ assert(object.attribute = v))

meaning that the signal myevent can be sent, only when the object attribute
has value v.
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Coming back to the airport example, let us consider an extremely simplified
version of the system composed of two airports, two passengers (one at each
airport), and one plane. The plane is supposed to carry exactly one passenger
and flies (if it has passengers) between the two airports. Departing passengers
try to check in at the airport and than board the plane. We contemplate only
one observable action performed by the passengers during the flight, namely
the consumption of a meal. The complete dynamic behaviour of the objects of
classes Passenger, Airport and Plane, is shown in Fig. 8 and Fig. 9, in the form
of statecharts diagrams.

created

- [MyPlane /= null]
landing_request(P) / 
  P.landing_delayed

checkin(D,T)  [D=MyLink ] /
   T.checkin_ok;
   MyPlane.allow_boarding(T,D)

HANDLING
BOARDING

landing_request(P) / 
  P.landing_delayed

   checkin(D,T) / 
      T.checkin_closed

HANDLING 
CHECKIN

boarding_done / 
    MyPlane.allow_takeoff

landing_request(P) / 
  P.allow_landing

- [ MyPlane = null ] 

landing_done(P)/
 MyPlane := P; 

takeoff_done / 
    MyPlane := null;

 

 

HANDLING
TAKEOFF

landing_request(P) / 
  P.landing_delayed    checkin(D,T) / 

      T.checkin_closed

HANDLING 
LANDING

HANDLING
ARRIVALS

   checkin(D,T) / 
      T.checkin_closed

   checkin(D,T) / 
      T.checkin_closed

landing_request(P) / 
  P.landing_delayed

Fig. 8. Airport statemachine

The initial deployment of the system is defined by the following declarations

object class initial values for attributes

Airport1 Airport MyLink ⇒ Airport2, MyPlane ⇒ Plane1
Airport2 Airport MyLink ⇒ Airport1
Traveler1 Passenger atLoc ⇒ Airport1, Destination ⇒ Airport2
Traveler2 Passenger atLoc ⇒ Airport2, Destination ⇒ Airport1
Plane1 Plane atLoc ⇒ Airport1
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BOARDING

LEAVING

LANDING

allow_takeoff /
   atLoc.takeoff_done;
   atLoc := null;
   T1.take_tray

allow_boarding(T,D) /
   T1 :=  T;  MyDest:=D;
   T1.onboard(Self);
   atLoc.boarding_done

takeback_tray /
   MyDest.landing_request(Self)

allow_landing  /
   MyDest.landing_done(Self);
   atLoc := MyDest;
   T1.deboard

landing_delayed  /
   MyDest.landing_request(Self);

FLYING

BOARDING

- / 
  atLoc.checkin(Destination,Self)

checkin_closed /
atLoc.checkin(Destination,Self)

EATING

DEPLANING

checkin_ok

onboard (Plane)/
   atLoc := Plane

take_tray / 
   OUT. eating (Self);
   atLoc.takeback_tray

deboard /
   atLoc :=  Destination

STARTING

TRYING
CHECKIN

PASSENGER   STATECHART PLANE   STATECHART
  

   

Fig. 9. Plane and passenger statemachines

An example of property which can be verified over this system is the following:
It is always true that Traveler1 can eat only while he/she is flying on Plane1.
This property can be written in µACTL+ as:

AG ((EX {eating(Traveler1)} true) →
(assert (Traveler1.atLoc = Plane1) & assert(Plane1.atLoc = null)))

We wish to point out that that the development activity of UMC is still in
progress and we have reported here some preliminary results on its application
to the airport case study. Indeed several aspects of UML statcharts are not
currently supported (e.g. the execution of “synchronous call” operations, the
use of “deferred events”, the use of “history states”), and the logic itself needs
to be better investigated, (e.g. its relation with localities). Work in this direction
is planned in the next future.
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4 The structural aspects of the architectural approach

The goal of the research on architectures is to develop the structural aspects of
the architectural approach to mobility, including semantic primitives, categorical
semantics, refinement mechanisms, and a toolbox of connectors and operations,
as well as modularisation and structuring facilities for the systems considered and
their specifications. The starting point for this research are three complementary
formalisms: the parallel program design language CommUnity [17] as a platform
in which the separation between “computation” and “coordination” has been
achieved; the language Klaim [11] as a programming language with appropriate
coordination mechanisms that permit negotiating the cooperation activities of
mobile components, services and resources; the specification language CASL [1]
as a means for providing architectural specification and verification mechanisms.
During the first year of the project, the grounds for the integration of distribution
and mobility in architectures were set by designing and mathematically charac-
terising basic extensions of CommUnity for distribution and mobility, by adding
higher-order mechanisms to Klaim, and by enriching CASL with observational
interpretation. In the following we will focus on the extensions to CommUnity
by presenting a solution of the airport scenario.

4.1 CommUnity

CommUnity, introduced in [17], is a parallel program design language that is sim-
ilar to Unity [6] in its computational model but adopts a different coordination
model. More concretely, whereas, in Unity, the interaction between a program
and its environment relies on the sharing of memory, CommUnity relies on the
sharing (synchronisation) of actions and exchange of data through input and
output channels. Furthermore, CommUnity requires interactions between com-
ponents to be made explicit whereas, in Unity, these are defined implicitly by
relying on the use of the same variables names in different programs. As a con-
sequence, CommUnity takes to an extreme the separation between computation
and coordination in the sense that the definition of the individual components of
a system is completely separated from the interconnections through which these
components interact, making it an ideal vehicle for investigating the envisaged
integration of distribution and mobility in architectural models.

