
Journal of Web Engineering, Vol. 2, No.3 (2004) 193-212
© Rinton Press

Requirements Engineering for Web Applications – A Comparative Study

M. JOSÉ ESCALONA

University of Seville. Spain

escalona@lsi.us.es

NORA KOCH

University of Munich (LMU) and

F.A.S.T. GmbH, Germany

kochn@informatik.uni-muenchen.de

koch@fast.de

Received (to be filled by the JWE editorial)
Revised (to be filled by the JWE editorial)

The requirements engineering discipline has become more and more important in the last years. Tasks
such as the requirements elicitation, the specification of requirements or the requirements validation
are essential to assure the quality of the resulting software. The development of Web systems usually
involves more heterogeneous stakeholders than the construction of traditional software. In addition,
Web systems have additional requirements for the navigational and multimedia aspects as well as for
the usability as no training is possible. Therefore a thoroughly requirements analysis is even more
relevant.

In contrast, most of the methodologies that have been proposed for the development of Web
applications focus on the design paying less attention to the requirements engineering. This paper is a
comparative study of the requirements handling in Web methodologies showing trends in the use of
techniques for capturing, specifying and validating Web requirements.

Keywords: Requirements Engineering, Web methodology, survey
Communicated by: (to be filled by the JWE editorial)

1 Introduction

The intensive use of Web Applications has produced, among others, a rising interest in the
development of methodological approaches providing a suitable support for the construction of
Web applications. Several research groups proposed methodologies with processes, models and
techniques to build such applications [33, 18, 31, 9] in the last years. However, if we analyze these
different approaches, most of them focus on the design workflow in the life cycle, while other
tasks like requirements engineering, tests and quality management are handled with less relevance
or not included at all.

In the development of traditional (non-Web) applications both practitioners and process
experts regard requirements engineering as the most important phase in the development process
since the most common and time-consuming errors as well as the most expensive ones to repair,
are errors usually consequence of an inadequate engineering of requirements. Many techniques
have been proposed. There are specific ones for the capture of requirements, such as interviewing
or storyboarding, techniques for the specification of the requirements, such as scenarios or use
case modeling, and for the validation of the elicited requirements, such as prototyping.

 Although the relevance of requirements engineering is well known these techniques are
poorly applied in the Web engineering field. We stress that on the contrary, Web applications

Requirements Engineering for WebApplications – A Comparative Study

require a more extensive and detailed requirements engineering process due to the number of
stakeholders involved and due to the diversity of the requirements including among others
requirements on the navigation and on the business processes as well as Web usability. It is always
an iterative process.

The study performed by Barry and Lang [2] showed that practitioners find development
difficult and that there is an increasing demand for them to deliver high-quality Web-based
software products in-budget and in-time. They urge to find solutions for user-centered approaches
which translate users’ navigational requirements into system representations. Modeling techniques
that aid in requirements representation and communication will be essential part of the future
CASE Tools used in the development of Web applications.

The motivation for this work is to show the deficiencies that the current Web methodologies
present and on the same time present a palette of requirements engineering techniques which could
aid Web developers in their work. In addition, the comparison presented should help in the
continuous process of improvement of the existing Web methodologies and their tool support in
order to focus more on requirements engineering, and therefore contribute to improve the quality
of the Web applications that are built with these methodologies.

The present work gives a survey and a comparative study of the current approaches available
in the Web field that use different techniques and model to handle requirements engineeringa. For
that reason, we outline the requirements engineering process and an overview of classic
requirements engineering techniques in Section 2. The brief description includes the most
commonly used techniques to capture, define and validate the requirements of a system. In Section
3, the main Web methodologies are described including requirements specification, that in
different degree of detail include requirements specification. This section includes also a
classification of requirements. In Section 4, these approaches are classified and compared from
different points of view. Finally, in Section 5 are presented some conclusions and future works.

2 Requirements Engineering Techniques

A requirement is defined as a condition or capability that must be met or fulfilled by a system to
satisfy a contract, standard, specification, or other formally imposed documents (IEEE Standard
610.12-1990). The requirements defined for a system should be: correct, consistent, verifiable and
traceable. Requirements engineering is the process of eliciting, understanding, specifying and
validating customers’ and users’ requirements. It also identifies the technological restrictions
under which the application should be constructed and run. It is an iterative and co-operative
process with the objective to analyze the problem, to document the results in a variety of formats
and evaluate the precision of the results produced [11].

Whenever a software application is built, be it for the Web or not, the development team has
to acquire certain knowledge about the problem domain and the application’s requirements. The
elicitation and specification of these requirements is a complex process as it is necessary to
identify the functionality that the system has to fulfill in order to satisfy the users’ and customers’
needs.

Although there is a lack of a standardized process supporting requirements handling and
guaranteeing the quality of the results, best practice in the development of general software
applications provide a set of techniques. Such techniques are also recommended by some Web
methodologies for requirements specification of Web applications. It is important to note,

a This work has been partially granted by the Deutscher Akademischer Austauschdienst (DAAD).

M J. Escalona and N. Koch

however, that the selection of appropriate techniques belongs to the responsibility of the
development team and the success of the results depends on this team, the group of customers and
users that participate in the process.

The iterative process of requirements engineering consists of three main activities [24]:

 requirements elicitation

 requirements specification

 requirements validation

Figure 1 shows this process of requirements engineering. It is represented as a UML activity
diagram [34] and is part of the iterative development life cycle, which in the case of Web
applications has the tendency to continue during the whole life of the application. Sawyer and
Kotonya [32] describe a requirements engineering process that includes a fourth activity: the
requirements analysis and negotiation. We consider requirements analysis as part of the
requirements specification.

