
UML for Global Computing?

Hubert Baumeister1, Nora Koch1, Piotr Kosiuczenko1, Perdita Stevens2, and
Martin Wirsing1

1 Institut für Informatik
Ludwig-Maximilians-Universität München

2 Informatics (South), University of Edinburgh, GB
{baumeist, kochn, kosiucze, wirsing}@informatik.uni-muenchen.de

perdita@inf.ed.ac.uk

Abstract. Global systems – systems which may operate over transient
networks including mobile elements and in which computation itself may
be mobile – are gaining in importance. Nevertheless, the means for their
modelling are still underdeveloped. The Unified Modelling Language
(UML) is well developed for convenient modelling of behavior, but is
not yet so useful for modelling aspects of design relevant to global sys-
tems, such as mobility. Non-functional requirements such as performance
and security also assume an increased importance in the context of global
systems, and here too, UML requires enhancement.

In this paper we present an extension to UML class, sequence and activity
diagrams to model mobile systems. We also describe extensions to model
performance and security characteristics. We will describe how, wherever
possible, we reuse existing work in these areas.

1 Introduction

The latest developments in information and communication technology impose
enormous challenge of defining and exploiting dynamically configured systems of
mobile entities that interact in novel ways with their environment to achieve or
control their computational tasks. The emergence of the World Wide Web pro-
vides new computational paradigms in which computation is distributed over the
net and highly dynamic, with the network itself changing continously. The net-
work topology, which was carefully hidden in LAN, starts to play a fundamental
role. This situation fostered new concepts like global and mobile computing.

If dependable global systems are to be built efficiently, it is essential to be
able to model their requirements and their design, since modelling is an essential
part of modern software development practice. Modelling permits designers to
solve many problems at an early stage of development that might otherwise be
discovered much later. Models are also essential to the maintenance of systems
and to their analysis.

? This research has been partially sponsored by the EC 5th Framework projects: AG-
ILE (IST-2001-32747) and DEGAS (IST-2001-32072).

The Unified Modeling Language (UML) [13] is a widely adopted standard
for modelling object-oriented software systems. It consists of several diagram
types providing different views of the system model. UML is a semi-formal lan-
guage defined by a combination of UML class diagrams, natural language and
formal constraints written in the object constraint language (OCL). An impor-
tant feature of UML is that it was designed to be specialised, and mechanisms
for defining specialised variants of UML are available.

In order to use UML to model global applications we have to consider both
the nature of the applications themselves and the issues which will most occupy
their designers. One of the key feature of global applications which distinguishes
their models from models of most other applications is their use of mobility.
In this paper we present two extensions of UML diagrams for modeling mobile
systems. The first notation, the so called Sequence Diagrams for Mobility (SDM),
add appropriate primitives for modelling of object topology and mobility and
can be seen as a generalization of UML Sequence Diagrams [12]. The second one
extends in a similar way UML Activity and Object Flow Diagrams [2]. The idea
of our approach is similar to the idea of ambients or Maude in that a mobile
object can migrate from one location to another, that it can be the location
for other mobile objects and that it may interact with other objects. Locations
can be arbitrarily nested, generalizing the limited place-agent nesting of most
agent and place languages. We introduce into UML the concepts of location,
mobile object, mobile location, move action and clone action. These concepts
are defined by using UML stereotypes, tagged values and OCL-constraints.

There are several other issues which may occupy designers of mobile systems,
but two areas seem to be of major concern. Global computing raises particular
concerns for security, where the system includes mobile devices which cannot be
trusted. Equally, in an environment where network connections may behave, fail
and recover unpredictably, performance is harder to predict through intuition
alone. Another reason why performance considerations may be important is that
battery life of the mobile devices used may be a limiting factor.

In Sect. 2 we explain or choice to use the UML and discuss its extension
mechanism. In Sect. 3 we present the basic concepts of mobile systems followed in
Sect. 4 and Sect. 5 by the extension to UML Sequence and Activity Diagrams to
model mobile systems. Security is considered in Sect. 6, performance in section 7.

2 UML extensions

One of the basic ideas of the AGILE [1] and DEGAS [5] projects is to allow
developers to design global applications using as far as possible the design no-
tation which is familiar to them: the Unified Modelling Language. There are
several reasons for this, generally consequences of the fact that UML is now the
dominant modelling language for object-oriented software systems:

1. Desire to take advantage of existing expertise
2. Availability of a wide range of commercial and free tools

3. Availability of books and training, ability to recruit people already familiar
with UML

4. Perception that UML has a good blend of precision and flexibility for most
purposes (though there are some concerns)

However, UML, as defined by the OMG, is not in itself adequate for the
modelling of global applications and for analysis of their properties including
mobility, performance and security. UML does not contain features that permit
the description of how parts of the system are mobile, nor that permit the
expression of security or performance features. Accordingly we have decided that
we need to define a variant of UML which extends the language’s capabilities to
express mobility, performance and security features.

The next question is how to specialise UML. We could of course define a
variant of UML in any way which suited us. However, UML does provide a
standard mechanism for extending UML to suit the needs of different application
areas. One defines a UML profile, which is essentially a dialect of UML; see [13]
for details. Several profiles for different application areas have themselves been
standardised by the OMG, and many more have been defined by their users.

There are several advantages of using UML extenxion mechanisms, in par-
ticular:

– Not needing to define a language specialisation mechanism of our own
– Acceptability within the UML community
– Makes it straightforward to build on existing UML profiles
– Potential availability of tools supporting profiles

Sometimes, the mechanisms for defining profiles are not sufficiently expres-
sive for defining the desired UML extensions. For example, it is difficult to define
a new diagram type in a profile unless it is closely related to an existing UML
diagram type. In such cases, one can choose instead to extend the UML meta-
model. This gives a heavyweight extension of UML, which will not automatically
be supported by tools.