In CommUnity the functionalities provided by a component are described
in terms of a set of named actions and a set of channels. The actions offer
services through computations performed over the data transmitted through the
channels.

Channels In a component design channels can be declared as input, output
or private. Private channels model internal communication. Input channels are
used for reading data from the environment of the component. The component
has no control on the values that are made available in input channels. More-
over, reading a value from an input channel does not consume it: the value
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remains available until the environment decides to replace it. Output and pri-
vate channels are controlled locally by the component, i.e. the values that, at
any given moment, are available on these channels cannot be modified by the
environment. Output channels allow the environment to read data produced by
the component. Private channels support internal activity that does not involve
the environment in any way. Each channel is typed with the sort of values that
it can transmit.

Actions The named actions can be declared either as private or shared. Pri-
vate actions represent internal computations in the sense that their execution
is uniquely under the control of the component. Shared actions offer services to
other components and represent possible interactions between the component
and the environment, meaning that their execution is also under the control of
the environment. The significance of naming actions will become obvious below;
the idea is to provide points of rendezvous at which components can synchronise.

Space of Mobility We adopt an explicit representation of the space within
which mobility takes place, but we do not assume any fixed notion of space.
This is achieved by considering that space is constituted by the set of possible
values of a special data type Loc included in the fixed data type specification
over which components are designed.

The data sort Loc models the positions of the space in a way that is consid-
ered to be adequate for the particular application domain in which the system is
or will be embedded. The only requirement that we make is for a special location
⊥ to be distinguished whose role will be discussed further below. In this way,
CommUnity can remain independent of any specific notion of space and, hence,
be used for designing systems with different kinds of mobility. For instance, in
physical mobility, the space is, typically, the surface of the earth, represented
through a set of GPS coordinates. In some kinds of logical mobility, space is
formed by IP addresses. Other notions of space can be modelled, namely multi-
dimensional spaces, allowing us to accommodate richer perspectives on mobility
such as the ones that result from combinations of logical and physical mobility,
or logical mobility with security concerns.

Unit of Mobility In components that are location-aware, we make explicit
how their constituents are mapped to the positions of the fixed space. Mobility is
then associated with the change of positions. By constituents we mean channels,
actions, or any group of these. This means that the unit of mobility — the
smallest constituent of a system that is allowed to move — is fine-grained and
different from the unit of execution.

The constituents of a component are mapped to the positions of the space
through location variables. These variables (locations, for short) can be regarded
as references to the position of a group of constituents of a component that are
permanently colocated. In a component design, locations can be declared as
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input or output in the same way as channels but are all typed with sort Loc.
Input locations are read from the environment and cannot be modified by the
component. Hence, if l is an input location, the movement of any constituent
located at l is under the control of the environment. Output locations can only
be modified locally but can be read by the environment. Hence, if l is an output
location, the movement of any constituent located at l is under the control of
the component.

Each local channel x of a design is associated with a location l. We make
this assignment explicit by writing x@l. At every given state, the value of l
indicates the position of the space where the values of x are made available.
A modification in the value of l entails the movement of x as well as of the
other channels and actions located there. Input channels are located at a special
output location whose value is invariant and given by ⊥. The intuition is that
this location variable is a non-commitment to any particular location. The idea
is that input channels will be assigned a location when connected with a specific
output channel of some other component of the system.

Each action name g is associated with a set of locations including λ, meaning
that the execution of action g is distributed over those locations. In other words,
the execution of g consists of the synchronous execution of a guarded command
in each of these locations.

Airport Example We consider a system that is required to control the check-in
and boarding of passengers as well as the take-off of planes at airports. In the case
of flights with stops, the system should also control the boarding and deplane
of passengers during the intermediary stops. The design solution we shall adopt
distributes the system over hosts at airports and planes and comprises mobile
agents moving from host to host. Moreover, some of the hosts are themselves
mobile. Flights, seats, airports and planes identifiers are modelled by data types.

� ArpId�� � � %�airports�identifiers�
� PlId��� � � %�plane�identifiers�
� Flight�� � � %�flight�info��
� � src:�Flight->ArpId� � %source�of�flights�
� � dest:�Flight->ArpId� � %destination�of�flights�
� � next:�ArpId*Flight->ArpId� %�next�stop�relationship�of�flights�

 

We need a bi-dimensional space in order to model (1) the physical movement
of planes and, consequently, the movement of the hosts they hold, and (2) code
mobility. We define the data types Phy and Host to model these two dimensions.
Locations consist of a physical location followed by a logical one — Phy.Host.
For simplicity, we consider that airports and planes are associated with single
hosts.
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� Host��� � %�logical�dimension�
� � ahost:ArpId->Host� � � �
� � phost:PlId->�Host� �
� Phy���� � %�physical�dimension��
� � =�ArpId+{air}�
� Loc�� � � %�locations��
� � =�Phy.Host�
� � ph:Loc->Phy� %�1st�projection�
� � host:Loc->Host�� %�2nd�projection�

 

In the envisaged airport system, we may easily identify two component types
— passenger and plane; both have a dynamic set of instances in the running
system. Passengers have a seat in a given flight and are involved in activities such
as check-in, boarding and exiting the plane. Planes operate flights, transporting
luggage and passengers. They take off and land, possibly more than once.

