
 1

A Metamodel for UWE1

Andreas Kraus, Nora Koch

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67, D-80538 München
{krausa,kochn}@informatik.uni-muenchen.de

1 Introduction

The Web Engineering field is rich in design methods, such as OOHDM, OO-H, UWE,
W2000, WebML or WSDM (Baresi et al., 2002; Koch and Kraus, 2002; Schwabe and Pastor,
2001) supporting the complex task of designing Web applications. These methodologies pro-
pose the construction of different views (i.e. models) which comprises at least a conceptual
model, a navigation and a presentation model although naming them differently. Each model
is built out of a set of modeling elements, such as nodes and links for the navigation model or
image and anchor for the presentation model. In addition, all these methodologies define or
choose a notation for the constructs they define.

We argue that although all methodologies for the development of Web applications use dif-
ferent notations and propose slightly different development processes they could be based on
a common metamodel for the Web application domain. A meta-model is a precise definition
of the modeling elements, their relationships and the well- formedness rules needed for creat-
ing semantic models. A methodology based on this common metamodel may only use a sub-
set of the constructs provided by the metamodel. The common Web application metamodel
should be therefore the unification of the modeling constructs of current Web methodologies
allowing for their better comparison and integration.

Metamodeling also plays a fundamental role in CASE-tool construction and is also the core of
automatic code generation. We propose to build the common metamodel on the standardized
OMG metamodeling architecture facilitating the construction of meta CASE-tools.

1 Technical Report 0301, Institut für Informatik, Ludwig-Maximilians-Universität München, January 2003.

 2

A very interesting approach in terms of metamodeling for Web applications is the metamodel
defined for the method W2000 to express the semantics of the design constructs of this
method (Baresi et al., 2002). This metamodel is an extension of the UML metamodel com-
plemented with Schematron rules for model checking. The CADMOS-D design method for
web-based educational applications (Retalis et al., 2002) defines another metamodel. It pro-
vides a UML visual representation of the modeling elements, but does not establish a relation-
ship to the UML metamodel. Other approaches, such as the Generic Customization Model for
Ubiquitous Web Applications (Finkelstein et al., 2002) or the Munich Reference Model for
Adaptive Hypermedia Applications (Koch and Wirsing, 2002) define a reference model for
such applications, providing a framework for understanding relationships among entities of
those specific Web domains.

As a first step towards a common metamodel we present in this paper a metamodel (i.e. ab-
stract syntax) for the UWE methodology, which could then be joined with metamodels that
are/will be defined for other methods. It is defined as a conservative extension of the UML
metamodel (UML, 2001). This metamodel provides a precise description of the concepts used
to model Web applications and their semantics. Our methodology UWE is based on this
metamodel including tool support for the design and for the semi-automatic generation of
Web applications. We further define a mapping from the metamodel to the notation (i.e. con-
crete syntax) used in UWE.

The paper is organized as follows: Section 2 gives a brief introduction to the UWE methodol-
ogy. In Section 3 we propose a metamodel for the UWE methodology. In Section 4 we dis-
cuss how the metamodel elements can be mapped to the UWE notation. Finally, some conclu-
sions and future work are outlined in the last section.

2 UWE Methodology

The UWE methodology covers the whole life-cycle of Web application development propos-
ing an object-oriented and iterative approach based on the Unified Software Development
Process (Jacobson et al., 1999). The main focus of the UWE approach is the systematic design
followed by a semi-automatic generation of Web applications.

The notation used for design is a “lightweight” UML profile described in previous works, e.g.
(Koch and Kraus, 2002). A UML profile is a UML extension based on the extension mecha-
nisms defined by the UML itself with the advantage of using a standard notation that can be
easily supported by tools and that does not impact the interchange formats. The UWE profile
includes stereotypes and tagged values defined for the modeling elements needed to model the
different aspects of Web applications, such as navigation, presentation, user, task and adapta-
tion aspects. For each aspect a model is built following the guidelines provided by the UWE
methodology for the systematic construction of models. For example, a navigation model is

 3

built out of navigation classes, links and a set of indexes, guided tours and queries. The navi-
gation classes and links are views over conceptual classes. Similarly, the user is modeled by a
user role, user properties and associations of these properties to the conceptual classes. Cur-
rently, an extension of the CASE-tool ArgoUML (ArgoUML) is being implemented to sup-
port the construction of these UWE design models.

In Figure 1 we give an example for the UWE design models of a Conference Management
System application. On the left side the conceptual model is depicted from which in succes-
sive steps a navigation model is systematically constructed. On the right side we show the re-
sult of the first step in building the navigation model.