At present, the main commercial tools do not support semantics of user
defined profiles. However, there are signs that this is changing; for example,
Artisan Software has recently released a version of their tool with support for
profiles.

Therefore the approach we take to extending UML within the AGILE [1] and
DEGAS [5] projects is to define a profile that meets our needs, wherever possible,
both in order to save ourselves effort and in order to maximise the acceptance
of our work in the wider community. DEGAS builds exclusively on profiles that
already exist, whereas AGILE introduces its own notation when necessary.

3 Mobility Concepts

Mobility is one of the most important aspects of global computation. Code mo-
bility emerged in some scripting languages for controlling network applications

like Tcl and is one of the key features of the Java programming language. Agent
mobility has been supported by Telescript, AgentTcl, or Odyssey (cf. e.g. [8]).
In addition, hardware can be mobile too. Mobile hosts like laptops, WAPs and
PDAs can move between networks. Moreover, entire networks can be mobile,
like for example IBM’s Personal Area Network (PAN) and networks of sensors
in airplanes or trains. For example, Fig. 1 shows in an informal way a person
having a PAN who boards an airplane, flies from one location to another and
deplanes.

4

2 3

1

Fig. 1. Nested mobile networks.

Mobile computations can cross barriers and move between virtual and phys-
ical locations, therefore they can turn remote calls to local calls avoiding the
latency limits. But there is a price to pay since the administrative barriers and
multiple access pathways interact in very complex ways. This requires special
means for the specification and implementation of mobile systems.

There exist already some extensions to UML for modeling mobile systems.
In [16] an extension of collaboration diagrams is presented to model dynamic
change of the composition relationship. It defines a form of aggregation link
between objects — a component link — with the additional semantics that a
component link may change over time. In addition, it proposes the use of com-
ponent boundaries to emphasize the relationship between a component and its
immediate components. It is an interesting approach, but it modellsm mobility
in a rather indirect way and does not explain how these extensions fit into the
UML metamodel.

Another extension is presented in [11]. It is similar to the early idea of Use
Case Maps [3]. Stereotyped classes and packages are used to model mobility. Ob-
jects moving from one location to another are modeled by stereotyped messages.
This approach can be used when there are only two kinds of objects: mobile
objects and static locations. It is not well suited for modeling objects which are
both locations and mobile.

In the following we introduce the main structural concepts for modelling
mobility we use in this paper: locations, mobile objects and actions moving
mobile objects.

3.1 Locations

The concept of location plays an important role in the case of mobile systems. To
denote classes whose instances are locations we use the stereotype �location�.
For example, the airport Charles de Gaulle (CDG) is an instance of the stereo-
typed class Airport. Similar to the ambient calculus [4] we allow locations to be
nested (cf. Fig. 2). For example, the airport Charles de Gaulle is contained in
France, an instance of class Country, which is also a location. We require that
any location is contained in at most one location and that a location cannot be
contained in itself (directly or indirectly). We do not require that the hierarchy
of locations has a single top element. Thus the hierarchy of locations forms a
forest. Note that these assumptions, in particular the assumption that a location
is contained in at most one location, simplifies the semantics and in consequence
the analysis of mobile systems.

<<location>>
Country

name

Airport
<<location>>

name

number
date
boardingTime
gate

Flight
Plane

<<mobile location>>

type
numberOfSeats
land()
takeOff()

Passenger
<<mobile>>

name
eat()
board()
deplane()

destinationorigin

has

1 1

* *

*

run * *

Fig. 2. A simplified class diagram modeling an airport.

3.2 Mobile Objects

A mobile object is an object that can change its location. A class representing
mobile objects is indicated by the stereotype �mobile�. The current location of
a mobile object is indicated by the atLoc relation. As in the case of locations,
a mobile object can only be contained in at most one location. In our airport
example, a particular passenger is a mobile object, as he may move from one
location to another, for example, from Munich to Paris (cf. Fig. 2).

Note that the atLoc relation is not explicitly presented in Fig. 2. One reason
is that this would unduly complicate the diagram. For example, a passenger
can be located either at a plane, an airport, or a country. The second reason
is that the existence of the atLoc relation is implied by the use of the mobility
stereotypes.

Locations can be mobile too. This allows us to model passengers in an air-
plane and flying the airplane from one airport to another. In this case the stereo-
type �mobile location� is used. The stereotype �mobile location� inherits from
the stereotype �location� and the stereotype �mobile� for mobile objects. This
was the only way to define mobile locations by stereotypes with the UML 1.3,
because a model element could have only one stereotype attached to it. However,
from UML 1.4 on it is possible to attach more than one stereotype to a model
element. In this case we could give the class Airplane the stereotypes �mobile�

and �location� to denote that it is a mobile location. However, we feel that using
the stereotype �mobile location� conveys better the concept of mobile locations.

For mobile locations we require that the atLoc relation inherited from mobile
objects is the same as the atLoc relation inherited from locations. To ensure
this, stereotypes �mobile� and �location� inherit from a common stereotype
�spatial� which denotes classes of objects that can be at a location (cf. Fig. 3).

Figure 3 shows the metamodel for the stereotypes �location�, �mobile� and
�mobile location�.