 

� design �passenger�is   � �
 inloc  l 
 prv  s@l:�[0..2],�seat@l:�StId,�fl@l:�Flight�

 do� � checkin@l:�[�s=0�→�s:=1 �] �
� []�  boards@l:�[�s=1�→�s:=2�]� �
� []�  leaves@l:�[�s=2�→�s:=1�]� �

� design �plane�is�
 outloc l 
� out  fl@l:�Flight,� 
 prv  s@l:�[0..3],�id@l:�PlId,�a@l:AirId�

 do � load_lug@l:�[�s=0 →�s:=1�]�
� []�  takesoff@l:�[�s=1�∧�ph(l)�dest(fl)�→�s:=2�||  l:=air.host(l) ||  a:=next(a,fl)]�
� []�  lands@l:�[�s=2�→�s:=1�|| l:=a.host(l) ]�
� []�  unload_lug@l:�[�s=1�∧�ph(l)=dest(fl)�→�s:=3�]�
�

 

Planes offer one output channel so that their behaviour can be coordinated
according to the flights they operate. Whereas planes have output locations,
passengers have input locations: this is because planes control their own mo-
bility whereas passenger movement is determined by the environment, namely
the planes that they board. It remains to define the coordination of the activ-
ities of planes and passengers at departure, namely the fact that a plane can
take off only when all passengers that checked-in are on board. In CommU-
nity, the mechanisms through which coordination between system components
is achieved can be completely externalised from the component programs and
modelled explicitly as first-class citizens. The global property of the airport sys-
tem just described can be achieved by interconnecting a plane and each of its
passengers through a connector that ensures that the action takesoff of plane
cannot precede the action boards of passenger. This coordination activity can be
established by interconnecting plane and passenger to a scheduler: a program seq
with two actions ac1 and ac2 that have to be executed in order. The required
interconnection is expressed through the following diagram
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� connector�departure(passenger,plane)�is�

� � � � � � � � ��design��cable2�is�
� � � � design��cable1�is��� ��inloc��x�
� � � � do� a� � � ��do�a�
�
� � � � �boards→a←ac1� �����������l←x→l�

� � �� ������������� � ���������ac2→a←takesoff�

� ����passenger��� �design��seq�is�������������plane�
� � � � � � �inloc�l�
� � � � � � �prv�s@l:[0..2]�
� � � � � � �do��ac1@l:[s=0→s:=1]�
� � � � � � �[]��  ac2@l:[s=1→s:=2]�

 
This connector type ensures, for the instances of planes and passengers to which
it is applied, that the plane takes off only when the passenger is on board (cf. 3).

The physical presence of a passenger in a check-in counter has to give rise
to the creation of an instance of passenger somewhere. Recall that the location
of passenger was defined to be controlled by the environment but, so far, we
have not specified by who and how. We opt for a solution where the instances of
passenger are mobile agents. They are initially placed on the host of the source
airport but boarding triggers their migration to the host of the corresponding
plane. The required pattern of distribution and mobility of passenger can be
regarded as part of the necessary coordination between the passenger and the
corresponding plane in the system. In fact, it can be completely externalised from
the component design and modelled explicitly as a first-class citizen through a
binary distribution connector. The passenger and the corresponding plane have
to be interconnected through a program driver as shown in the following diagram.

 

  
� � � � � � � � design��cable3�is�
� � � � � � � � inloc��x�
� � � � � � � � in��y:Flight�
� � � � �cable2� � � do��ac1[]�ac2�

� � � � ������������lp←x→l�
� � � �� ��l←x→l� �����������������fl←y→fl�
� � � � boards→a←mv� ����tk,tkidle→ac1←takesoff�
� � � � � � � �����ld,ldidle→ac2←lands�

� passenger��� � design��driver�is� ����plane�
� � � � � � inloc��lp�
� � �� � � � outloc��l�
� � � � � � in���fl:Flight�
� � � � � � prv��a@l:AirId,�inplane@l:bool�
� � � � � � do���mv@l:[�¬inplane�→l:=lp�|| �inplane:=true]�
� � � � � � []����tk@l:[�inplane�→�l:=air.host(l) ||  a:=next(a,fl)]�
� � � � � � []����ld@l:[�inplane�→ l:=a.host(l)]�
� � � � � � []����tkidle@l:[�¬inplane�→ skip]�
� � � � � � []����ldidle@l:[�¬inplane�→ skip]�
�

 
This diagram defines that the program driver controls the location of the

passenger. The boarding is defined to be the trigger for the migration and the
new position is provided by the plane — its own current location. Moreover, from
that moment on, the location of the passenger is subject to the same changes
that the location of that plane.
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4.2 Klaim

Klaim [11, 4] (Kernel Language for Agent Interaction and Mobility) is an ex-
perimental kernel programming language specifically designed to model and to
program distributed concurrent applications with code mobility. The language is
inspired by the Linda coordination model [19], hence it relies on the concept of
tuple space. A tuple space is a multiset of tuples ; these are containers of informa-
tion items (called fields). There can be actual fields (i.e. expressions, processes,
localities, constants, identifiers) and formal fields (i.e. variables). Syntactically,
a formal field is denoted with !ide, where ide is an identifier. For instance, the
sequence (“foo”, “bar”, !Price) is a tuple with three fields: the first two fields are
string values while the third one is a formal field.