Conceptual Model Navigational Model

Conference

reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Keyword
key : String

Paper

title : String
state : Integer

*

*

*
*

Author

name : String
affiliation : String

*

*

1..*1..*

*

*

*

*

1..*1..*

*
*

Conference
reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Paper

title : String
keywords[*]: String
state: Integer

*

Author

name : String
affiliation : String

*

*

*

*

*

1..*

1..*

«navigation class»

«navigation class»«navigation class»

SubmittedPapers

Conceptual Model Navigational Model

Conference

reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Keyword
key : String

Paper

title : String
state : Integer

*

*

*
*

Author

name : String
affiliation : String

*

*

1..*1..*

*

*

*

*

1..*1..*

*
*

Conference
reviewDeadline : Date
submissionDeadline : Date
title : String

addPaper(Paper p)

Paper

title : String
keywords[*]: String
state: Integer

*

Author

name : String
affiliation : String

*

*

*

*

*

1..*

1..*

«navigation class»

«navigation class»«navigation class»

SubmittedPapers

Figure 1. Example for UWE design models of a Conference Management System

The semi-automatic generation of Web applications from design models is supported by the
UWEXML approach (Kraus and Koch, 2002). Design models delivered by the design tools in
the XMI-Format are transformed into XML documents that are published by an XML pub-
lishing framework.

3 UWE Metamodel

The UWE metamodel is designed as a conservative extension of the UML metamodel (ve r-
sion 1.4). Conservative means that the modeling elements of the UML metamodel are not
modified e.g. by adding additional features or associations to the modeling element Class. All
new modeling elements of the UWE metamodel are related by inheritance to at least one
modeling element of the UML metamodel. We define for them additional features and rela-
tionships to other metamodel modeling elements and use OCL constraints to specify the addi-
tional static semantics (analogous to the well- formedness rules in the UML specification). By

 4

staying thereby compatible with the MOF interchange metamodel we can take advantage of
metamodeling tools that base on the corresponding XML interchange format XMI.

In addition, the UWE metamodel is “profileable” (Baresi et al., 2002), which means that it is
possible to map the metamodel to a UML profile. Then standard UML CASE-tools with sup-
port for UML profiles or the UML extension mechanisms, i.e. stereotypes, tagged values and
OCL constraints can be used to create the UWE models of Web applications. If technically
possible these CASE-tools can further be extended to support the UWE method.

By sticking to the actual UML version we also have to deal with some of the problems of its
specification. The metamodeling architecture defined by the OMG in which the UML meta-
model is embedded is for example not a strict multi- level-metamodeling architecture: a mod-
eling element at the metamodel level i is not in-stance of exactly one element at the i+1 level.
The UML (M2) metamodel contains for example the modeling elements Class and Instance.
This problem is also called the “Loose metamodeling problem” (Atkinson, 2001) and will be
hopefully solved in a forthcoming version of the UML.

3.1 Package Structure

All UWE modeling elements are contained within one top- level package UWE which is
added to the three UML top- level packages. The structure of the packages inside the UWE
package depicted in Figure 2 is analogous to the UML top- level package structure (shown in
gray). The package Foundation contains all basic static modeling elements, the package Be-
havioral Elements depends from it and contains all elements for behavioral modeling and fi-
nally the package Model Management which also depends from the Foundation package con-
tains all elements to describe the models themselves specific to UWE. These UWE packages
depend on the corresponding UML top- level packages.

UWE

Foundation

Behavioral
Elements

Model
Management

Foundation

Model
Management

Behavioral
Elements

 5

Figure 2. UWE top-level packages.
(The UML metamodel elements are depicted in gray)

The UWE Foundation package is further structured in the Core and the Context packages (see Figure
3). The former contains packages for the core (static) modeling elements for the basic aspects of Web
applications which are the conceptual, the navigation and the presentation aspects. The latter depends
on the Core package and contains further sub-packages for modeling the user and the environment
context. The Behavioral Elements package consists of the two sub-packages Task and Adaptation that
comprise modeling elements for the workflow and personalization aspects of a Web application re-
spectively. All together one can say that the separation of concerns of Web applications is represented
by the package structure of the UWE metamodel.

Foundation

Context

User Environment

Core

NavigationConceptual Presentation

Model
Management

Behavioral
Elements

TaskAdaptation

Figure 3. Package substructure of the UWE metamodel

3.2 Conceptual Package

The following sections describe the modeling elements and the well- formedness rules of the
conceptual package.