Information

Requirements
valitation

Corrections

Requirements
specification

Requirements
elicitation

Requirements
catalogue

Analysts
Developers
Designers

Customers
Users

Actor

Input/Result

Activity

Start

Final

Activity
workflow

Information
workflow

Figure 1: The Requirements Engineering Process

The process starts with the requirements elicitation. The set of developers collect information
from the users and customers. Information can be gathered from different sources, such as
documents, legacy applications, interviews, etc. which are used in the preparation of the
requirements catalogue. Finally, the requirements validation is performed to find out if there are
some inconsistencies, mistakes or undefined requirements. The specification-validation process is
iterative and may be executed several times in complex projects.

In the next sections, we briefly describe some classic techniques to elicit, specify and validate
requirements. These techniques can be more or less suitable for requirements engineering in the
Web environment. It is very difficult to establish precise criteria to select the most suitable
techniques. These criteria may include the easiness of learning and using the technique, its
scalability, its cost, the quality of its results and the time required for its application. For example,
the use of natural languages in the specification of requirements gives less precise results than a
description done using use cases, which as well are less precise than requirements described using

Requirements Engineering for WebApplications – A Comparative Study

formal languages. Techniques like JAD are more time-consuming and more difficult to use than
other techniques like interviewing, but they produce results of higher quality.

2.1 Requirements Elicitation

The capture of requirements is the activity by means of which the development team collects from
any available source the functionality the system needs to provide to the future users. This topic
covers what sometimes is termed as requirements capture, requirements discovery or requirements
acquisition. The process of requirements elicitation can be complex, mainly if the problem domain
is unknown for the analysts. Thus, a set of techniques have been defined and tested by
requirements engineering experts to make this step more efficient and precise.

In the remaining of the section we present an overview of the most relevant techniques used in
requirements elicitation in the context of a standard software development process.

• Interviewing is a traditional and frequently applied technique. By means of interviews
analysts are able to understand the problem and get information about the objectives of the
application to be developed. The interviewing technique and certain guidelines of how to
use them correctly are described in detail by Durán, Bernáldez, Ruíz and Toro [8] as well as
Pan, Zhu and Johnson [28]. Basically, the interviewing process covers four steps: the
identification of stakeholders for the interview, the preparation of the interview, the
interview itself and the documentation of the results in form of an interview protocol.

Interviews are not easy to perform; they require a vast experience of the interviewer who
needs to have the ability to choose the most suitable interviewees [28].

• JAD (Joint Application Development) can be regarded as an alternative to interviewing.
It is a group technique that requires the participation of all stakeholders of a project, i.e.
analysts, designers, users, system administrators and customers [23]. The requirements are
captured in a set of sessions over several days. In each session, the high level requirements
are analysed and the problem field and the documentation are established. During each
session the group discusses about the different topics, drawing and documenting, as a result
a set of documented conclusions. Such conclusions drive the specification of the system
requirements. JAD is based on four basic principles: group dynamic, the use of
visualisation techniques to improve communication, the support of an organised and
rational process, and a philosophy of documentation of type WYSIWYG (What You See Is
What You Get). On every JAD session the requirements of the system are becoming more
concrete.

This technique provides several advantages compared to interviewing mainly because it
saves time. In JAD it is not necessary to compare customer’s opinions with one another.
Conversely, JAD needs a good integrated and organized group of stakeholders.

• Brainstorming is also a group meeting technique similar to JAD. It consists of collecting
non-evaluated ideas and information of all stakeholders of the project [30]. The number of
participants of such brainstorming meetings should not exceed 10 (stakeholders of the
project); one of them has to assume the role of moderator, but should not control the
session.

In contrast to JAD, brainstorming is easier to use as it requires less work in the group.
Moreover, as brainstorming often provides a better overview of the system requirements, it
is frequently used in first meetings where concrete details are not still needed.

M J. Escalona and N. Koch

• Concept Mapping is a technique by means of which concept maps are built [28].
Concept maps are graphs with vertexes representing concepts and edges representing
relationships between these concepts. These graphs, developed by the project team together
with the customer and/or final user, are frequently used as a simple communication
medium, mainly because they are written in the customer’s language. However, some care
is required to avoid a subjective and ambiguous description of complex systems. It is
recommended to provide an additional textual description.

• Sketching and Storyboarding is a technique frequently used by graphical designers in
the development of Web applications. It consists of schematic representation (usually on the
paper) of the different user interfaces (sketches). These sketches can be grouped and
connected using links, building this way a so called storyboard that gives an idea about the
navigation structure.

• Use Case Modeling is a technique which was developed to define requirements [16]
more than for capturing them. A use case model consists of actors, use cases and
relationships between them [34]. It is used to represent the environment by actors and the
scope of the system by use cases (functional requirements). An actor is an external element
to the system (e.g. a user, another system) that interacts with the system as a black box. A
use case describes the sequence of interactions between the system and its actors when a
concrete function is executed. An actor can take part in several use cases and a use case can
interact with several actors.

The main advantage of use case modeling is that a use case model is easy to be understood
by the user or the customer as well as by the developers. However, sometimes they are not
concrete or detailed enough [36, 15]. Thus, they can be supplemented with textual
information or another technique like activity diagrams.

• Questionnaire and Checklist is a technique that consists of preparing a document with
questions for which only short and concrete answers or even with a limited choice of
answers (checklist) is possible. The questionnaire can be completed during an interview or
it can be used to get information independently from an interview. The drawback of this
technique is that the analyst needs certain knowledge about the problem domain and the
application to be built in order to prepare the questionnaire and checklist.