To model the atLoc relation, we require that each class with stereotype
�location� or �mobile� provides its instances with an attribute atLoc. Since we
want to state the requirement only once, we introduce the abstract stereotype
�spatial� and state the requirement for that stereotype. Then the stereotypes
�location� and �mobile� inherit the requirement. To express this as an OCL-
constraint, we define an additional predicate isAtLocAttribute on features,
i.e. instances of metaclass Feature. In the metamodel each class is associated
with a set of features describing the methods and attributes of the class and
its instances. A feature e is an atLoc attribute, i.e. isAtLocAttribute(e), if e
is an instance attribute, has the name atLoc and its multiplicity is zero or one.
Further, the attribute can hold instances of classes having stereotype �location�:

isAtLocAttribute(e : Feature) =
e.oclIsKindOf(Attribute) and
e.name = ’atLoc’ and
let e′ = e.oclAsType(Attribute) in

spatial
<<stereotype>>

Class
<<metaclass>>

<<stereotype>>
location

<<stereotype>>
mobile location

<<stereotype>>
mobile

{inv: self.allFeatures
−>select(e | isAtLocAttribute(e))−>size() = 1

 and
 self.allInstances−>forall(o | o.parentLocs−>excludes(o))}

{inv: self.allFeatures

e.oclAsType(Attribute).changeability = #changeable)}
−>forAll(e | isAtLocAttribute(e) implies

<<stereotype>>

Fig. 3. Metamodel for stereotypes �location�, �mobile�, and �mobile location�.

e′.ownerScope = #instance and

e′.multiplicity = 0..1 and

e′.targetScope = #instance and

e′.type.oclIsKindOf(Class) and
e′.type.stereotype.name->includes(’location’)

Now we require that each class with stereotype �spatial� has a unique atLoc
attribute and that the atLoc relation does not contain cycles:

self.allFeatures->select(e | isAtLocAttribute(e))->size() = 1 and

self.allInstances->forAll(o | o.parentLocs->excludes(o))

The additional operation parentLocs computes the set of all parent locations
for an instance of a class with stereotype �spatial�:

self.parentLocs = self.atLoc->union(self.atLoc.parentLocs)

For mobile objects we require in addition that they are able to change their
location, which means that their atLoc attribute can change its value. This can
be expressed by requiring that the changeability attribute of atLoc has the value
#changeable for all classes with stereotype �mobile�, in addition to the exis-
tence of an atLoc attribute — which is inherited from stereotype �spatial�:

self.allFeatures->forAll(e | isAtLocAttribute(e) implies
e.oclAsType(Attribute).changeability = #changeable)

The operation allFeatures is an additional operation on Classifier defined in
the UML 1.5 semantics. It collects the features of a classifier together with all
features of its parents.

4 Sequence Diagrams for Mobility

In this section we study the use of Sequence Diagrams for modelling mobile sys-
tems. We show that the standard form of UML Sequence Diagrams can be hardly
used for modelling of mobile systems. We present therefore a new notation, the
so called Sequence Diagrams for Mobility [12]. SDM models mobile, nested and
dynamically changing structure by generalizing the concept of object lifeline of
UML sequence diagrams. This idea generalizes the idea of Use Case Maps [3]
and allows us to specify mobile objects with nested structure.

4.1 Modeling with standard UML Sequence Diagrams

In this subsection we consider modelling of mobile systems with standard UML
Sequence Diagrams.

board()
<<become>>

ps
[atLoc = MUC]

ap
[atLoc = MUC]

notice() ap
[atLoc = CDG]

fly()
<<become>>

ps
[atLoc = ap]

ps
[atLoc = CDG]

deplane()

notice()

Fig. 4. Boarding, flying and deplaning.

Let us model a passenger ps who boards an airplane ap at Munich MUC
airport, flies to Paris Charles De Gaulle CDG and then deplanes (cf. Fig. 4). It
is not easy to model this using sequence diagrams only, since there exist no direct
means for modelling change of state nor change of topology (for example the fact
that a passenger is in airport and then in a airplane). The state description can
be contained in the box; the fact that the person is at Paris airport is indicated by
[atLoc = CDG:Airport]. This kind of modelling has the disadvantage, that when
an object changes its state, we need a new box. Such boxes can be connected
by a message arrow with stereotype �become�. Let us observe that boarding
an airplane involves an airplane and a passenger, but here boarding is modelled
indirectly as the change of state of a passenger. To disallow a plane to fly without
a passenger we need notice() message to ‘inform’ the plane that the passenger
boarded.

As we see, UML sequence diagrams can model mobility in an indirect way and
even in this simple example the diagram is rather hard to read. There are also
other possibilities to model this using standard UML Sequence Diagrams but
they do not yield readable specifications either. Therefore, in the following we
introduce a new kind of sequence diagrams which are better suited for modelling
mobility.

4.2 Sequence Diagrams for Mobility: Basic concepts

In this subsection we present the basics of Sequence Diagrams for Mobility, an
extension to UML Sequence Diagrams for modelling mobile systems. We show
how to model artifacts like crossing barriers or communication. Like in Maude [6]
a mobile object can migrate from one host to another , it can be also a host for
other mobile objects. It may interact with other objects. Like a location, a mobile
object can host other mobile objects, it can locally communicate and receive
messages from other places. Objects can be arbitrarily nested, generalizing the
limited place-agent nesting of most agent and place languages. In the ambient
calculus [4] communication across a single barrier is synchronous; communication
across multiple barriers is performed via other ambients which navigate from
one location to another. In UML but also in Maude, objects can communicate
in synchronous or asynchronous way. We stick to this principle. Unlike ambients,
in our notation it is possible to express actions at a distance (like RMI) even
if many barriers are involved, so that multiple steps can be rendered atomic.
In general, we do not want to restrict the language artificially; if something is
easy to specify in our notation, then we allow it without bothering whether it
is easy to implement or not. But of course, if necessary one can define a dialect
disallowing some expressions.

ap

ps

d : MOcps

Fig. 5. Object mobility.