Tuples are anonymous and content-addressable. Pattern-matching is used to
select tuples in a tuple space. Two tuples match if they have the same number
of fields and corresponding fields match: a formal field matches any value of
the same type, and two actual fields match only if they are identical (but two
formals never match). For instance, tuple (“foo”, “bar”, 100+200) matches with
(“foo”, “bar”, !V al). After matching, the variable of a formal field gets the value
of the matched field: in the previous example, after matching, V al (an integer
variable) will contain the integer value 300.

Tuple spaces are placed on nodes that are part of a net. Each node contains
a single tuple space and processes in execution; a node can be accessed through
its address. There are two kinds of addresses: Sites are the identifiers through
which nodes can be uniquely identified within a net; Localities are symbolic
names for nodes. A reserved locality, self, can be used by processes to refer
to their execution node. Sites have an absolute meaning and can be thought of
as IP addresses, while localities have a relative meaning depending on the node
where they are interpreted and can be thought of as aliases for network resources.
Localities are associated to sites through allocation environments, represented
as partial functions. Each node has its own environment that, in particular,
associates self to the site of the node.

Klaim processes may run concurrently, both at the same node or at differ-
ent nodes, and can perform five basic operations over nodes. in(t)@` evaluates
the tuple t and looks for a matching tuple t′ in the tuple space located at `.
Whenever the matching tuple t′ is found, it is removed from the tuple space.
The corresponding values of t′ are then assigned to the formal fields of t and the
operation terminates. If no matching tuple is found, the operation is suspended
until one is available. read(t)@` differs from in(t)@` only because the tuple t′,
selected by pattern-matching, is not removed from the tuple space located at `.
out(t)@` adds the tuple resulting from the evaluation of t to the tuple space
located at `. eval(P )@` spawns process P for execution at node `. newloc(s)
creates a new node in the net and binds its site to s. The node can be con-
sidered a “private” node that can be accessed by the other nodes only if the
creator communicates the value of variable s, which is the only way to access
the fresh node. Finally, Klaim processes are built up from the special process
nil, that does not perform any action, and from the basic operations by using
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standard operators borrowed from process algebras [33], namely action prefixing,
parallel composition and process definition. In particular, recursive behaviours
are modelled via process definitions. It is assumed that each process identifier
A, parameterised w.r.t. P̃ , ˜̀ and ẽ, has a single defining equation of the form

A(P̃ , ˜̀, ẽ) def
= P (notation ·̃ denotes a list of objects of a given kind).

A Klaim extension: OpenKlaim OpenKlaim, that has been first presented
in [4], is an extension of Klaim that was specifically designed for enabling users
to give more realistic accounts of open systems. Indeed, open systems are dy-
namically evolving structures: new nodes can get connected or existing nodes can
disconnect. Connections and disconnections can be temporary and unexpected.
Thus, the Klaim assumption that the underlying communication network will
always be available is too strong. Moreover, since network routes may be affected
by restrictions (such as temporary failures or firewall policies), naming may not
suffice to establish connections or to perform remote operations. Therefore, to
make Klaim suitable for dealing with open systems, the need has arisen to ex-
tend the language with constructs for explicitly modelling connectivity between
network nodes and for handling changes in the network topology.

OpenKlaim is obtained by equipping Klaim with mechanisms to dynami-
cally update allocation environments and to handle node connectivity, and with a
new category of processes, called coordinators, that, in addition to the standard
Klaim operations, can execute privileged operations that permit establishing
new connections, accepting connection requests and removing connections. The
new privileged operations can also be interpreted as movement operations: en-
tering a new administrative domain, accepting incoming nodes and exiting from
an administrative domain, respectively. The syntax of OpenKlaim processes is
presented in Table 1.

OpenKlaim processes can be thought of as user programs and differs from
Klaim processes in the following three respects.

– When tuples are evaluated, locality names resolution does not take place
automatically anymore. Instead, it has to be explicitly required by putting
the operator ∗ in front of the locality that has to be evaluated. For in-
stance, (3, l) and (s,out(s1)@s2.nil) are fully-evaluated while (3, ∗l) and
(∗l,out(l)@self.nil) are not.

– Operation newloc cannot be performed by user processes anymore. It is
now part of the syntax of coordinator processes because, when a new node
is created, it is necessary to install one such process at it and, for security
reasons, user processes cannot be allowed to do this.

– Operation bind has been added in order to enable user processes to en-
hance local allocation environments with new aliases for sites. For instance,
bind(l, s) enhances the local allocation environment with the new alias l for
s.

Coordinators can be thought of as processes written by node managers, a
sort of superusers. Thus, in addition to the standard Klaim operations, such
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f ::= e
˛̨
P
˛̨
`
˛̨
∗ l
˛̨

!x
˛̨

!X
˛̨

! ` Tuple Fields

t ::= f
˛̨
f, t Tuples

` ::= l
˛̨
s Localities & Sites

a ::= Actions

out(t)@` output˛̨
in(t)@` input˛̨
read(t)@` read˛̨
eval(P )@` migration˛̨
bind(l, s) bind

pa ::= Privileged Actions

a (standard) action˛̨
newloc(s,C) creation˛̨
login(`) login˛̨
logout(`) logout˛̨
accept(s) accept

P ::= Processes

nil null process˛̨
a.P action prefixing˛̨
P1 | P2 parallel composition

˛̨
A〈 eP, è, ee〉 process invocation

C ::= Coordinators

P (standard) process˛̨
pa.C action prefixing˛̨
C1 | C2 parallel composition

˛̨
A〈eC, è, ee〉 coordinator invocation

C ::= 〈et〉
˛̨
C
˛̨
C | C Node Components

N ::= Nets˛̨
s ::Sρ C single node˛̨
N1 ‖ N2 net composition

Table 1. OpenKlaim Syntax

processes can execute local (namely they are not indexed with a locality) coor-
dination operations to establish new connections (viz. login(`)), to accept con-
nection requests (viz. accept(s)), and to remove connections (viz. logout(`)).
Coordinators are stationary processes (namely, they cannot occur as arguments
of eval) and cannot be used as tuple fields. They are installed at a node either
when the node is initially configured or when the node is dynamically created,
e.g. when a coordinator performs newloc(s,C) (where C is a coordinator).