• Terminology Comparison is a technique that does not resolve the problem of
requirements elicitation on its own. Instead, it is a complementary technique used to
overcome the communication difficulties, that may arise among developers and users, who
do not use the same language. The comparison is used to get a consensus about the
terminology which will be used in the project. Therefore, it is necessary to identify those
words used for the same concept (correspondence), similar words to express different
concepts (conflicts) or if there is not exact concordance in the vocabulary or concepts
(contrast) [28].

The requirements engineering community has proposed many other techniques to capture
requirements, such as the analysis of similar systems or documentation. Nevertheless, we consider
that the techniques briefly described above provide a representative set of the most frequently used
ones.

Requirements Engineering for WebApplications – A Comparative Study

2.2 Requirements Specification

For the requirements definition activity, many techniques have also been proposed. In this section,
the most widely used are briefly described.

• Natural Language. It is an ambiguous technique to define requirements. Requirements
are described in natural language without any kind of rules. Although this procedure is often
criticized, it is quite often used in practice.

• Glossary and Ontology are used to define the terminology that should be used in every
software project where stakeholders with different background work together. This aspect is
critical in the development of Web applications as the development team is usually an
interdisciplinary one [19]. Therefore, many methodologies propose the use of a glossary in
order to define and maintain the most important and critical concepts related to the
application.

If an ontology is defined, it means that in addition to concepts, the relationships between
these concepts are specified. None of the methodologies for the development of Web
applications described in this work propose the use of ontologies. Thus, we did not include
this technique in Table 2.

• Templates. They are used to describe the objectives and requirements using natural
language, but in a structured way. A template is a table whose fields have a predefined
structure and are filled in by the development team using the user’s terminology. Templates
– also known as patterns – are less ambiguous than descriptions in natural language due to
their structure. However, if templates are too structured they could be difficult to fill and
maintain.

• Scenarios consist of the description of the characteristic of the application by means of a
sequence of steps [22]. Scenarios can be represented in different ways: as texts or in a
graphical form, e.g. by use cases [37]. The analysis of such scenarios provides important
information about the requirements of the application [24]. Scenario notations are integrated
in many object-oriented analysis techniques.

• Use Case Modeling has been widely accepted as a technique to define requirements
although it is also used in requirements eliciting as described in the previous section.
However, it has the disadvantage that it is ambiguous when defining complex requirements
[36, 15]. For this reason, some approaches that define use cases propose to add a textual
description using templates or a more detailed diagrammatic representation [19,36].

• Formal description is another important group of techniques that proposes in contrast to
natural descriptions the use of formal languages to specify requirements. Algebraic
specifications for example, have been applied in software engineering for some years.
However, they are difficult to be used and understood by customers. Its main disadvantage
is that they do not facilitate the communication between customer and analyst. Conversely,
it is the least ambiguous requirements representation allowing for automatic verification
techniques.

• Prototypes are a valuable tool for providing a context within which users are able to
better understand the system they want to be built. There is a wide variety of prototypes that
range from mock-ups of screen designs to test versions of software products. There is a
strong overlap with the use of prototypes for validation.

M J. Escalona and N. Koch

2.3 Requirements Validation

Once requirements are defined, they have to be validated. Through requirements validation the
requirements specification is checked to correspond to the user’s needs and the customer’s
requirements [24]. Only few approaches provide techniques to validate requirements. Most of
them only define some guidelines about how developers and customers should review the
requirements specification in order to find inconsistencies and mistakes. The following is an
overview of techniques that are appropriate for requirements validation:

• Review or Walk-through is a technique which consists in reading and correcting the
requirements definition documentation and models. Such a technique only validates the
good interpretation of the information. The verification of documentation inconsistencies
and the detection of missing information require more sophisticated methods.

• Audit consists of a check of the results presented in the review documentation. The
results are compared with a checklist predefined at the start of the process. It provides only
a partial review of the information and results.

• Traceability Matrix consists of a comparison of the application objectives with the
requirements of the system [8]. A correspondence is established between objectives and
how they are covered by each requirement. This way, inconsistencies and non-covered
objectives will be detected.

• Prototyping for validation is a technique that consists in building tools based on the
requirements specification, i.e. the developers’ interpretation of the systems requirements.
These prototypes usually only implemented a partial set of functional requirements but
provide a global vision of the user interface [27]. In order to use this technique the user has
to understand that what he is observing is only a prototype and it is not the final system.

3 Requirements Engineering in current Web Methodologies

The development of Web applications has several characteristics that differ from the development
of other kinds of applications. On the one hand, many different kinds of stakeholders participate in
the development process: analysts, customers, users, graphical designers, marketing, multimedia
and security experts, etc. On the other hand, the main features of these systems are the
navigational structure, the user interface and the personalization capability. The structure requires
an intuitive guide to avoid that the user “gets lost in the navigational space” [27]. The design of the
user interface often has to take into account multimedia and marketing aspects. These special
design aspects not only have to be handled differently during design, but already be considered
during the requirements specification [9].

In this chapter we give an overview of those Web approaches which propose specific
techniques or models to deal with requirements. Of course, there are more Web methodologies in
use which were not included in this survey. This study is focused on requirements, thus we
describe mainly the requirement phase of each approach.

Most of the methodologies analyzed and compared in this work provide a classification of
requirements. However, the terminology used in these methodologies is not always the same. In
order to make the description of each methodology comparable to the others, a general
classification of requirements for Web applications is shown previously to the outline of the
methods. It is based on the state of the art of Web methologies.

• Functional requirements are capabilities that a system must exhibit in order to solve a
problem. Functional requirements can be sub-classified in:

Requirements Engineering for WebApplications – A Comparative Study

 Data requirements also known as conceptual requirements, content requirements
or storage requirements. These requirements establish how information is stored
and administrated by the application.

 Interface requirements (to the user) also known as interaction requirements or
user’s requirements. They give an answer to how the user is going to interact with
the Web application.

