

Workshop on Model-driven Web Engineering
(MDWE 2005)

Nora Koch, Antonio Vallecillo, Gustavo Rossi

Sydney (Australia), July 26, 2005

http://www.lcc.uma.es/~av/mdwe2005/

Proceedings

In conjunction with:
 ICWE 2005. 5th International Conference on Web Engineering

 http://www.icwe2005.org

Editors

Nora Koch
Institute for Informatics,
Ludwig-Maximilians-Universität München and FAST GmbH,
Oettingenstr. 67, 80538 München, Germany
kochn@pst.informatik.uni-muenchen.de
http://www.pst.informatik.uni-muenchen.de/~kochn/

Antonio Vallecillo
University of Málaga
ETSI Informática
Campus Teatinos
29071 Málaga (Spain)
av@lcc.uma.es
http://www.lcc.uma.es/~av

Gustavo Rossi
Lifia. Facultad de Informática. UNLP
50 y 115, La Plata, Buenos Aires, Argentina
gustavo@sol.info.unlp.edu.ar
http://www-lifia.info.unlp.edu.ar

 iii

Table of Contents

Preface ..………………………………………. vii

A Model Driven Approach for the Integration of External Functionality in Web Applications.
The Travel Agency System

Victoria Torres, V. Pelechano, M. Ruíz, P. Valderas ……………..………..………...... 1

The PIM to Servlet-Based PSM Transformation with OOHDMDA
Hans Albrecht Schmid, Oliver Donnerhak ……………………………….………….... 12

Model Integration through Mega Operations
T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger ….................................. 20

Applying WebSA to a Case Study: A Travel Agency System
Santiago Meliá, Jaime Gómez ...…………………………………………………......... 30

Web Engineering does Profit from a Functional Approach
Torsten Gipp, Jürgen Ebert..……………………................... 40

How to Model Aspect-Oriented Web Services
Guadalupe Ortíz, Juan Hernández, Pedro Clemente, Pablo Amaya………………...… 50

Integrating Web Systems Design and Business Process Modeling
Mario A. Bochicchio, Antonella Longo...………………… 60

Incorporating Cooperative Portlets in Web Application Development
Nathalie Moreno, Raul Romero, Antonio Vallecillo……………………...................... 70

Conceptualization of Navigational Maps for Web Applications
A. Navarro, J.L. Sierra, A. Fernandez-Valmayor, B. Fernández-Manjón…………….. 80

Atomic Use Case as a Concept to Support the MDE Approach to Web Application
Development

Kinh Nguyen, Tharam Dillon…………………………………………………………. 89

 v

List of Authors

Amaya, P. 50
Bochicchio, M.A. 60
Clemente, P. 50
Dillon, T. 89
Donnerhak, O. 12
Ebert, J. 40
Fernández-Manjón, B. 80
Fernández-Valmayor, A. 80
Gipp, T. 40
Gómez, J. 30
Hernández, J. 50
Kapsammer, E. 20
Longo, A. 60
Meliá, S. 30
Moreno, N. 70
Navarro, A. 80
Nguyen, K. 89
Ortíz, G. 50
Pelechano, V. 1
Reiter, T. 20
Retschitzegger, W. 20
Romero, R. 70
Ruíz, M. 1
Schmid, H. A. 12
Schwinger, W. 20
Sierra, J. L. 80
Torres, V. 1
Valderas, P. 1
Vallecillo, A. 70

 vi

Program Committee

Luciano Baresi, Politecnico di Milano, Italy
Jean Bézivin, University of Nantes, France
Olga De Troyer, Vrije Universiteit Brussel, Belgium
Peter Dolog, Universität Hannover, Germany
Robert France, Colorado State University, USA
George Fernandez, RMIT Melbourne, Australia
Jesús García Molina, Universidad de Murcia, Spain
Jaime Gómez, Universidad de Alicante, Spain
Reiko Heckel, Universität Paderborn, Germany
Geert-Jan Houben, Technische Universiteit Eindhoven, The Netherlands
Gerti Kappel, Technische Universität Wien, Austria
Nora Koch, Ludwig-Maximilians-Universität, and FAST GmbH, Germany
David Lowe, University of Technology of Sydney, Australia
Maristella Matera, Politecnico di Milano, Italy
Emilia Mendez, University of Auckland, New Zealand
Ana Moreira, Universidade Nova de Lisboa, Portugal
Vicente Pelechano, Universidad Politécnica de Valencia, Spain
Gustavo Rossi, Universidad Nacional de La Plata, Argentina
Hans-Albrecht Schmid, FH Konstanz, Germany
Daniel Schwabe, PUC-Rio de Janeiro, Brazil
Wieland Schwinger, Johannes Kepler Universität Linz, Austria
Jean Vanderdonckt, Université Catholique de Louvain, Belgium
Antonio Vallecillo, University of Málaga, Spain

 vii

Preface

Model-Driven Software Engineering (MDE) is becoming a widely accepted approach for
developing complex distributed applications. MDE advocates the use of models as the key
artifacts in all phases of development, from system specification and analysis, to design and
testing. Each model usually addresses one concern, independently from the rest of the issues
involved in the construction of the system. Thus, the basic functionality of the system can be
separated from its final implementation; the business logic can be separated from the underlying
platform technology, etc. The transformations between models provide a chain that enables the
automated implementation of a system right from the different models defined for it.