An OpenKlaim network node is a 4-tuple of the form s ::Sρ C, where s is
the site of the node (i.e. its physical address in the net), ρ is the local allocation
environment, S gives the set of nodes connected to s and C are the components
located at the node, i.e. is the parallel composition of evaluated tuples (repre-
sented as 〈et〉) and of (user and) coordinator processes. A net can be either a
single node or the parallel composition of two nets N1 and N2 with disjoint sets
of node sites.

If s ::Sρ C is a node in the net, then we will say that the nodes in S are logged
in s and that s is a gateway for those nodes. A node can be logged in more than
one node, that is it can have more than one gateway. Moreover, if s1 is logged in
s2 and s2 is logged in s3 then s3 is a gateway for s1 too. Gateways are essential
for communication: two nodes can interact only if there exists a node that acts
as gateway for both. Moreover, to evaluate locality names, whenever s1 is logged
in s2, if a locality cannot be resolved by just using the allocation environment of
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s1, then the allocation environment of s2 (and possibly that of nodes to which
s2 is logged in) is also inspected.

The OpenKlaim approach puts forward a clean separation between the co-
ordinator level (made up by coordinator processes) and the user level (made up
by standard processes). This separation makes a considerable impact. From an
abstract point of view, the coordinator level may represent the network oper-
ating system running on a specific computer and the user level may represent
the processes running on that computer. The new privileged operations are then
system calls supplied by the network operating system. From a more implemen-
tation oriented point of view, the coordinator level may represent the part of
a distributed application that takes care of the connections to a remote server
(if the application is a client) or that manages the connected clients (if the ap-
plication is a server). The user level then represents the remaining parts of the
application that can interact with the coordinator by means of some specific
protocols.

To save space, here we do not show OpenKlaim operational semantics (we
refer the interested reader to [4]). Informally, the meaning of the coordination
primitives is the following. Operation newloc(s,C) creates a new node in the net,
binds the site of the new node to s and installs the coordinatorC at the new node.
Notice that a newloc does not automatically log the new node in the generating
one. This can be done by installing a coordinator in the new node that performs a
login. Differently from the standard Klaim newloc operation, the environment
is not explicitly inherited by the created node, instead it is subsumed by using the
“logged in” relationships among nodes. Operation login(`) logs the executing
node, say s, in ` but only if at ` there is a coordinator willing to accept a
connection, namely a coordinator of the form accept(s′).C. As a consequence
of this synchronisation, s is added to the set S of nodes logged in ` and s′ is
replaced with s within C. Operation logout(`) disconnects the executing node,
say s, from `. As a consequence, s is removed from the set S of nodes logged in
` and any alias for s is removed from the allocation environment of `.

An OpenKlaim implementation of the Airport Scenario As an example
of the use of OpenKlaim, we consider in this section the simplified airport sce-
nario, with planes landing and taking off and passengers arriving and departing.
The scenario we want to implement has the following specification:

– a passenger has to check in before board a plane;
– a plane is ready to take off when all passengers have boarded and the luggage

has been loaded.

Passengers already have a boarding card, thus each passenger knows plane and
seat assigned to him/her and, moreover, the number of passengers that must
board on a plane is known. For simplicity sake, we only model one airport, one
plane, and the passengers that must board on that plane.

We can identify two participants – passenger and plane; both have a dynamic
set of instances in the running system. The implementation we present models
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each instance as an OpenKlaim node. Methods (i.e. checkin, loadLug and so
on) are implemented by OpenKlaim processes. We model passenger and plane
mobility via the OpenKlaim primitives for reconfiguring open nets (i.e. login,
accept and logout).

The model of the physical space is represented by an OpenKlaim net. For
each airport there exists a node in the net where passengers and planes can
be host (i.e. connected). Airport nodes represent the immobile nodes of the
system, passenger and plane are mobile nodes. In the system we present, each
mobile node (plane and passengers) is initially connected with an immobile node
(airport).

Passengers already have assigned a seat in a given flight and are involved
in activities such as check-in and boarding the plane. Planes make flights by
transporting luggage and passengers. A passenger first checks-in, then he can
board the plane. A plane has to load all the luggage and all passengers having
a boarding card for that flight before it can take off.

Node passenger hosts processes checkin and boards defined as follows:

checkin(airport, f light, seat)
def
= out(“checkin”, ∗self, f light, seat)@airport.

in(“checkinOk”)@self.
out(“boardOk”)@self

boards(airport, plane)
def
= in(“boardOk”)@self.

login(plane).
logout(airport).
out(“boards”, ∗self)@plane

Process checkin, parameterised w.r.t. airport, flight and seat, merely sends
a “checkinOk” request to the airport and waits for a reply. Process boards,
parameterised w.r.t. airport and plane, after checkin has been completed, allows
passengers to log in the plane and to log out the airport (this implements the
physical mobility of passengers).