 Navigational requirements represent users’ navigation needs through the
hyperspace.

 Personalization requirements also known as customization or adaptation
requirements. They describe how a Web application has to (dynamically) adapt
itself, depending on the user or environment profile.

 Transactional requirements, also known as internal functional requirements or
service requirements, express what the Web application has to compute internally,
without considering interface and interaction aspects.

• Non-functional requirements act to constraint the solution, e.g. portability requirements;
reuse requirements, usability requirements, availability requirements, performance
requirements, etc.

In this section, we only include those web proposals which contain the phase of the
requirements handling in the life cycle of their development process. Some of them covered the
requirements phase in early versions; others included it only after a revision. Methodologies are
outlined chronologically according to the first publication that included requirements specification.
The chronological arrangement gives us an idea of how requirements engineering for Web
applications has evolved.

3.1 WSDM: Web Site Design Method

WSDM is a user-centered approach for the development of Web sites that models the application
based on the information requirements of the users’ groups [7]. Its development process is divided
into four phases:

 User modeling, where users are classified and grouped in order to study system
requirements according to each user group,

 Conceptual design, where a class diagram is designed to represent the static model of the
system and a navigational model to represent the possibilities of navigation,

 Implementation design, where models of the conceptual design are translated into an
abstract language easily to be understood by the computer, and

 Implementation, where the implementation design result is written in a specific computer
language.

We focus on the user modeling phase, which is the relevant one for this work. It aims on the
identification of the different users’ roles by performing the following two tasks:

• Users’ classification is the identification of the potentials users/visitors of the Web site
and their classification according to their interests and navigation preferences. WSDM
proposes to analyze the organization environment where the application will be used, and
centers the attention on the stakeholders of the business processes supported by the
application. In WSDM the relationships between stakeholders and the business process
activities performed are graphically represented by conceptual maps of roles and activities.

M J. Escalona and N. Koch

• Users’ group description is the detailed description of the users’ groups identified in the
previous task. The information requirements, functional requirements and security
requirements for each user’s group are described with the help of a data dictionary.

The remaining phases in the WSDM process are based on the users’ classification of this first
phase.

3.2 SOHDM: Scenario-based Object-Oriented Hypermedia Design Methodology

The SOHDM approach [21] was the first approach stressing the importance of a process that
allows the analysts to capture and define the applications requirements. SOHDM has similarities
with OOHDM [33] among others, but it proposes a requirement specification based on scenarios.

The following six tasks are performed during the life cycle of SOHDM; for this work, only the
first one is relevant:

• Analysis, where requirements are describe using scenarios;

• Object model realization, where a class diagram is built in order to present the static
structure of the system;

• View design, which expresses how the system will be presented to the user;

• Navigational design, where a navigational class model is developed in order to
express the possibilities of navigation in the system;

• Realization of the implementation, where Web pages, the interface and also the
database are developed; and, finally,

• Construction of the system, where the system is built.

The requirements definition starts on designing a so called context diagram, similar to the data
flow diagrams (DFD) defined by Yourdon [38]. To build such a context diagram the analyst has to
identify the external entities that communicate with the application, and the events that trigger the
communication between these entities and the application. The set of events is specified as a table
showing the entities that participate in an event. SOHDM proposes to associate a scenario with
each event. Scenarios are graphically represented using a proprietary notation called SAC
(Scenario Activity Chart). A scenario describes the interaction process between the user and the
application when an event triggers an activity. It specifies the activity flow, objects involved and
transactions performed.

SOHDM proposes a process to get the conceptual model of the application out of these
scenarios. The proposed conceptual model is represented by a class diagram. The next step in the
SOHDM development process is the regrouping of these classes with the objective to obtain a
navigational class diagram.

3.3 RNA: Relationship-Navigational Analysis

RNA [3] is a methodology that offers a sequence of steps to develop Web applications focusing
mainly on analysis. Its phases are:

• Phase 1 - Environment analysis: the objective is to analyze the audience’s
characteristics. Stakeholders of the application are identified and classified in
different groups according to their roles (similar to the user modeling phase of
WSDM).

• Phase 2 – Element analysis: in this phase all elements that are of interest to the
application are identified, e.g. documents, forms, information, mock-ups, etc.

Requirements Engineering for WebApplications – A Comparative Study

• Phase 3 – Meta-knowledge analysis: achieves to build a schema of the application.
RNA proposes to identify objectives, processes and operations related to the
application, and to describe the relationships between those elements.

• Phase 4 - Navigation analysis: in this phase, the schema of the previous one is
enlarged with navigation features.

• Phase 5 – Implementation analysis: consists of the identification of how the models
described in phase 4 will be produced in a computable language.

RNA only provides some guidelines of the actions to be performed in each phase. Neither
modeling concepts nor a notation is proposed, but the RNA approach is one of the methodologies
that first focused on the importance of requirements specification in the development process of
Web applications. It emphasized the need of the separation between the analysis of conceptual
requirements and the analysis of navigational requirements.

3.4 HFPM: Hypermedia Flexible Process Modeling

The Hypermedia Flexible Process Modeling (HFPM) presented by Olsina [26] is a wide
engineering-based approach, which includes analysis-oriented descriptive and prescriptive process
modeling strategies. It includes technical, management, cognitive and participatory tasks.
Therefore, HFPM provides guidelines for the planning and managing of a Web project covering
the whole life cycle of such a software project. It consists of thirteen phases; for each phase HFPM
defines a set of tasks. For the purpose of this work, the most relevant is the Requirements Model
whose related tasks are defined as follows:

• Problem description. HFPM does not prescribe a concrete technique to perform the
problem description, e.g. natural language can be used.

• Description of functional requirements using use cases.

• Data modeling for the identified use cases. It proposes the design of a class diagram.