3.2.1 Abstract Syntax

Conceptual modeling for Web applications within UWE does not differ from conceptual
modeling for regular applications. But for the reason of a conservative extension described at
the beginning of this section for all standard static UML modeling elements for which we
want to define associations to other elements of the UWE metamodel must first be specialized
to a corresponding UWE conceptual modeling element. So we introduce for example a new
class ConceptualClass which is inherited from the UML element Class but has no additional
features. We do the same for the Attribute, Operation and Association elements as it is shown

 6

in Figure 4. OCL constraints are defined to assure that a conceptual model is built only with
the new defined classes for classes, attributes and operations.

ConceptualAttribute ConceptualAssociation

Association
(Foundation.Core)

AssociationEnd
(Foundation.Core)

ConceptualOperation

BehavioralFeature
(Foundation.Core)

Operation
(Foundation.Core)

Feature
(Foundation.Core)

Class
(Foundation.Core)

ConceptualClass

Classifier
(Foundation.Core)

StructuralFeature
(Foundation.Core)

Attribute
(Foundation.Core)

1

2..*

{ordered}

+connection
1

+participant

*

+association

0..1

+owner

* {ordered}

+feature

Figure 4. UWE Conceptual Package

3.2.2 Well-Formedness Rules

The following well- formedness rules apply to the conceptual package.

1. A ConceptualClass can only have associations to ConceptualAssociations and can only
have ConceptualOperation or ConceptualAttribute features.

context ConceptualClass
inv: self.feature->forAll(oclIsKindOf(ConceptualOperation) or

f.oclIsKindOf(ConceptualAttribute))
inv: self.association->forAll(association.oclIsKindOf(ConceptualAssociation))

2. A ConceptualAssociation must have two association ends and may be used only for
ConceptualClass classifiers.

context ConceptualAssociation
inv: self.connection->size() = 2
inv: self.connection.participant->forAll(oclIsKindOf(ConceptualClass))

3. The ConceptualAttribute and ConceptualOperation features can only be owned by Concep-

tualClass classifiers.

context ConceptualAttribute
inv: self.owner->notEmpty() implies self.owner.oclIsKindOf(ConceptualClass)

 7

context ConceptualOperation
inv: self.owner->notEmpty() implies self.owner.oclIsKindOf(ConceptualClass)

Additional Operations

1. The operation transitiveClosure results in a set containing the transitive closure of a
ConceptualClass respective to associations.

context ConceptualClass
def: transitiveClosure : Set(ConceptualClass) = Set{ self }->union(

self.association.association.connection.participant.transitiveClosure)

3.3 Navigation Package

The following sections describe the abstract syntax and the well- formedness rules of the navi-
gation package.

3.3.1 Abstract Syntax

The basic elements in navigation models are nodes and links. The corresponding modeling
elements in the UWE metamodel are NavigationNode and Link which are derived from the
UML Core elements Class and Association, respectively. The backbone of the navigation
metamodel is shown in Figure 5. The NavigationNode meta-class is abstract which means that
only further specialized classes may be instantiated; furthermore it can be designated to be an
entry node of the application with the isLandmark attribute. The Link class is also an abstract
class and the isAutomatic attribute is used to express that the link should be followed auto-
matically by the system and not by the user. Links connect a source NavigationNode with one
or more target NavigationNodes as expressed by the two associations between Link and
NavigationNode. Note that this is an extension to the semantics of links in HTML where only
one target is allowed (unless some technical tricks are employed). The associations between
Link and NavigationNode are purely conceptual because we reuse the structure defined in the
UML Core package where Classes are connected to Associations via AssociationEnds. For
further details see the UML specification (UML, 2001).

 8

Class
(Foundation.Core)

Association
(Foundation.Core)

Link
isAutomatic : Boolean

NavigationNode
isLandmark : Boolean

ExternalNode
url : String

TaskLinkMenuNavigationClass NavigationLinkExternalLink

*

1..*

{derived}

+source

1

+outLinks

*

{derived}

+target

1..*

+inLinks

*

0..1 *

Figure 5. UWE Navigation - Backbone

The NavigationNode is further specialized to the concrete node types NavigationClass, Menu
and ExternalNode. The NavigationClass element connects the navigation model with the con-
ceptual model as described in the next paragraph. It may have a Menu that contains Links to
NavigationNodes.