A mobile object can change its location performing a move action. For exam-
ple, a passenger may enter an airplane and then leave it; in this case the topology
changes too (cf. lhs. of Fig. 5). A virus may cross a firewall in a message (cf. rhs.
of Fig. 5). To model this, the object lifeline in sequence diagrams is blown up
to an action box; it models actions performed by a mobile object and indicates
the boundaries of the object. Consequently, in our two dimensional representa-
tion we have two lines which denote the same thread. This implies that different
arrows must be attached to different levels of an action box.

A description of a mobile object’s behavior starts with a box containing
optionally the object name or class. A mobile object may move into another
object, or move out of an object. If an object moves into or out of another
object, then the action box ends in the former location and the object is moved
to another location. This move action is indicated by a stereotyped message
arrow which starts with a black circle; we call it move arrow. We use here a
notation similar to UML state machines to indicate that after the move the
moving object starts its operation in a new location. A mobile object can not
continue its operation outside of its new host, if it is already inside another host;
consequently the arrow starts strictly at the end of the first action box to indicate
that all other actions in the box must precede the move. We assume, that the
mobile objects can not be bi-located or merged, therefore an object box may have
at most one move arrow attached to the top and at most one arrow attached to
the bottom. If a mobile object starts its operation (and was not active before
anywhere else), then this is indicated by a special box like in the case of sequence
diagrams. If a mobile object was already active somewhere else, then there must
exist a move arrow such that its sharp end is attached to the left or right upper
corner of the corresponding action box. This requirement corresponds to the fact
that mobile objects can not be merged, nor appear out of nowhere. An action
box of an object which already performed a move may optionally start with the
objects name and/or class. We indicate the end of mobile object description by
two horizontal lines, where the upper line is dashed.

Figure 5 shows what a mobile object looks like. As in the case of sequence
diagrams, the object’s names must be underlined. In the left hand side of the
figure, a passenger ps enters airplane ap. Since there is no conflict concerning
the identity of objects inside ap, the corresponding action box does not bear any
name. Then ps deplanes ap and starts its operation outside ap. The name in
the action box is not necessary either, since the identity of ps can be uniquely
traced. No message arrow is attached to the corresponding action box except of
the move. The right hand side of Fig. 5 shows a mobile object c entering object
d of class MO by activating an operation of d (like a virus which sends itself in
an e-mail). After the operation is finished the objects starts to operate inside d.

c
<<create>> <<copy>>

131 : PC 742 : PC
virusb : MO

virus

Fig. 6. Object creation and copying.

The left hand side of Fig. 6 shows the creation of a new object. The right
hand side of this figure shows a proliferating virus. This virus starts a procedure
on another PC to enter it. We use a message with stereotype �copy� [13], the
copy is then assumed to behave as its original would do inside the new location.

b : MOa

<<open>> n

k

b2
m

b1

Fig. 7. Opening an object.

Another important operation is open (cf. Fig. 7), this operation opens an
object making its hosted objects visible. If a mobile object is opened, then it
ends its life, but its sub-objects continue to operate. This operation is similar
to operation open in the ambient calculus [4], but it may be synchronous as
well as asynchronous, depending on the type of message used. The opening
of an object is indicated by a horizontal line. Object a sends message open
to b, then object b is opened and the hosted objects b1 and b2 continue to
operate. A mobile object can be also terminated, in this case all its hosted
objects are terminated too, it can be of course expressed by a series of open
operations. The recursive termination is indicated by a continuous line. For the
recursive termination caused by an other object we use a message with stereotype
�destroy� (cf. Fig. 8) (cf. [4]). In Fig. 8, object a terminates object b. After
terminating b, all its sub-objects are terminated too. The termination is indicated
by a continuous line stretching across all objects.

b : MOa

<<destroy>> m
n

b2b1

Fig. 8. Destroy.

4.3 Abstraction

In this subsection we present the zoom facility allowing one to abstract from
the internal details or, vice versa, to show them. Abstraction is one of the most

important concepts to manage complexity. In the case of Sequence Diagrams for
Mobility we can abstract from internal object details like the behavior of hosted
objects, behavior of an object during move actions and so on, or display them,
depending on the desired level of detail.

131 : PC 742 : PC

virus

131 : PC 742 : PC

Fig. 9. Zoom-out.

The left hand side of Fig. 9 shows the virus attack (cf. Fig. 6), in the zoom-
out view, as perceived by the user of the attacked PC. He/she can usually not
look inside the PC hosting the virus. For an external observer who can only see
the communication network, the whole situation may look like the right hand
side of the figure.

It is possible to zoom into an object’s move arrow to see the behavior of the
participating objects. Figure 10 shows flight from Munich to Paris in a zoom-out
view. The details of the flight can be seen on Fig. 10.

4.4 Example

In this subsection we consider a person flying from Munich to Paris. Figure 10
shows a simple story of a passenger x1 who boards an airplane in Munich airport,
flies to Paris and publishes a picture in a WAN. This story is described from
the perspective of an observer on the German side. The person x1 together with
other passengers enters the airport and then boards the airplane LH123. The
airplane flies to Paris (the flight number is 99), but the only thing the observer
can see is that the airplane is airborne but not what happens inside the airplane
nor further details of this flight. The next event which the observer is able to
notice is the appearance of a picture in the WAN. To model several passengers
(i.e. objects of class Passenger), we use the multi-object notation [13], which
allows us to present in a compact way several passengers playing the same role.
Person x1 is distinguished using composition relationship.

This simple view shows some of the barriers person x1 has to cross while
flying. There are political boundaries which regulate the movement of people
and devices, like airplanes, computers and so on. Within those boundaries, there
are other boundaries like those protecting airports and single airplanes against
intruders. We specify explicitely such boundaries and the moves across them. In

D F

LH123:Plane

flight99

MUC

picture

x
: Pass

x1

:WAN

Fig. 10. Flight example.

the view presented in Fig. 10, we have abstracted from several details. The view
of passenger x1 is much more detailed (cf. Fig. 11).