• User interface modeling using sketches and prototypes to be used in the presentation
of drafts to the customer.

• Non-functional requirements description, such as security, performance, etc.

HFPM proposes on the one hand a detailed process to handle requirements. On the other hand
it does not prescribe specific techniques, which can be chosen freely by analysts and developers.

3.5 OOHDM: Object Oriented Hypermedia Design Model

OOHDM is a widely accepted method for the development of Web applications [33], whose first
versions focused on design and did not include requirements engineering. The process in OOHDM
is divided in four phases producing the following results:

 The conceptual model, represented as a class model, is built in order to show the
static aspect of the system.

 The navigational model consists of a navigation class diagram and a navigation
structure diagram. The first one represents the static possibilities of navigation in the
system. The second one extends the navigation class diagram including access
structures and navigation contexts.

 The abstract interface model is developed using a special technique named ADVs
[33].

M J. Escalona and N. Koch

 The implementation consists in the implemented code and is based on the previous
models.

The capture and definition of requirements were introduced later in OOHDM by Vilain,
Schwabe and Sieckenius [36], proposing the use of user interaction diagrams (UIDs). UIDs base
on the well known technique of use cases. Use cases are used to capture the requirements but are
considered in OOHDM as ambiguous and insufficient for the definition of the requirements that
Web applications have, mainly related to the interaction between the user and the system.
Therefore, for the specification of the requirements, this approach suggests the refinement of use
cases building UIDs, which are used to graphically model the interaction between users and
system without considering specific aspects of the interface. The process to get an UID from a use
case is described very carefully in the approach.

3.6 UWE: UML-based Web Engineering

UML-based Web Engineering (UWE) is a methodological approach for the development of Web
applications based on the Unified Process [17][5]. It is based mainly on the most relevant concepts
provided by other methods, but defines a UML notation (UML profile), sticks to the diagrammatic
techniques proposed by the UML and defines a systematic and semi-automatic design process
[14].

UWE covers the whole life cycle of Web applications and focuses on adaptive applications. It
includes a specific requirements engineering phase where requirements elicitation, specification
and validation are handled as separate activities of the process. The final result of the requirements
capture in UWE is a use case model completed with documentation describing the users of the
application, the adaptation rules, the interfaces and the details of the use case relevant for the use
case implementation. The latter can be described textually or modeled by UML activity diagrams.

UWE classifies requirements into two groups: functional and non-functional. Functional
requirements contemplated in UWE are:

• Content requirements

• Structure requirements

• Presentation requirements

• Adaptation requirements

• User model requirements

Moreover, UWE proposes interviews, questionnaires and checklists as appropriated
techniques for the requirements capture, and use cases, scenarios and glossaries for the
requirements specification. To validate them, UWE proposes walk-through, audits and prototypes
[19].

3.7 W2000

W2000 [1] is an approach that also extends UML notation to model multimedia elements. These
multimedia elements are inherited from HDM (Hypermedia Design Model) [12]. The development
process of W2000 is divided into three phases: requirements analysis, hypermedia design and
functional design. The first one is the most interesting for our survey.

The requirements analysis in W2000 is divided into two sub-activities: functional
requirements analysis and navigational requirements analysis. The requirements elicitation starts
with an analysis of the different user roles, i.e. the actors which will interact with the application.
Every identified actor has his own navigation and functional requirements model. The latter model

Requirements Engineering for WebApplications – A Comparative Study

is represented by a UML use case model. The navigational requirements are modeled in another
use case diagram representing the navigation possibilities of the actors. The graphic notation is
defined as a UML extension.

3.8 WebML: Web Modeling Language

The Web Modeling Language (WebML) is a high-level specification language for hypermedia
applications. WebML follows the style of both, Entity-Relationship and UML offering a
proprietary notation and a graphical representation using the UML syntax. This notation is
complemented with a set of activities to be performed for the development of Web applications,
such as requirements specification, data design and hypertext design [6].

The methodology focuses on requirements collection and requirements specification. It
proposes the use of techniques, such as interviewing and analysis of documentation, but retrains
from the use of prescriptive checklists for requirements capture. Requirements collection starts
with user identification and personalization needs. In addition data requirements and functional as
well non-functional requirements are gathered. To note is that navigation or specific hypertext
structuring requirements are not treated separately.

Requirements specification (called requirements analysis) consists in a classical use case
specification supplemented with a semi-structured textual description. The use of activity diagrams
is proposed by this method to express the workflow of complex use cases. A template based
description and mock-ups (sketches) are suggested for the specification of the site view and the
style guidelines. Finally, acceptance tests are proposed mainly to check non-functional
requirements.

3.9 NDT - Navigational Development Techniques

NDT (Navigational Development Techniques) [10] is a technique to specify and analyze the
navigation aspects in Web applications. NDT focuses on the elicitation and specification
techniques selected by NDT for the capture and definition of requirements. The requirements
analysis workflow in NDT starts capturing requirements and studying the environment applying
interviews, brainstorming and JAD techniques. In a second step the system objectives are captured
and described. Based on these objectives the system requirements are identified; NDT classifies
them into:

• Storage information requirements

• Actor requirements

• Functional requirements

• Interaction requirements

• Non-functional requirements

Interaction requirements are represented by phrases and visualization prototypes. Phrases
show how the information of the system is retrieved and are represented by a special language
named BNL (Bounded Natural Language) [4]. Visualization prototypes are used to represent the
system navigation, data visualization and user’s interaction.