Figure 6 shows the connection between navigation and conceptual objects. A NavigationClass
is derived from the ConceptualClass at the association end with the role name derivedFrom –
or – one could say that there can exists several navigation views on a conceptual class. The
NavigationClass consists of NavigationAttributes (derived from the UML Core element At-
tribute) which are themselves derived from ConceptualAttributes. An important invariant is
that all ConceptualAttributes from which the NavigationAttributes of a NavigationClass are
derived, have to be ConceptualAttributes of a Conceptua lClass in the transitive closure of the
ConceptualClass from that the NavigationClass is derived. This can be formally expressed as
an OCL constraint listed in the following section.

ConceptualAttribute
(UWE.Foundation.Core.Conceptual)

ConceptualClass
(UWE.Foundation.Core.Conceptual)

NavigationAttribute Attribute
(Foundation.Core)

NavigationNode

NavigationClass

*
+derivedFromAttributes
*

*
+derivedFrom
1

* <<implicit>>

Figure 6. UWE Navigation Package – Connection between navigation and conceptual objects

We distinguish the following types of links that are specializations of the class Link as shown
in Figure 7:

• NavigationLink is used for modeling the (static) navigation with the usual semantics
in hypermedia applications. Additionally we can specify a sequence of one or more

 9

AccessPrimitives, such as Index, Query and GuidedTour. Each one is associated to
one or more NavigationAttributes;

• TaskLink connects the source node with the definition of a part of its dynamic behav-
ior specified in a UWE task model, a TaskGraph; and

• ExternalLink links nodes outside the application scope, so called ExternalNodes.

TaskGraph
(UWE.Behavioral
Elements.Task)

AccessPrimitive

TaskLink

NavigationAttribute

Index

ExternalLink

ExternalNode
url : String

Link

GuidedTour

NavigationLink

Query

+accessedAttributes

1..* {ordered}

<<implicit>>
1

1..*

*

1

1

*
{ordered}

Figure 7. UWE Navigation – Specialized link types and access primitives

3.3.2 Well-Formedness Rules

The following well- formedness rule apply to the navigational package.

1. All ConceptualAttributes from which the NavigationAttributes of a NavigationClass are de-
rived, have to be ConceptualAttributes of a ConceptualClass in the transitive closure of
the ConceptualClass from that the NavigationClass is derived.

context NavigationClass
inv: self.feature->select(oclIsKindOf(NavigationAttribute)).derivedFromAttributes->

forAll(f | self.derivedFrom.transitiveClosure->exists(feature = f))

3.4 Presentation Package

The following sections describe the abstract syntax and the well- formedness rules of the pres-
entation package.

 10

3.4.1 Abstract Syntax

The central element for structuring the presentation space is the abstract class Location (see
Figure 8). The presentation sub-structure is modeled with the specialized class LocationGroup
that consists of a list of sub- locations whereas presentation alternatives between different Lo-
cations are modeled with the class LocationAlternative; optionally a default alternative can be
specified. Finally, the “atomic” subclass PresentationClass contains all the logical user inter-
face (UI) elements presented to the user of the application. It is derived from exactly one
NavigationNode. Further we use a ternary association for expressing link-sensitive presenta-
tion, i.e. when following a link from one NavigationNode to another we can specify the Pre-
sentationClass that should be presented to the user depending on the link chosen.

NavigationNode
(UWE.Foundation.Core.Navigation)

Link
(UWE.Foundation.Core.Navigation)

PresentationClass LocationGroup

Class
(Foundation.Core)

Location

LocationAlternatives

*

+alternatives * +sublocations* {ordered}

*

+default 0..1

+derivedFrom 1

*

1

0..1

+target1

Figure 8. UWE Presentation - Backbone

All user interface elements depicted in Figure 9 are specialization of the abstract class UIEle-
ment which is associated to zero or more NavigationAttributes. User interface elements are
either group- like (with the base type UIElementGroup) or primitives as for example Image,
Text or TextInput. Collections are used to view homogenous sets of NavigationNodes and the
subtype AnchoredCollection is connected to the Index element that represents the correspond-
ing selection of elements. The UI elements contained within the Collection group element are
used to present specific features of the set of NavigationNodes. An Anchor in general is asso-
ciated to a Link element, i.e. a NavigationLink, an ExternalLink or a TaskLink. The latter
may only be used for the specialization Button of Anchor. This Button is contained within a
Form element that contains the input elements used as input parameters for executing a task.

 11

Index
(UWE.Foundation.Core.Navigation)

NavigationAttribute
(UWE.Foundation.Core.Navigation)

Link
(UWE.Foundation.Core.Navigation)

UIElement

Class
(Foundation.Core)

UIElementGroup

TextInput

AnchoredCollection

TextImage

Button

FormCollection Anchor

PresentationClass

*

1

* **

<<implicit>>

1..*

1..*

*

*

1

Figure 9. UWE Presentation - User Interface Elements

3.4.2 Well-Formedness Rules

The following well- formedness rules apply to the presentation package.