D

F

LH123:Plane
CDG

flight99

MUC

:WAN

LH123

x1
x

: Pass

: Pass

x1

x1

dcnb
p

Fig. 11. Flight’s details.

We can see what happens inside the airplane during the flight; the move arrow
contains the action box of the airplane LH123. Passenger x1 makes pictures
with his digital camera; the pictures are send then to the WAN. As usual, a
digital camera does not allows him to send pictures directly to the WAN. It is
also forbidden to use mobile phones during the flight. Therefore the passenger
saves the pictures to his notebook nb, logs into the on-board network and then
transmits the pictures to WAN via the on-board network. We abstract here from
the structure of the WAN network (indicated by dashed line). Let us point out

that the sending of the picture by passenger x1 is not temporally related to
crossing any border like those over D, EU and so on. The only thing we can say
is that it happens between the start of the airplane and its landing. Finally, all
the passengers leave the airplane and the airport. The passenger can see that the
airplane is boarded by new passengers. The dashed line in the head of the last
box of passenger x1 means that the history of this passenger started earlier and
that the head of the object box is not beginning of its lifeline, but a continuation.

5 Modeling with Activity Diagrams

In this section we introduce two variants of activity diagrams for modeling mo-
bility. These diagrams were introduced in [2]. The first variant is responsibility
centered and uses swimlanes to model who is responsible for an action. The sec-
ond is location centered and uses the notation of composite objects to visualize
the hierarchy of locations.

Basically, there are two primitives that change the location of a mobile object.
A mobile object can move from one location to another — a so called move
action; or a copy of an object is moved to a new location [7] — a so called clone
action. These actions act on objects and their containment relationship wrt.
locations. Given a move action on an object o which is contained in location l,
i.e. o.atLoc = l, to another location l′, then after performing the move operation
object o is contained in location l′, i.e. o.atLoc = l′. Operation clone works
similar; however, instead of moving the object itself, first a copy of the object is
created which is then moved to the new location.

The stereotypes �move� and �clone� for action states in activity diagrams
are used to denote move actions and clone actions, respectively. Actions have
two additional attributes, the first one indicates who is performing the action,
and the second one is the location where the action is performed.

Calculi for mobility restrict these primitives further by omitting the clone
operation. Instead, the clone operation is defined as the composition of a copy
operation followed by a move action. For notational convenience we decide to take
clone as a primitive. Commonly, these calculi also restrict the target location of
a move, for example, to move only one level in the containment hierarchy [4, 14].

In the following, we present two notations for the above mentioned mobility
concepts in the context of activity diagrams. The first notation is responsibility
centered and focuses on who is performing an action and is based on the standard
notation for activity diagrams. The second notation is location centered and
focuses on where an action is performed, given by the atLoc relation between
mobile objects and locations, and how activities change this relation.

5.1 Responsibility Centered View

The first notation uses object-flow states with classifier in states to model the
atLoc relation. In the airport example consider a passenger Hubert who is board-
ing a plane at the airport of Munich. This can be modeled as a move action

as shown in Fig. 12. The source of the move action is the object-flow state
Hubert:Passenger [atLoc = MUC:Airport] and the target an object-flow state Hu-
bert:Passenger [atLoc = LH123:Plane]. The passenger Hubert moves from his pre-
vious location, Munich airport (MUC), to his new location, the plane LH123.
More precisely this means, if in an object configuration there is a passenger Hu-
bert, an airplane LH123 and an airport MUC such that Hubert is contained
in MUC and also LH123 is contained in MUC, the move operation changes
the configuration in such a way that Hubert is no longer directly contained in
the airport MUC, instead it is contained in the plane LH123. The containment
of the plane does not change; therefore Hubert is still indirectly contained in
MUC. Swimlanes can be used to show who is performing the action; in this case
it is the passenger who boards the plane.

<<move>>
boarding

Hubert : Passenger
[atLoc=MUC]

<<mobile>>

Hubert : Passenger
[atLoc=LH123]

<<mobile>>
<<become>>

Hubert

Fig. 12. The move action.

The clone operation is shown in Fig. 13 for a list of passengers (lop). One
copy of the list is kept by the airport staff and another copy of the list is moved
into the plane. The difference in the semantics of this diagram to the previous
diagram is that given the configuration as before, the clone operations creates
a new document list of passengers lop′ which differs from lop only in the fact
that it is contained in LH123. In addition lop is still contained in MUC, i.e. lop
has not moved at all.

Note that by the UML it is possible to omit the �become� stereotype in
the output of the move action in Fig. 12, as it is the default that the input
and the output are the same objects if the type of the object flow states are
the same. In the same way, the �copy� stereotype in the output of the clone
action in Fig. 13 can be omitted because this stereotype can be deduced from
the stereotype �clone� of the clone action.

A more complex example is given in Fig. 14. The activity diagram starts
with the boarding activity of the passenger at the Munich airport. This activity
changes the location of the passenger Hubert from the airport (MUC) to the
particular plane LH123. The next activity is the take-off activity of the plane.

<<clone>>
take on board

lop’ : Document
[atLoc=LH123]

<<mobile>>

lop : Document
[atLoc=MUC]

<<mobile>>
<<copy>>

Fig. 13. The clone action.

This activity changes the location of the plane from the Munich airport (MUC) to
a not specified destination, that is we are not interested in the location where the
plane is when it is flying. During the flight, the plane performs the flying activity
and the passenger the send mail activity. These activities happen in parallel. Note
that before landing, the passenger has to stop the send mail activity because
the use of electronic devices is not allowed during take-off and landing. When
landing, the location of the plane is changed to the destination airport, in this
case the Paris airport (CDG). Finally, the passenger deplanes and is now located
at the Paris airport. This notation is responsibility centered as the swimlanes
are indicating who is performing a particular activity.