The whole process to elicit and specify objectives and requirements proposed by NDT is
mainly based on templates or patterns. In addition, it uses other requirements definition techniques
like use cases and glossaries. The NDT approach proposes a different template for each kind of
requirement, so requirements and objectives are described in a structured way. Some fields in the
templates only accept specific values allowing for a systematic process. The requirements
specification workflow finishes with the revision of the requirements catalogue and the

M J. Escalona and N. Koch

development of a trazability matrix which makes the evaluation of whether the specification
covers all the possible requirements.

In the context of the NDT project a case tool, named NDT-Tool, has been developed. This tool
supports the filling of the templates and automatic extraction of the design results out of the
templates.

3.10 Design-driven Requirements Elicitation

The Design-driven Requirements Elicitation is a part of the design-driven process proposed by
Lowe and Eklund [25] in order to develop Web applications. It consists of capturing, defining and
validating requirements during the design process, i.e. the design activities should be carried out in
such a way that the requirements could be handled and managed at the same time. The process is
based on prototyping in order to explore possible solutions and problems to be solved. Users and
customers define the requirements based on the study of these prototypes. It is an iterative process,
which consists of reducing customers and clients’ doubts. The cycle has three phases: evaluation,
specification and construction.

This design-driven process was defined based on an exhaustive analysis of “best practices” in
the development of Web commercial application. It treats all the requirements in the same manner.
The requirements are: content, interface protocol, navigational structure, look and feel, data
internal representation, versions, change control, security, content management, control access,
efficiency, user monitoring, functionality support, system adaptation, user identification, etc. In the
comparison tables of the next section we use the short form DDDP for the design-driven
development processb.

4 Comparative Study

We have based our comparative study on three main aspects. The first one is the analysis of the
types of requirements handled by each methodology. The second aspect is the study of the
techniques employed and the phases covered in each approach. The last one evaluates the degree
of detail of each approach in terms of its development process, the applied techniques and the
results produced. Finally, some other aspects are outlined.

4.1 Types of Requirements

Using the classification introduced at the beginning of section 3, the first objective of this
comparison was to establish which types of requirements are treated by each approach. Table 1
shows these results for the methodologies briefly described in sections 3.1 to 3.11 and the six types
of requirements: data, user interface, navigation, adaptive, transactional and non-functional.

Approaches are ordered chronologically, what allows us to observe the evolution of the
requirements engineering relevance in those methodologies. The first approaches focused mainly
on data and user interface requirements. More recently some methodologies have been developed
or already existing ones have been extended to manage adaptive, navigation and transactional
requirements. The idea of separation of concerns was since the beginning a characteristic of almost
all Web methodologies, like HDM [12], OOHDM [33], etc. However, this separation of concerns
was only applied to the design and implementation phases of the development process. Nowadays
we can observe a clear tendency towards a separation of concerns from the very beginning, i.e.
already during the requirements elicitation phase. It is interesting to remark, that the use of

b The short form DDDP is not used by the authors of the project.

Requirements Engineering for WebApplications – A Comparative Study

different terminology for the same or similar concepts made a comparison study difficult. We
stress the need to standardize the terminology used in Web methodologies.

 Data Req. User
Interface

Req.

Navigational
Req. Adaptive

Req.
Transactional

Req.
Non-Functional

Req.

WSDM
SOHDM
RNA
HFPM
OOHDM
UWE
W2000
WebML
NDT
DDDP

Table 1: Requirements Handled by Each Approach

4.2 Activities and Techniques

The following table shows the differences regarding the techniques that are used by each
methodology in each phase, i.e. during the activities of elicitation; specification and validation (see
section 2). If a methodology proposes a non-standard technique or a specific technique it will be
explicitly indicated.

Several conclusions can be obtained from this table. It is possible to indicate that interviewing
is the most popular technique during requirements capture. Similarly requirements specification
with use cases is the winner for the definition of requirements. We observe that many
methodologies handle the capture as part of the definition activity.

In this table we also observe that Web methodologies focus on the requirements definition
activity. During this activity, the use case technique (the most used one) is applied in different
ways. Some methodologies, such as HFPM, apply the original use case technique. However, other
approaches, like OOHDM, NDT or UWE, believe that use cases are ambiguous or insufficient for
the specification, and so complement this technique with more concrete models, such as UIDs,
templates or UML activity diagrams, respectively. This more detailed specification helps to define
a more systematic development.

Most of the methodologies consider validation not as relevant as the other two phases:
capturing and specification. The validation techniques proposed mainly focus on reviewing the
requirements models or the textual descriptions of the requirements. Some of the approaches
analyzed do not even include the validation phase in their requirements engineering process.

M J. Escalona and N. Koch

 W
SD

M

SO
H

D
M

R
N

A

H
FP

M

O
O

H
D

M

U
W

E

W
20

00

W
Eb

M
L

N
D

T

D
D

D
P

Interviewing
JAD
Brainstorming
Concept Mapping Role-

Activity

Use Cases Modeling
Questionnaire/Checklist
Sketching &
Storyboarding

C
ap

tu
re

Other Techniques DFD Docu
ment
analy

sis

Natural Language
Glossaries
Templates/Patterns

Scenarios SAC
Use Cases Analysis
Formal Language
Prototyping

D
ef

in
iti

on

Other techniques Event
List

 Inter-
face
Sket-
ches

UIDs BNL
Phra-
ses

Review/Walk-through
Audit
Matrix of trazability
Prototyping

V
al

id
at

io
n

Other techniques Acc
eptan

ce
Tests

Table 2: Techniques used in the Capture, Definition and Validation Phases

4.3 Degree of Detail

Another perspective under which a comparative study can be carried out involves the way how
requirements engineering approaches are defined. Some methodologies concentrate largely on the
development process, others focus on the techniques or on the structure of the results that must be
produced. Therefore, we classify the approaches in three categories:

Requirements Engineering for WebApplications – A Comparative Study

• process-oriented, that is, if the approach describes the steps of a process to be
followed in order to perform the requirements capture, definition and validation;