1. A Button may only be associated to a TaskLink (which is a subtype of Link) and a Task-

Link may be only associated to a Button.

context Anchor
inv: self.oclIsKindOf(Button) implies self.link.oclIsKindOf(TaskLink)
inv: self.link.oclIsKindOf(TaskLink) implies self.oclIsKindOf(Button)

3.5 User Package

The following sections describe the abstract syntax and the well- formedness rules of the user
package.

 12

3.5.1 Abstract Syntax

The basic element in the User metamodel that is shown in Figure 10 is the metaclass User that
in turn is a specialization of the UML Actor element in the Use Cases package. Every user has
a unique user identification and can have assigned different user roles. The important element
for the adaptation aspect is UserProfile which can be assigned either to a UserRole for a group
of users or to an individual user. Such a UserProfile consists of Property elements. Properties
are specialized on the one hand to application independent properties such as user name or
address; and on the other hand to application dependent properties where we further distin-
guish between the different aspects of Web applications as the conceptual, the navigation and
the presentation aspect. ConceptualProperties for example are connected to ConceptualAttrib-
utes and NavigationProperties are connected to NavigationAttributes. The latter may be used
to personalize the application’s navigation behavior on the user behavior.

ConceptualAttribute
(UWE.Foundation.Core.Conceptual)

UIElement
(UWE.Foundation.Core.Presentation)

NavigationAttribute
(UWE.Foundation.Core.Navigation)

ConceptualProperty PresentationPropertyNavigationPropertyApplicationIndependentProperty

Actor
(Behavioral
Elements.Use Cases)

PropertyUserProfile

UserRole
roleID

User
userID

0..1

1

+userProfile

*

+property

*

+user

*

+role

*

+role 1

+userProfile 0..1

*

1..*

*

1..*

*

1..*

Figure 10. UWE User Package

3.6 Adaptation Package

The following sections describe the abstract syntax and the well- formedness rules of the adap-
tation package.

3.6.1 Abstract Syntax

The basic elements in adaptation models are the rules and the events that trigger these rules.
The corresponding modeling elements in the UWE metamodel are AdaptationRule and Rule-
Trigger. Figure 11 shows the backbone of the adaptation metamodel. AdaptationRule is de-
rived from the UML State Machine element Transition, and RuleTrigger is derived from the
UML State Machine element Event. A Transition may have associated a Guard and an Ac-
tion. Conversely, an AdaptationRule consists of exactly one AdaptationGuard and at least one

 13

AdaptationAction. Adaptation rules are classes related to user properties and to the core ele-
ments of the conceptual, navigation and presentation packages (not visualized here). Rules are
triggered by other rules or by events (called RuleTrigger in the metamodel) due to user behav-
ior (clicking, browsing, etc) or environment behavior (mobility, network changes, etc). The
RuleTrigger hierarchy is depicted in Figure 12.

AdaptationGuard

Transition
(Behavioral
Elements.State Machines)

Guard
(Behavioral
Elements.Common Behavior)

RuleTrigger

Event
(Behavioral
Elements.State Machines)

Action
(Behavioral
Elements.Common Behavior)

AdaptationAction

StateMachine
(Behavioral
Elements.State Machines)

ModelElement
(Foundation.Core)

AdaptationRule
phase : PhaseKind
propagate : Boolean

1

0..1

1

1

<<implicit>>

+rule

1

+action

1

<<implicit>>

+rule *

+trigger

1

0..1

+effect

0..1*

+trigger

0..1

0..1

+transitions *

+context 0..1

+behavior *

+trigger

*

+rule
*

Figure 11. UWE Adaptation – Backbone

EnvironmentBehavior

PresentationBehaviorNavigationBehavior

InformationSupply

NetworkChange

BackBrowsing

UserInactivity

UserBehavior

RuleTrigger

Browsing

Mobility

Clicking

Figure 12. UWE Adaptation – RuleTrigger Hierarchy

 14

3.7 Task Package

The concept task stems from the Human Computer Interaction (HCI) field (van Harmelen,
2001): a task is composed of one or more subtasks and/or actions that a user may perform to
achieve a goal; a goal represents a desired change in the state of the system and may be real-
ized by formulating a plan composed of tasks and then performing those tasks; actions are
primitive tasks that have no structure. Here we want to use the concept task in a broader sense
by considering tasks performed by the user (user tasks) or by the system (system tasks).