<<move>>
boarding

Hubert
[atLoc=LH123]

LH123
[atLoc=MUC]

take off
<<move>>

LH123

Hubert
[atLoc=Muc]

send mail flying

<<move>>
deplaning

Hubert
[atLoc=CDG] landing

<<move>> LH123
[atLoc=CDG]

Hubert LH123

Fig. 14. The airport example using the responsibility centered notation.

5.2 Location Centered View

boarding
<<move>>

Hubert:Passenger

Hubert:Passenger

LH123:Plane

MUC:Airport

Fig. 15. The move action.

The second notation uses containment of the boxes for mobile objects/locations
in the boxes of other locations to show the atLoc relation. For that we use the
same UML notation as for composite objects. A difference is that the atLoc rela-
tion is not an aggregation. Another difference is that we also allow action states
to be drawn inside composite objects of stereotype �location�. This indicates
that the action is performed at the corresponding location. Figure 15 shows this
notation for the move operation depicted in Fig. 12.

Note, that in addition to the fact that the passenger is in the plane, we
can model also that the plane is parked at the airport. This is an information
that cannot be represented in the responsibility centered approach as shown in
Fig. 12. What Fig. 15 also shows is that activities can be drawn inside locations
to indicate that the operation is performed at that location. In the example,
boarding takes place at the airport. While it is still possible to use swimlanes to
indicate who is performing an action, most likely, more complex diagrams will
have to concentrate on either the topology of locations or on the actor performing
an activity to avoid an overloaded diagram.

Note that the box containing the airport may be omitted if this is not relevant
for the presentation.

Figure 16 presents a location centered view of the activities of Fig. 14. Again,
the first activity changes the location of the passenger from the airport to the
plane. However, in contrast to the responsibility centered notation it is visible
that the passenger is still located indirectly in the Munich airport, because the
plane has not moved yet. Also one can see that the boarding activity happens at
the airport. The next activity, the take-off, takes again place at the airport. In
the location centered variant the notation indicates that the plane has left the
airport after take-off. Again, during the flight the activities flying and send mail
happen in parallel. In contrast to the information provided by the responsibility-
centered notation, this notation shows that the send mail activity happens in the

plane, while flying does not take place inside the plane. Note that for simplicity
reasons, the box denoting the passenger during the flight can be omitted. Landing
and deplaning are similar to the activities boarding and take-off.

6 Security

There is a very wide range of security requirements and design features which,
ultimately, we would like to be able to record in our variant of UML and analyse
with formal tools [5]. Much of this is outside the scope of formal techniques,
for example because it pertains to information that is legal, psychological or
sociological rather than mathematical. Nevertheless we do not wish to limit our
UML profile to expressing only the characteristics that the tools can analyse.

Our main source for security features is a profile UMLsec developed by Jan
Jürjens [10, 9]. The most detailed source of information is his PhD thesis Princi-
ples for Secure System Development [9]. His fifth chapter, entitled Secure Systems
Development with UML, defines the profile. (Note that the thesis also includes
a formal semantics based on ASMs for a restricted fragment of UML. We do
not adopt the semantics, since it is not suitable for our tool support and the
fragment of UML is not appropriate to our needs. However, the profile itself
does not depend on the formal semantics, so adopting the profile but not the
semantics is reasonable.)

We do not reproduce UMLsec’s definition here, but to give an overview of its
capabilities we first quote Jürjens’ list of requirements on the profile, and then
give an example, also taken from [9].

Hubert
<<move>>
boarding

take off
<<move>>

landing
<<move>>

Hubert

flying

Hubert

Hubert

Hubert
<<move>>
deplaning

send mail

CDG : AirportMUC : Airport

LH123 : Plane

LH123 : Plane

LH123 : Plane

Fig. 16. The airport example using the location centered notation.

6.1 Requirements on UMLsec

Security requirements One needs to be able to formulate basic security require-
ments such as secrecy and integrity of data in a precise way. Formalizations of
basic security requirements are provided via stereotypes, such as �secrecy� and
�integrity�.

Threat scenarios It should be possible to consider various situations that give
rise to different possibilities of attacks. Threat scenarios are incorporated using
the formal semantics and depending on the modelled underlying physical layer
via the sets of actions available to the adversary of a particular kind.

Security concepts One should be able to employ important security concepts (for
example that of tamper-resistant hardware). To incorporate security concepts
such as tamper-resistant hardware, threat scenarios can be used.

Security mechanisms One needs to be able to incorporate security mechanisms
such as control access. For example, modeling the Java security architecture
access control mechanisms.

Security primitives On a more fine-grained level, one needs to model security
primitives. They are either built in (such as symmetric and asymmetric encryp-
tion), or can be treated (such as security protocols).

Underlying physical security It is necessary to take into account the level of
security provided by the underlying physical layer. This can be addressed by the
stereotype secure link in deployment diagrams.

Security management Security management questions (such as secure workflow)
need to be addressed. This can be considered by using activity diagrams.

6.2 Example of UMLsec

Figure 17 shows an example concerning communication link security which can
be used in our airport case study for describing the login of a passenger into a
network. The client workstation and the server are linked via a communication
link; here a stereotype �internet� shows that the link is of a specific kind (the
Internet). There is also a dashed-arrow dependency going from the web server to
the client through the client application’s interface. The component web server
uses the services of the component client apps. The stereotype �secrecy� is used
to indicate the precise dependency between the two.