• technique-oriented, that is, if it describes the techniques to be applied during the
process;

• product-oriented, that is, if it gives a description of the results which must be
produced during the process;

We analyzed the definition of the approaches and evaluated how detailed they are in the
description of the process, the techniques and the products. The result of this evaluation is shown
in table 3. The evaluation is done separately for each phase of the requirements engineering
selecting one value as follows:

• process-oriented: the approach clearly describes the steps to follow (+), the process
without details (o), or does not indicate any process at all (-)

• technique-oriented: the approach clearly depicts the techniques and the way to apply
them (+), it enumerates the techniques to apply (o), or it does neither propose any
concrete technique nor references any general techniques (-)

• product-oriented: the approach clearly describes the structure of the product to be
produced (+), it describes the product without detailing its structure (o), or it does not
give any indication about the resulting product (-)

Process-
oriented

Technique-

oriented

Product-
oriented

WSDM O - -
SOHDM - + -

RNA + - -
HFPM + O +

OOHDM O + -
UWE + O O

W2000 O O -
WebML O O +

NDT O + +
DDDP + O -

Table 3: Degree of Detail in Processes, Techniques and Products

The values listed in table 3 can be grouped and represented schematically as shown in
figure 2. This graphical representation has led us to assess that current methodologies mainly focus
on the process. An extreme example of this fact is RNA, which only describes the process without
mentioning techniques or the layout of the results.

M J. Escalona and N. Koch

Process-oriented Technique-oriented Product-oriented

approaches +
approaches o
approaches -

Figure 2: Graphical Representation of the Degree of Detail in Processes, Techniques and Results

Another important conclusion is the little importance given to the result produced during the
requirements engineering process. Many of the approaches only enumerate the models to be
produced without indicating a structure of the documents. Only HFPM and NDT describe with
details how the requirements documentation should be structured. Such templates are very useful
to support the development team in the documentation process, but certain flexibility is required
for the tailoring of such documents to needs, formats or restrictions of a specific project
environment.

4.4 Other aspects

There are some other aspects that can be used to compare the different requirements engineering
approaches, which we want to outline briefly in this section.

One of the main pillars of good requirements engineering practices is the use of techniques
that support fluent communication between users and technical software developers. The
requirement engineer is responsible for communication and acts as mediator. Good
communication is an aspect that is difficult to measure and therefore difficult to compare.

It is important to highlight the two trends for representation used in requirements engineering:
graphical and textual representation. Extreme examples are OOHDM and UWE, which performs
requirements capture and definition using visualization, and conversely, approaches such SOHDM
and NDT based on textual representation. In addition is it worth mentioning, that a similar
technique may be differently used or represented by different methodologies, e.g. scenarios in
UWE and SOHDM.

Another aspect that is worth being compared is the tool support. We have detected a lack of
CASE tool support. Only few methods suggest the use tools. Even less approaches propose a
specific tool for the requirements specification. Such is the case of the tool developed within the
UWA project and the NDT-Tool for the requirements definition following the NDT method.

5 Conclusions

In this work we have presented the state of the art of requirements engineering in methodologies
used for the development of Web applications. To achieve this purpose, we started describing the
structure of the requirements engineering process and the most common techniques used in such a
process in the classic software development for non-Web applications. The process includes three
main activities: capture, definition and validation of requirements. The techniques most frequently
used to perform these activities are among others use cases, scenarios, sketches and storyboards,
questionnaires and checklists, reviews and walk-troughs, prototyping, etc.

Requirements Engineering for WebApplications – A Comparative Study

In a second step we gave an outline of the methodologies for the Web describing how these
approaches cover the aspects related to requirements engineering. Finally, the approaches are
compared from different points of view, such as types of requirements handled, activities covered
and techniques used, orientation and depth of the applied techniques.

As a result of our study we can claim that there is still a great research potential in the field of
requirements engineering for Web applications. Comparing this survey with other comparative
studies not restricted to requirements specification aspects of Web approaches [18, 2, 9], it can be
observed that the majority of the currently existing Web methodologies focuses on design aspects
and does not centre its attention on requirements engineering, although the risks of an incomplete
or insufficient requirements definition and validation is well-known.

We hope the results presented in this article will help Web developers to select the appropriate
requirements engineering techniques and include them in the development process of Web
applications. In addition, it should help in the continuous improvement process of the existing
Web methodologies to focus more on requirements engineering, and therefore contribute to
improve the quality of the Web applications that are built with these methodologies.

Acknowledgements

We would like to thank Martin Wirsing and Andreas Kraus of the Ludwig-Maximilians-University
of Munich, Manuel Mejías, Jesús Torres and Miguel Toro of the University of Seville and Cristina
Cachero of the University of Alicante for helpful suggestions and comments.

References
1 Baresi L., Garzotto F., Paolini P (2001). Extending UML for Modelling Web Applications. In

proceedings of the 34th Annual Hawaii International Conference on System Science. IEEE Computer
Society.

2 Barry, C. & Lang, M. (2001) A Survey of Multimedia and Web Development Techniques and
Methodology Usage. IEEE Multimedia. April-June 2001, 52-60.

3 Bieber M., Galnares, R., Lu, Q. (1998). Web Engineering and Flexible Hypermedia. The Second
Workshop on Adaptive Hypertext and Hypermedia, Hypertext´98, Pittsburg, USA.

4 Brisaboa, N. R., Penabad, M. R., Places, A. S., Rodríguez, F. J. (2001). A Documental Database Query
Language. String Processing and Information Retrieval -SPIRE 2001.