The following sections describe the abstract syntax and the well- formedness rules of the task
package.

3.7.1 Abstract Syntax

Different UML notations are proposed for task modeling. Wisdom is an UML extension that
proposes the use of a set of stereotyped classes that make the notation not very intuitive
(Nunes et al., 2000). Markopoulus (2000, 2002) makes two different proposals: an UML ex-
tension of use cases and another one based on statecharts and activity diagrams. The use cases
of the system can already be considered as tasks at analysis level. Because UML activity dia-
grams are normally used to further refine use cases we the UWE metamodel for task modeling
is defined as extension of the UML metamodeling elements for activity diagrams. Activity
diagrams in general can be considered as “roadmaps” of system functional behavior (Lieber-
man, 2001). With our extension of the concept task we may speak of “roadmaps” of user in-
teraction with the system. These “roadmaps” ease the automatic generation of Web applica-
tions out of a set of models (Kraus & Koch, 2002).

As can be seen in Figure 13 the TaskGraph element is defined as extension of the UML Ac-
tivityGraph. They themselves are extensions of StateMachines and are composed of Ac-
tionsStates on the one hand and ObjectFlowStates on the other hand. This is the extension
point in the UML metamodel. We introduce an extension of CallState (which is itself a spe-
cialization of ActionState) called TaskCallState for the atomic actions (or tasks) of Task-
Graphs. Further two different types of objects flows are distinguished: presentation object
flow represented by the PresentationObjectFlowState is used for modeling user input and out-
put whereas conceptual object flow represented by the ConceptualObjectFlowState is used for
modeling system input and output. Task hierarchies similar to the ConcurTaskTrees of Pa-
ternó (2000) can be expressed by the concept of sub-states of UML state machines and the
temporal order (with branches) between tasks is expressed by the transitions between activi-
ties.

 15

State
(Behavioral
Elements.State Machines)

PresentationObjectFlowState

ObjectFlowState
(Behavioral
Elements.Activity Graphs)

ConceptualObjectFlowState

TaskCallState

ActionState
(Behavioral
Elements.Activity Graphs)

CallState
(Behavioral
Elements.Activity Graphs)

SimpleState
(Behavioral
Elements.State Machines)

ActivityGraph
(Behavioral
Elements.Activity Graphs)

TaskGraph

<<implicit>>
0..1

+top 1

Figure 13. UWE Task Package

3.7.2 Well-Formedness Rules

The following well- formedness rules apply to the task package.

1. A ConceptualObjectFlowState may only be used together with a ConceptualClass Classi-

fier, the same should hold for the PresentationObjectFlowState and the PresentationClass

context ObjectFlowState
inv: self.oclIsKindOf(ConceptualObjectFlowState)

implies self.type.oclIsKindOf(ConceptualClass)
inv: self.type.oclIsKindOf(ConceptualClass)

implies self.oclIsKindOf(ConceptualObjectFlowState)
inv: self.oclIsKindOf(PresentationObjectFlowState)

implies self.type.oclIsKindOf(P resentationClass)
inv: self.type.oclIsKindOf(PresentationClass)

implies self.oclIsKindOf(PresentationObjectFlowState)

4 Mapping to the UWE Notation

Metamodels define the concepts and their relationships used in the modeling activities of a
certain domain – Web Design in our case –, whereas designers build application models using
a concrete notation, i.e. the concrete syntax.

 16

One way of mapping a metamodel to a concrete syntax often found in literature is to extend
the UML syntax in a non-standard way. This means for example that instead of using the
built- in extension mechanism of the UML new graphical symbols are introduced or existing
symbols are decorated or its shapes are changed. This could technically be easily achieved
e.g. using ArgoUML (ArgoUML); by using the NSUML Java framework one can make Ar-
goUML work with the extended UML metamodel and customize the graphical appearance of
all modeling elements. The drawback of this approach is on the one hand that the syntax and
semantic of the new notation has to be documented thoroughly. On the other hand the corre-
sponding metamodel interchange format is no longer the same as the UML interchange fo r-
mat. The consequence is that one can no longer use tools that rely on the UML XMI format.

We chose to map the metamodel concepts to a UML profile. A UML profile comprises the
definition of stereotypes and tagged values and specifies how they can be used by OCL con-
straints (i.e. well- formedness of a model). With appropriate tool support a model can be
automatically checked if it conforms to the profile. The definition of a UML profile has the
advantage that it is supported by nearly every UML CASE-tool either automatically, by a tool
plug- in or passively when the model is saved and then checked by an external tool.