Node plane hosts processes loadLug and takesoff defined as follows:
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loadLug(airport)
def
= out(“loadLug”, ∗self)@airport.

in(“loadLugOk”)@self.
out(“takeoffOk”)@self

takesoff(airport)
def
= accept(s1).

in(“boards”, s1)@self.
. . .
accept(sn).
in(“boards”, sn)@self.
in(“takeoffOk”)@self.
logout(airport).
out(“On air!”)@self

Process loadLug, parameterised w.r.t. airport, simply represents the load of
luggage. Process takesoff , parameterised w.r.t. airport, allows the plane to log
out the airport only when all the passengers are on board (i.e. have been accepted
by the plane).

Node airport hosts processes handleCheckin and handleLoadLug, used to
handle check-in requests from passengers and loading-luggage messages from
planes respectively, defined as follows:

handleCheckin
def
= in(“checkin”, !l, !flight, !seat)@self.

out(“checkinOk”)@l.
handleCheckin

handleLoadLug
def
= in(“loadLug”, !l)@self.

out(“loadLugOk”)@l.
handleLoadLug

Finally, the overall system is defined by a net with a node for each instance
of airport, plane and passenger:

system
def
= airport ‖ plane ‖ passenger1 ‖ . . . ‖ passengern

where each node is defined as follows:

airport
def
= sarp ::

{s1,s2,...,sn,spln}
{sarp/self} handleCheckin | handleLoadLug

plane
def
= spln ::{spln/self,sarp/airport} loadLug(airport) | takesoff(airport)
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passengeri
def
= si ::{si/self,sarp/airport,spln/plane} checkin(airport, f light, seati) |

boards(airport, plane)

5 Specification framework for evolution

The objective of this research is to design a framework for the specification
and analysis of the system’s evolution arising from reconfiguration and mobility.
This includes extensions to Graph Transformation and Tile Logic to include key
features for representing distribution and mobility, the application of such exten-
sions to model the evolution arising from the reconfiguration of the distributions
connectors introduced in the research on architectures, and the development of
analysis techniques for the verification of security and behavioural properties of
mobile distributed systems, including the design of topological modalities. The
logical techniques developed will be generalised to allow for combination with
other formalisms.

During the first year of the project the grounds were set for the integrated
specification framework by extending graph transformations and tile logic by en-
coding of Single-Pushout graph rewriting into Tiles, defining transactions in the
Tile Model, by adding higher order features for graph rewriting, and by defining
an appropriate graph transformation framework for the operational semantics
of UML. To obtain analysis techniques for security and behavioural properties,
two ambient-like calculi were developed [35, 32] and a technique for the analysis
of graph transformation systems was proposed [2].

In the following we will focus on the operational semantics of UML object
and activity diagrams by Graph Transformation Systems. Starting from the
UML specification, we first show how to encode instance diagrams as graphs of
a suitable kind, in order to define rule-based transformations on them. Next we
represent behavioural diagrams as graph transformation systems: we consider
a simple activity diagram, and we present one graph transformation rule for
each activity in it. Each rule will describe the local evolution of the system
resulting from the corresponding activity. Most importantly, by resorting to the
theory of graph transformation we are able to show that the proposed rules
implement correctly the dependencies among the various activities, as described
in the activity diagram. Finally, we show that a generalisation of the example by
allowing a list of passengers boarding to a plane (instead of a single passenger),
can be modelled conveniently by an extension of graph transformation with
synchronisation, which is a specific Tile Model.

5.1 Modelling the Airport Scenario with Graph Transformation

The various kinds of diagrams used in a UML specification essentially are graphs
annotated in various ways. Therefore it comes as no surprise that many contribu-
tions in the literature use techniques based on the theory of graph transformation
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to provide an operational semantics for UML behavioural diagrams (see, among
others, [12, 22, 30, 29, 15, 21]). Clearly, a pre-requisite for any such graph trans-
formation based semantics is the formal definition of the structure of the graphs
which represent the states of the system, namely the instance graphs. However,
there is no common agreement about this: we shall present a novel formalisation,
which shares some features with the one proposed in [23].

An instance graph includes a set of nodes, which represent all data belonging
to the state of an execution. Some of them represent the elements of primitive
data types, while others denote instances of classes. Every node may have at
most one outgoing hyperedge, i.e., an edge connecting it to zero or more nodes.1

Conceptually, the node can be interpreted as the “identity” of a data element,
while the associated hyperedge, if there is one, contains the relevant information
about its state. A node without outgoing hyperedges is either a constant or a
variable.

Typically, an instance of a class C is represented by a node n and by an hy-
peredge labelled with the pair 〈instanceName : C〉. This hyperedge has node n
as its only source, and for each attribute of the class C it has a link (a target ten-
tacle) labeled by the name of the attribute and pointing to the node representing
the attribute value. Every instance graph also includes, as nodes, all constant
elements of primitive data types, like integers (0, 1, -1, . . . ) and booleans (true
and false), as well as one node null:C for each relevant class C.

Figure 10 (a) shows an instance diagram which represents the initial state of
the airport scenario. As usual, the attributes of an instance may be represented
as directed edges labeled by the attribute name, and pointing to the attribute
value. The edge is unlabeled if the attribute name coincides with the class of the
value (e.g., lh123 is the value of the plane attribute of tck). An undirected edge
represents two directed edges between its extremes. The diagram conforms to a
class diagram that is not depicted here.