5 Booch G., Rumbaugh, J., Jacobson, I. (1999). Unified Modeling Language User Guide. Addison-
Wesley.

6 Ceri, S. Fraternali, P., Bongio, A., Brambilla M., Comai S., Matera M. (2003). Designing Data-Intensive
Web Applications.Morgan Kaufman.

7 De Troyer, O., Leune, C. (1997). WSDM: A User Centered Design Method for Web Sites. Technical
Report of Tilburg University, Infolab. Belgium.

8 Durán A., Bernárdez, B., Ruiz, A., Toro M. (1999). A Requirements Elicitation Approach Based in
Templates and Patterns. Workshop de Engenharia de Requisitos. Buenos Aires, Argentina.

9 Escalona, M.J., Mejías, M., Torres, J. (2002). Methodologies to develop Web Information Systems and
Comparative Analysis. Informatik/Informatique. núm. 2/2002 de I/I.

10 Escalona, M.J., Torres, J., Mejías, M. (2002). Requirements Capture Workflow in Global Information
Systems. Proceedings of OOIS. Springer-Verlag. Montpellier, France.

11 Ferreira, M.J., Loucopoulos, P. (2001). Organisation of Analysis Patterns for effective Re-use.
Proceedings of the International Conference on Enterprise Information Systems. ICEIS 2001. Setubal,
Portugal.

12 Garzoto F., Schwabe D. and Paolini P. (1993) HDM-A Model Based Approach to Hypermedia
Aplication Design. ACM Transactions on Information System, 11 (1), pp 1-26.

M J. Escalona and N. Koch

13 Grünbacher P. (2003) Requirements Engineering for Web Applications. In Web Engineering, Kappel G.,
Pröll B., Reich S., Retschitzeger W. (Eds.), dpunkt verlag (in German).

14 Hennicker, R., Koch, N. (2000). A UML-based Methodology for Hypermedia Design. Lecture Notes in
Computer Science. Proc. UML’2000. York, England.

15 Insfrán, E., Pastor, O., Wieringa, R. (2002). Requirements Engineering-Based Conceptual Modeling.
Requirements Engineering Journal, Vol 7 (1).

16 Jacobson, I. (1995). Modeling with Use Cases: Formalizing Use Case Modelling. Journal of Object-
Oriented Programming,

17 Jacobson I., Booch G., Rumbaugh J. (1999). The Unified Software Development Process. Addison
Wesley.

18 Koch, N. (1999). A Comparative Study of Methods for Hypermedia Development. Technical Report
9905. Ludwig-Maximilian-University, Munich, Germany.

19 Koch, N. (2001). Software Engineering for Adaptive Hypermedia Applications. Ph. Thesis, FAST Reihe
Softwaretechnik Vol(12), Uni-Druck, Munich, Germany

20 Kruchten, P. (1998). The Rational Unified Process. Addison Wesley

21 Lee, H., Lee, C., Yoo, C. (1998). A Scenario-based Object-oriented Methodology for Developing
Hypermedia Information Systems. Proceedings of 31st Annual Conference on Systems Science. Sprague
R.

22 Liu, L., Yu, E. (2001). From Requirements to Architectural Design using Goals and Scenarios
Proceedings of the 6th Micon Workshop. Canada.

23 Livesey D., Guinane T. (1997). Developing Object-Oriented Software, An Experience-Based Approach
(IBM's OOTC), Prentice Hall

24 Lowe, D., Hall, W. (1999). Hypermedia and the Web. An Engineering approach. John Wiley & Son.

25 Lowe D., Eklund J. (2002). Client Needs and the Design Process in Web Projects. Web Engineering
Track of the WWW2002 Conference.

26 Olsina, L. (1998). Building a Web-based Information System applying the Hypermedia Flexible Process
Modeling Strategy. 1st International Workshop on Hypermedia Development, Hypertext´98, Pittsburg,
USA.

27 Olsina, L. (1999). Metodología Cualitativa para la Evaluación y Comparación de la Calidad de Sitios
Web. Ph. Tesis. Facultad de Ciencias Exactas. Universidad de la Pampa. Argentina.

28 Pan, D., Zhu, D., Johnson, K. (2001). Requirements Engineering Techniques. Internal Report.
Department of Computer Science. University of Calgary. Canada.

29 Pastor, O., Insfran, E., Pelechano, V., Romero, J., Meseguer, J. (1997). OO-METHOD: An OO Software
Production Environment Combining Conventional and Forma Methods. CAiSE’97. International
Conference on Advanced Information Systems.

30 Raghavan, S., Zelesnik, Ford, G. (1994). Lectures Notes of Requirements Elicitation. Educational
Materials CMU/SEI-94-EM-10.

31 Retschitzegger, W. & Schwinger, W. (2000). Towards Modeling of Data Web Applications - A
Requirements Perspective. Proceedings of the American Conference on Informating Systems AMCIS
2000, Vol 1, 149-155.

32 Sawyer P., Kotonya G. (2001). Software Requirements. Chapter 2 of the IEEE SWEBok Project Report.

33 Schwabe D., Rossi G. (1998). Developing Hypermedia Applications using OOHDM. Workshop on
Hypermedia Development Process, Methods and Models, Hypertext´98, Pittsburg, USA.

34 UML (2003). Unified Modeling Language. Version 1.5. www.omg.org

35 UWA (2001), UWA Requirements Elicitation: Model, Notation, and Tool Architecture.
www.uwaproject.org

36 Vilain, P., Schwabe, D., Sieckenius, C. (2000). A diagrammatic Tool for Representing User Interaction
in UML. Lecture Notes in Computer Science. Proc. UML’2000. York, England.

37 Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P. (1999). Scenarios in Systems Development: Current
Practice. IEEE Software. 2, 34-45.

38 Yourdon E (1989). Modern Structured Analysis. Prentice-Hall.