A simplified version of the mapping rules is the following:

• Metamodel classes (e.g. NavigationClass) are mapped to stereotyped classes. The
name of the class is mapped to the name of the stereotype and the inheritance structure
is mapped to a corresponding inheritance structure between stereotypes.

• Attributes in the metamodel (e.g. the isAutomatic attribute of Link) are mapped di-
rectly to tagged values of the owner class with the corresponding name and type.

• Associations are mapped to tagged values or associations. Mapping to associations is
only possible if both classes connected to the association ends are a subtype of Classi-
fier, which means that they have a class- like notation. This is for example true for the
aggregation between Location and LocationGroup in the presentation package. On the
other hand we can always map associations to tagged values with the drawback of
worse readability in the diagrams, e.g. the association between NavigationClass and
Conceptua lClass. In the case of binary associations we assign a tagged value to the
corresponding stereotyped class of each association end.

We propose to resolve inheritance in the metamodel by repeating the mapping of attributes
and associations for all subclasses, e.g. the isLandmark attribute of the abstract class Naviga-
tionNode which is also mapped for the subclass NavigationClass.

In the following sections we present the notation (concrete syntax) for some (the navigation
and the presentation model) of the UWE models using the UWE UML profile.

 17

4.1 UML Profile for the Navigation Model

We use the simplified example of a conference management system presented in Figure 1 to
illustrate the mapping process and the notation of the UWE profile for the navigation model.
The central element in the metamodel NavigationClass is mapped to the stereotype «naviga-
tion class» (see Figure 6 and Figure 14). The metaattribute isLandmark indicating that the
Conference model element is an entry point is represented as a corresponding tagged value of
the model element. Another tagged value derivedFrom is a mapping of the metaassociation
between NavigationClass and ConceptualClass. As shown in the example for each model at-
tribute the relation to the attributes of the conceptual model is specified by the derivedFro-
mAttributes tagged value. The keywords attribute of the class Paper is a non trivial example
of this relationship hence the derivedFromAttributes tagged value states that this attribute is
related to the key attribute of the Keyword class in the conceptual model which is associated
to the Paper class in the conceptual model.

As the metaclass Link is a subclass of the UML metaclass Association it is also visualized
like a UML association. We decorate links with a stereotype such as for example «navigation
link». Each link must have an explicit direction and multiplicities defined. For better readabil-
ity the stereotype for links may be hidden when the context is clear.

<<navigation class>>
Conference

{isLandmark,
derivedFrom=Conference}

reviewDeadline : Date{derivedFromAttributes=reviewDeadline}
submissionDeadline : Date{derivedFromAttributes=submissionDeadline}
title : String{derivedFromAttributes=title}

<<navigation class>>
Paper

{derivedFrom=Paper}
keywords[*] : String{derivedFromAttributes=keyword.key}
title : String{derivedFromAttributes=title}

<<navigation class>>
Author

{derivedFrom=Author}
affilation : String{derivedFromAttributes=affilation}
name : String{derivedFromAttributes=name}

<<navigation link>>

1..*

<<navigation link>>

1..*
SubmittedPapers

<<navigation link>>
*

<<navigation link>>
*

Figure 14. Example for a navigation model using the UWE UML profile

4.2 UML Profile for the Presentation Model

The three specializations of the abstract class Location (see Figure 8) are mapped to the corre-
sponding stereotypes for the class elements «location alternative», «location group» and

 18

«presentation class». The presentation grouping expressed by the aggregation association of
the LocationGroup element is mapped to aggregation associations of the «location group»
classes where the aggregation is ordered and the association ends have classifier scope and
multiplicity one. LocationAlternatives are mapped in a similar way only that we express the
default alternative by a tagged value.

<<location alternative>>
Content

{default=ConferenceContent}

<<presentation class>>
PaperFromAuthorContent

{derivedFrom=SubmittedPapers}

<<presentation class>>
ConferenceContent
{derivedFrom=Conference}

<<location alternative>>
Navigation

<<presentation class>>
PaperContent

{derivedFrom=Paper}

<<location group>>
MainWindow

<<presentation class>>
AuthorContent

{derivedFrom=Author}

Figure 15. Example for a presentation model using the UWE UML profile

The relationship between PresentationClasses, NavigationNodes and Links is expressed by
one tagged value of the «presentation class» element with the name derivedFrom. The value
has to be the full qualified name of the corresponding NavigationNode for entry presentation
classes corresponding to entry navigation nodes (i.e. isLandmark=true) or for not-link-
sensitive presentation classes. In the case of a link-sensitive presentation the name of the cor-
responding Link is assigned to the tagged value. In Figure 15 we give an example for a pres-
entation model of the conference application example. The location group MainWindow di-
vides the presentation space into the Navigation and the Content location alternatives. The
possible alternatives are the presentation classes ConferenceContent (which is the default
one), AuthorContent and PaperContent. For the latter we added a link-sensitive presentation
class PaperFromAuthorContent which is presented when the link SubmittedPapers is used to
navigate to the Paper node. This is expressed by the derivedFrom tagged value.