Figure 10 (b) shows the instance graph (according to the above definitions)
encoding the instance diagram. Up to a certain extent (disregarding OCL formu-
las and cardinality constraints), a class diagram can be encoded in a correspond-
ing class graph as well; then the existence of a graph morphism (i.e., a structure
preserving mapping) from the instance graph to the class graph formalizes the
relation of conformance.

In the following we shall depict the states of the system as instance diagrams,
which are easier to draw and to understand, but they are intended to represent
the corresponding instance graphs.

Figure 3 shows the activity diagram of the Use Case Departure of the airport
case study. This behavioural diagram ignores the structure of the states and the
information about which instances are involved in each activity, but stresses the
causal dependencies among activities and the possible parallelism among them.
More precisely, from the diagram one infers the requirement that board and
load luggage can happen in any order, after check in and before take off.

1 Formally, the graphs are term graphs [10, 36].
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Fig. 10. An instance diagram (a) and the corresponding instance graph (b).

By making explicit the roles of the various instances in the activities, we shall
implement each activity as a graph transformation rule. Such rules describe local
modifications of the instance graphs resulting from the corresponding activities.
We will show that they provide a correct implementation of the activity diagram,
since the above requirement is met.
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Fig. 11. The graph transformation rule for boarding.

Let us first consider the activity board. Conceptually, in the simplified model
we are considering, its effect is just to change the location of the passenger (i.e.,
its atLoc attribute) from the airport to the plane. In the rule which implements
the activity, we make explicit the preconditions for its application: 1) the passen-
ger must have a ticket for the flight using that plane; 2) the value of the checked
attribute of the ticket must be true; 3) the plane and the passenger must be at
the same location, which is an airport.

All this is represented in the graph transformation rule implementing the
activity board, shown in Fig. 11. Formally, this is a double-pushout graph trans-

formation rule [9], having the form L
l← K

r→ R, where L, K and R are instance
graphs, and the l and r are graph morphisms (inclusions, in this case; they are
determined implicitly by the position of nodes and edges).
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Intuitively, a rule states that whenever we find an occurrence of the left-hand
side L in a graph G we may replace it with the right-hand side R. The interface
graphK and the two morphisms l and r provide the embedding information, that
is, they specify where R should be glued with the context graph obtained from
G by removing L. More precisely, an occurrence of L in G is a graph morphism
g : L→ G. The context graphD is obtained by deleting from G all the nodes and
edges in g(L− l(K)) (thus all the items in the interface K are preserved by the
transformation). The embedding of R in D is obtained by taking their disjoint
union, and then by identifying for each node or edge x in K its images g(x) in
G and r(x) in R: formally, this operation is a pushout in a suitable category.

Comparing the three graphs in the rule, one can see that in order to change
the value of the attribute atLoc of the Passenger, the whole hyperedge is deleted
and created again: one cannot delete a single attribute, as the resulting structure
would not be a legal hypergraph. Instead, the node representing the identity of
the passenger is preserved by the rule. Also, all the other items present in the
left-hand side (needed to enforce the preconditions for the application of the
rule) are not changed by the rule.

It is possible to use a much more concise representation of a rule of this
kind, by depicting it as a single graph (the union of L and R), and annotating
which items are removed and which are created by the rule. Figure 12 (a) shows
an alternative but equivalent graphical representation of the rule of Fig. 11 as
a degenerate kind of collaboration diagram (without sequence numbers, guard
conditions, etc.) according to [8].

:Ticket

:Passenger

:Plane
<<mobile location>>

:Airport
<<location>><<mobile>>

checked: true

{new}atLoc

board

{destroy}
atLoc
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c

:Passenger :Luggage

:Ticket :Ticket

<<mobile>>

{new}{destroy}

check_in

checked:truechecked:false

<<mobile>>

(a) (b)

Fig. 12. The rules for boarding (a) and for checking in (b) as collaboration diagrams.

Here the state of the system is represented as an instance diagram, and the
items which are deleted by the rule (resp. created) are marked by {destroy} (resp.
{new}: beware that these constraints refer to the whole Passenger instance, and
not only to the atLoc tentacle. For graph transformation rules with injective
right-hand side (like all those considered here), this representation is equivalent
to the one above, and for the sake of simplicity we will stick to it.
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Fig. 13. The rules for loading the luggage (a) and for taking off (b).

Figure 12 (b) and Fig. 13 (a, b) show the rules implementing the remaining
three activities of Fig. 3, namely check in, load luggage and take off: the corre-
sponding full graphical representation can be recovered easily. Notice that the
effect of the take off rule is to change the value of the atLoc attribute of the plane:
we set it to null, indicating that the location is not meaningful after taking off;
as a different choice we could have used a generic location like Air or Universe.

The next statement, by exploiting definitions and results from the theory of
graph transformation, describes the causal relationships among the potential rule
applications to the instance graph of Fig. 10 (b), showing that the dependencies
among activities stated in the diagram of Fig. 3 are correctly realized by the
proposed implementation.

Proposition 1 (Causal dependencies among rules implementing activ-
ities). Given the start instance graph G0 of Fig. 10 (b) and the four graph
transformation rules of Fig. 12 and 13,

– the only rule applicable to G0 is check in, producing, say, the instance graph
G1;

– both board and load luggage can be applied to graph G1, in any order or even
in parallel, resulting in all cases in the same graph (up to isomorphism), say
G2;

– rule take off can be applied to G2, but not to any other instance graph gen-
erated by the mentioned rules.