:ServerMachine:ClientMachine

get_password

client apps

access controlbrowser

<<secrecy>>

<<Internet>>

web server

Fig. 17. Secure links usage

6.3 Global computing requirements beyond UMLsec

Although UMLsec is a good basis for the security aspects of our profile, it does
not completely meet all requirements for global computing. In particular, we have
to extend UMLsec by stereotypes for messages in sequence diagrams to repre-
sent requirements on the communication medium to be used for that particular
message. For example, we have to be able to represent by a stereotype �secure�,
that a particular message is communicated via a secure medium. Figure 18 gives
an overview of our security related stereotypes.

7 Performance

Performance requires more sophisticated extensions to UML than in many other
areas. The OMG’s standard profile for Schedulability, Performance and Time
[15] meets quite closely what performance modellers are looking for. There are
some areas where changes are needed and many open questions which can only
be answered by further practical experience within the project, which is ongoing
at the time of writing.

7.1 Introduction to the performance aspects of [15]

One of the reasons why a performance profile is more complex than a security
or mobility profile is that it needs to support a variety of related, but differ-
ent, aims. The performance modeller does not simply record information about
performance requirements that must be taken into consideration, or perhaps
verified. Several different kinds of information must be recorded: requirements,
measured performance, performance assumptions and performance predictions,
for example. Some of this information will be output from a performance analy-
sis or simulation tool; other parts of the information will be input to such tools,

<< stereotype >> << stereotype >>

message
<< metaclass >>

protocol

<< stereotype >><< stereotype >>
wireless

<< stereotype >>

<< stereotype >> << stereotype >> << stereotype >>

<< stereotype >>

<< stereotype >>
secure

secure−wirelessMMSwireless−protocol

Fig. 18. Security added stereotypes

used in various ways. The profile must support the user in recording all these
kinds of information and in differentiating between them.

Quoting from [15] p135:
The profile provides facilities for:

– Capturing performance requirements within the design context
– Associating performance-related QoS characteristics with selected elements

of a UML model
– Specifying execution parameters which can be used by modeling tools to

compute predicted performance characteristics
– Presenting performance results computed by modeling tools or found in test-

ing

Typical tools for this kind of analysis provide two important functions. The
first is to estimate the performance of a system instance, using some kind of
model. The second function is assistance with determining how the system can
be improved, by identifying bottlenecks or critical resources. A system designer
will typically want to analyse the system under several scenarios using different
parameter values for each scenario while maintaining the same overall system
structure.

send
file

<<PAstep>>{PAdemand=

PAextOp=(’network’, $P)}
(’est’, mean, 0.2, ’ms),

Fig. 19. External operation

Providing UML extensions that allow designers to do these tasks using any
one of a number of different analysis techniques is challenging. The authors of
[15] have separated two tasks.

First, they have designed an extensible collection of abstract modelling con-
cepts to describe the information necessary for performance (and more generally,
schedulabilty and real time) analysis. Their collection is layered for manage-
ability. The most abstract level is the general resource model describing the
relationships between a range of basic analysis concepts, such as resource and
various quality of service attributes. Several packages, including the performance
modelling package which is our concern, extend this basic model. There is the
possibility of extending the model further for global systems specific purposes,
though we have not so far felt the need to do so. An analysis technique is de-
fined in terms of the concepts, and can then apply to any notation, graphical
or otherwise, from which the information embodied in the “concepts” can be
derived.

Second, [15] provides a collection of UML stereotypes (i.e. specialised versions
of UML model elements) and mappings from these to the concepts. This allows
the relevant performance information to be expressed in a UML model. The
information is then mapped to the “concepts”, and so an analysis technique
defined in terms of the concepts can be applied. The whole process of applying
an analysis technique to a UML model can be automated.

It is not practical or useful to attempt to reproduce here all the facilities
provided by [15]; instead we give examples and refer the interested reader to [15]
for fuller information.

One of the fundamental concepts for the underlying performance model is a
step. Several different kinds of UML model element (Message, Stimulus, Action
State and Subactivity State) may be used to represent a step. Each of them
may be labelled with the stereotype �PAstep� to indicate that a performance
model should include a step corresponding to this model element. The stereotype
�PAstep� has seven tags: PAdemand, PArespTime, PAprob, PArep, PAdelay,
PAextOp, PAinterval. The three tags used in our example are:

– PAdemand is the total execution demand of the step on its host resource.
Every scenario step in Fig. 19 has a PAdemand tagged value indicating its
estimated mean execution time on the host processor.

– PAextOp is used to specify the set of operations of resources used in the exe-
cution of a step but not explicitly represented in the model. Each operation
attribute identifies the operation and the number of times it is repeated.

– PAprob is the probability, in situations where its predecessor step has mul-
tiple successors, that this step will be executed.

Figures 19 and 20 show examples of the use of the stereotype and these tags.
Figure 19 means that here our tagged value expression represents a demand

in the scenario step with an estimated mean value of 0.2 milliseconds. It calls an
external operation called ’network’, ’P’ times.

accept
request

get private
document from buffer

get document
document
get public

<<PAstep>>{PAdemand=
(’est’, ’mean’, 1.8, ’ms’)}

<<PAstep>>{PAdemand=
(’est’, ’mean’, 0.9, ’ms’),
PAprob=0.3}

<<PAstep>>{PAdemand=
(’est’, ’mean’, 0.9, ’ms’),
PAprob=0.2}

<<PAstep>>{PAdemand=
(’est’, ’mean’, 0.2, ’ms’),
PAprob=0.5}

Fig. 20. Probability

In Fig. 20 when the request is accepted, there is a probability of 0.5 that the
document will be read from the buffer, 0.2 from the disk containing the private
documents, 0.3 from the disk containing the public documents.