As in the description of the metamodel we omit further details about mapping the user inter-
face part of the metamodel. Here we only want to mention that the user interface elements
(e.g. button, text or image) are aggregated to the «presentation class» elements.

5 Conclusions and Future Work

In this report we presented a metamodel for the UWE methodology and sketched the mapping
to a concrete syntax (i.e. notation), the UWE notation defined as a UML profile. The UWE
metamodel is defined as a conservative extension of the UML metamodel. This metamodel is
the basis for a common metamodel for the Web application domain and for the CASE-Tool
supported design.

 19

In our future work we will concentrate on the further refinement of the UWE metamodel to
cope with the needs for automatic code generation, especially for the dynamic aspects like
tasks and adaptation. At the same time we will extend our tools : on the one hand we have to
adapt the CASE-tool ArgoUWE to easily cope with a evolving metamodel and on the other
hand our tool for the semi-automatic generation of Web applications UWEXML (Kraus and
Koch, 2002) has to be extended.

6 References

ArgoUML. www.tigris.org

Atkinson C. and Kühne T. (2001). The Essence of Multilevel Metamodeling, Proc. of
UML´2001, LNCS 2185, Springer Verlag, pp. 19-33.

Baresi L., Garzotto F: and Paolini P. (2002). Meta-modeling Techniques meets Web Applica-
tion Design Tools. Proc. of FASE 2002, LNCS 2306, Springer Verlag, pp.
294-307.

Finkelstein A., Savigni A., Kappel G., Retschitzegger W., Pöll B., Kimmerstorfer E., Schwin-
ger W., Hofer T.,Feichtner C. (2002). Ubiquitous Web Application Develop-
ment - A Framework for Understanding, Proc. of SCI2002.

van Harmelen M. (2001). Interactive System Design Using Oo&hci Methods, In Object Mod-
eling and User Interface Design, van Harmelen M. (Ed), Addison Wesley, 365-
427.

Jacobson I., Booch G. and Rumbaugh J. (1999). The Unified Software Development Process.
Addison Wesley.

Koch N. and Kraus A. (2002). The expressive Power of UML-based Web Engineering. Proc.
of IWWOST´02, CYTED, pp. 105-119.

Koch N. and Wirsing M. (2002). The Munich Reference Model for Adaptive Hypermedia
Appli-cations. Proc. of AH´2002, LNCS 2347, Springer Verlag, pp 213-222.

Kraus N. and Koch. N. (2002). Generation of Web Applications from UML Models using an
XML Publishing Framework. Proc. of IDPT´2002.

Lieberman B. (2001). UML Activity Diagrams: Versatile Roadmaps for Understanding Sys-
tem Behavior, Rational Edge Electronic Magazine for the Rational Community

Markopoulos P. (2000). Supporting Interaction Design with UML, Task Modelling, TU-
PIS’2000 Workshop at the UML'2000.

 20

Markopoulos P. (2002). Modelling User Tasks with the Unified Modelling Language, to ap-
pear.

Nunes J. N. & Cunha J. F. (2000). Towards a UML Profile for Interaction Design: The Wis-
dom approach, Proceedings of the Unified Modeling Language Conference,
UML´2000, Evans A. and Kent S. (Eds.). LNCS 1939, Springer Publishing
Company, 100-116.

Paternò F. (2000), ConcurTaskTrees and UML: how to marry them?, TUPIS’2000 Workshop
at the UML'2000.

Retalis S., Papasalourus A. & Skordalakis M. (2002). Towards a generic conceptual design
meta-model for web-based educational applications. 2nd. International Work-
shop on Web oriented Software Technology (IWWOST´02), CYTED.

Schwabe D & Pastor O. (Ed.). (2001). Online Proc. of IWWOST´01. www.dsic.upv.es
/~west2001/iwwost01

UML (2001). The Unified Modeling Language, Version 1.4. Object Management Group
(OMG). www.omg.org.