5.2 Enriching the Model with Synchronised Graph Transformation

Quite obviously, the rule take off presented in the previous subsection fits in the
unrealistic assumption that the flight has only one passenger. Let us discuss how
this assumption can be dropped by modeling the fact that the plane takes off
only when ALL its passengers and ALL their luggages are boarded.
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We shall exploit the expressive power of Synchronized Hypergraph Rewriting
[24, 26, 25], an extension of hypergraph rewriting which uses some basic features
inspired by the Tile Model [18], to model this situation in a very concise way.
Intuitively, the plane has as attribute the collection of all the tickets for its flight,
and when taking off it broadcasts a synchronization request to all the tickets in
the collection. Each ticket can synchronize only if its passenger and its luggage
are on the plane. If the synchronization fails, the take off rule cannot be applied.
This activity can be considered as an abstraction of the check performed by the
hostess/steward before closing the gate.

Conceptually, a graph transformation rule with synchronization is a rule
where one or more nodes of the right-hand side may be annotated with an
action. If the node is a variable, the action can be interpreted as a synchroniza-
tion request issued to the instance which will be bound to the variable when
applying the rule. If instead the annotated node is the source of an instance, the
action can be interpreted as an acknowledgment issued by that instance. Given
an instance graph, a bunch of such rules with synchronization can be applied
simultaneously to it only if all synchronization requests are properly matched
by a corresponding acknowledgment.
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checked:true
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Fig. 14. The rules for taking off while checking that all passengers are on board (a),
and for acknowledging the synchronization (b).

To use this mechanism in our case study, consider the association Plane
1 ∗⇐⇒

Ticket with the obvious meaning: we call TicketList the corresponding attribute
of a plane (cf. Fig. 2). Figure 14 (a) shows rule take off synch: the plane takes
off, changing its location from the airport to null, only if its request for a syn-
chronization with a boarded action is acknowledged by its collection of tickets.
In this rule we depict the state as an instance graph, because we want to show
explicitly that a node representing the value of the attribute ticketList of the
plane is annotated by the boarded action. On the other side, according to rule
boarded ack, a ticket can acknowledge a boarded action only if its passenger and
its luggage are both located on its plane. Here the state is depicted again as an
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instance diagram, and the boarded action is manifested on the node representing
the identity of the ticket.

To complete the description of the system, we must explain how the tickets
for the flight of concern are linked to the ticketList attribute of the plane. In
order to obtain the desired synchronization between the plane and all its tickets,
we need to assume that there is a subgraph which has, say, one “input node”(the
ticketList attribute of the plane) and n “output nodes” (the tickets); furthermore,
this subgraph should be able to “match” synchronization requests on its input
to corresponding synchronization acknowledgments on its ouputs.

More concretely, this is easily obtained, for example, by assuming that the
collection of tickets is a linked list, and by providing rules for propagating the
synchronization along the list: this is shown in Fig. 15, where the rules should
be intended to be parametric with respect to the action act.

:List :ListNode

null

:ListNodefirst

act

start_act next_act

act

act
next

act

last_act

act actact

next

elementelement

Fig. 15. The rules for broadcasting synchronizations along a linked list.

6 Concluding Remarks

The AGILE project is developing an architectural approach to software develop-
ment for global computing in which mobility aspects can be modelled explicitly
at several levels of abstraction. The whole approach is developed over a uniform
mathematical framework based on graph-oriented techniques to support sound
methodological principles, formal analysis, and refinement. In this paper we have
presented some of the results gained during the first project year. AGILE has
obtained many other results concerning specification, verification and analysis of
global computation systems we could not present here because of lack of space.

Using the running example of the simple airport case study we have shown
how several well-known modelling, coordination and programming languages can
be extended or directly used to model mobility. In particular, we have presented

– an extension of the UML for modelling mobility,
– an extension of the program design language CommUnity to support mobil-

ity, and
– OpenKLAIM, a language for programming distributed open systems,
– and have shown how a graph transformations and tile logic can be used to

give a mathematical basis to a kernel of UML with mobility.
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Currently, we pursue our goal of developing a mathematically well-founded ar-
chitectural approach to software engineering of global computing systems. We
are working on a tighter integration of the different formalisms by analysing their
relationships, by defining further translations between each of the formalisms,
and by studying analysis, verification and refinement techniques where also insti-
tutions and categorical techniques will play a major role. We have also started
to design and implement tools for supporting software development with our
methods.
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Software Engineering (FASE 2003), Lecture Notes in Computer Science, Warsaw,
Poland, April 2003. Springer-Verlag. To appear.

33. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
34. OMG. Unified Modeling Language (UML), version 1.5. www.omg.org, March 2003.
35. D. Pattinson and M. Wirsing. Making components move: A separation of concerns

approach. In Proc. 1st International Workshop on Formal Methods for Components
(FMCO’02), Lecture Notes in Computer Science. Springer-Verlag, 2002. To appear.

36. Detlef Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 2: Applications, Languages, and Tools. World Scientific, 1999.

37. M. von der Beeck. Formalization of UML-statecharts. In M. Gogolla and C. Ko-
bryn, editors, Proceedings of the Fourth International Conference, number 2185 in
LNCS, pages 406–421. Springer-Verlag, 2001.

38. T. Wieringa and J. Broersen. A minimal transition system semantics for lightweight
class and behavioral diagrams. In ICSE’98 Workshop on Precise Semantics for
Software Modeling Techniques, 1998.

34