Our last example, Fig. 21, illustrates the use of nodes.
Here the ClientWorkstation is a host processor. The stereotype �PAhost�

has seven tags: PAschdPolicy, PArate, PAutilisation, PActxtSwT, PAprioRange,
PApreemptable, PAthroughput. The four tags used in our example are:

– PAschdPolicy is the access control policy for handling requests from scenario
steps. The scheduling policy offers a choice of six tag types : here PR means
Priority Inheritance.

– PArate is a relative speed factor for the processor expressed as a percentage
of some normative processor.

– PAutilisation is the mean number of concurrent users of the resource.
– PActxtSwT is the length of time (overhead) required by the processing re-

source to switch from the execution of one scenario to a different one. Here
the estimated mean value is 40 microseconds.

:ClientWorkstation

<<PAhost>>

{PAschdPolicy=PR,
PArate=1,
PAutilisation=$Util,
PActxtSwT=(’est’, ’mean’, 40, ’us’)}

Fig. 21. Node

8 Conclusion and Future Work

In this paper we have presented extensions to UML sequence and activity dia-
grams to model the mobility aspects of global systems. We have also discussed
how UML may be extended to model the performance and security aspects of
global systems.

We have defined stereotyped classes to model locations and mobile objects,
as well as stereotyped action states to model move and clone actions. To model
complex systems it is desirable to have the concepts for expressing mobility as
part of the language — as we have done in this paper — instead of modeling
these defining these concepts indirectly using special encoding. The new form
of Sequence and Activity Diagrams provide a powerful graphical notation for
modelling mobility. They allow one to model in a clear way complex behav-
ior. For example, a formal specification of the flying person would be rather
very complicated, but a graphical representation would make it much easier to
understand.

Within the two projects primarily concerned with this work, AGILE and
DEGAS, work is proceeding as follows. Within AGILE, we are currently in-
vestigating the appropriateness of UML for the specification of structural and
behavioral aspects of mobile systems. Our next step will be to validate the pro-
posed notations in a bigger case study. The objective of AGILE is to develop
an architectural approach in which mobility aspects can be modeled explicitly.
Within DEGAS, we are connecting standard UML tools with a variety of for-
mally based tools which are capable of performance and security analysis.

We plan to develop a formal semantics for the extended activity and sequence
diagrams to provide a precise meaning of the presented concepts which is needed
for formal analysis and reasoning about models. In addition, we plan to develop
tools that support animation, early prototyping and analysis of mobile systems.

References

1. AGILE. Architectures for mobility. www.pst.informatik.uni-muenchen.de, 2003.
2. Hubert Baumeister, Nora Koch, Piotr Kosiuczenko, and Martin Wirsing. Extend-

ing activity diagrams to model mobile systems. In M. Aksit, M. Mezini, and R. Un-
land, editors, Objects, Components, Architectures, Services, and Applications for
a Networked World, LNCS 2591, pages 278–293, Berlin-Heidelberg, October 2002.
Springer-Verlag.

3. Raymond Buhr and Ronald Casselman. Use Case Maps for Object-Oriented Sys-
tems. Prentice-Hall, USA, 1995.

4. Luca Cardelli and Andrew Gordon. Mobile ambients. In Maurice Nivat, editor,
First Conference on Foundations of Software Science and Computation Structure,
LNCS 1378, pages 140–155. Springer Verlag, March 1998.

5. DEGAS. Design Environments for Global Applications. www.omnys.it/degas.
6. Francisco Durán, Steven Eker, Patrick Lincoln, and José Meseguer. Principles

of Mobile Maude. In David Kotz and Friedemann Mattern, editors, Agent Sys-
tems, Mobile Agents, and Applications, Second International Symposium on Agent
Systems and Applications and Fourth International Symposium on Mobile Agents,
ASA/MA 2000, LNCS 1882, pages 73–85. Springer, 2000.

7. FIPA. FIPA agent management: Support for mobility specification. www.fipa.org,
August 2001.

8. Jin Jing, Abdelsalam Helal, and Ahmed Elmagarmid. Client-server computing in
mobile environments. ACM Computing Surveys, 31(2):117–157, 1999.

9. Jan Jürjens. Principles for Secure System Development (submitted draft). PhD
thesis, University of Oxford, UK, 2002.

10. Jan Jürjens. UMLsec: Extending UML for secure systems development. In In
proceedings of UML2002, LNCS. Springer, 2002.

11. Cornel Klein, Andreas Rausch, Marc Sihling, and Zhaojun Wen. Extension of the
Unified Modeling Language for mobile agents. In K. Siau and T. Halpin, editors,
Unified Modeling Language: Systems Analysis, Design and Development Issues,
chapter VIII. Idea Group Publishing, Hershey, PA and London, 2001.

12. Piotr Kosiuczenko. Sequence diagrams for mobility. In Stefano Spaccapietra,
editor, 21 International Conference on Conceptual Modeling (ER2002). Springer-
Verlag, October 2002. to appear.

13. OMG. Unified Modeling Language (UML), version 1.5. www.omg.org, March 2005.
14. Dirk Pattinson and Martin Wirsing. Making components move: A separation of

concerns approach. In Proc. First Internat. Symposium on Formal Methods for
Components and Objects, FMCO’02, Leiden, November 2002, LNCS, 2003. To
appear.

15. Bran Selic, Alan Moore, Murray Woodside, Ben Watson, Morgan Bjorkander, Mark
Gerhardt, and PDorina Petriu. Response to the OMG RFP for Schedulability,
Performance, and Time, revised, June 2001. OMG document number: ad/2001-
06-14.

16. Axel Wienberg, Florian Matthes, and Marko Boger. Modeling dynamic software
components in UML. In Robert France and Bernhard Rumpe, editors, UML’99 -
The Unified Modeling Language. Proceedings, LNCS 1723, pages 204–219. Springer-
Verlag, 1999.