The development of Web applications is a specific domain in which MDE can be successfully
applied, due to its particular characteristics. In fact, existing model-based Web engineering
approaches currently provide excellent methodologies and tools for the design and development
of Web applications. They address different concerns using separate models (navigation,
presentation, data, etc.), and count with model compilers that produce most of the application’s
web pages based on these models. However, these proposals also present some limitations,
especially when it comes to modeling further concerns, such as architectural styles, or
distribution. Furthermore, current Web applications need to interoperate with other external
systems, which require their integration with third party web-services, portals, portlets, and also
with legacy systems.

Recently, the MDA initiative has provided a new approach for organizing the design of an
application into (yet another set of) separate models so portability, interoperability and
reusability can be obtained through architectural separation of concerns. MDA covers a wide
spectrum of topics and issues (MOF-based meta-models, UML profiles, model transformations,
modeling languages, tools, etc.) that need to be yet solved.

The Model-Driven Web Engineering (MDWE) Workshop provided a discussion forum where
researchers and practitioners on these topics met, disseminated and exchanged ideas and
problems, identified some of the key issues related to the model-driven development of Web
applications, and explored together possible solutions and future works.

All papers submitted to MDWE 2005 were formally peer reviewed by at least by two referees.
This volume contains the 10 papers finally selected for presentation at the workshop. They deal
with different issues of Model-Driven Web Engineering, both theoretical and practical, focused
in general aspects and in specific sub-domains such as Web Services, Portlets and Business
Processes. We feature papers devoted to specific methodologies or methodological issues and to
formal approaches to Model-Driven development.

We would like to thank to the ICWE 2005 organization for giving us the opportunity to
organize the workshop. Many thanks to all the authors for their submissions, and particularly to
the contributing authors. Our gratitude also goes to the paper reviewers and the members of the
Program Committee for their help in the selection of the papers.
.

Sydney, Australia, July 2005

Nora Koch, Antonio Vallecillo, Gustavo Rossi
MDWE2005 Organizers

 viii

A Model Driven Approach for the Integration of External Functionality in
Web Applications. The Travel Agency System

 Victoria Torres, Vicente Pelechano, Marta Ruiz, Pedro Valderas
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camí de Vera s/n, Valencia-46022, España

{vtorres, pele, mruiz, pvalderas }@dsic.upv.es

Abstract

Nowadays, it is getting more and more common to
develop Web applications where part of the
functionality is carried out by different systems. These
systems provide functionality developed in different
technologies that are integrated to build a complete
web application. To deal with the integration issue that
allows us to build this kind of Web applications,
current Web Engineering methods should provide the
mechanisms that facilitate this integration with third
business parties during the modeling process. This
paper presents a model driven method to achieve
integration with external parties at a high level of
abstraction. The method provided is an extension to
the OOWS approach for the construction of this new
kind of Web applications. The Travel Agency System
has been taken as a case study to clearly understand
how the whole method is applied.

1. Introduction

Web applications cannot be longer conceived as
isolated applications. Moreover, the different
possibilities in which business partners can provide
their functionality (CORBA, J2EE or .NET) motivate
us to propose a method that helps in the construction of
more opened and collaborative Web Applications that
integrate functionality from different sources.

There are several ways in which web applications
can be built integrating functionality provided by
external parties. For instance, a web application could
require a concrete external functionality to accomplish
a specific functional requirement or to provide some
information that complements the data handled by our
system. A more complex way could be when business
process supported by the web application makes use of
activities implemented by external business partners.

Web engineering methods are extending their
solutions to provide support and/or integrate
functionality and business processes into web
conceptual models. In this context, we can distinguish
approaches that deal with business process modelling
and integration into navigational models like OOHDM
[1], WSDM [2] or UWE [3] (that introduce process
definitions into navigational models, causing a
semantic overload of the navigational nodes because
activities and processes are living together with nodes
and links), other methods like WebML [5] and UML-
Guide [6] model business processes as some kind of
navigation; UML-Guide is based on the semantic web
technology (OWL) to specify state machines that are
used to express navigation and web service operation
calls. Both approaches introduce some kind of
syntactic mechanisms to include web service calls into
the navigational model. Finally, OO-H [4] and WIED
[7] (in the form of a companion notation to the
WebML), model business processes and navigational
models as separate concerns and notations. Only
WebML and UML-Guide are worried about how to
support integration of external functionality.

Our proposal introduces some contributions in this
context because we think that the integration of
business process in web application modelling should
follow a concern oriented approach preserving the role
and the notation of current business process modelling
techniques (for instance, UML activity diagrams) and
navigational modelling techniques as OO-H and WIED
states, but also focusing on solving the integration to
external parties problem in a model driven fashion
(following the MDA principles). We also want to
emphasize that we provide a methodological guide that
helps web designers in the construction process of this
new kind of web applications. Moreover, we think that
Web Engineering methods also should face up the
integration problem from two different points of view,
which are the consumer and the provider perspective.

1

On one hand, as consumers we need mechanisms that
help us to model Web Applications that use external
artifacts. On the other hand, as producers we need
mechanisms for generating artifacts that could be
exported and used by other applications.

In this context it is necessary to provide a
methodological guide that helps web developers in the
construction process of this new kind of web
applications. We think that the integration issue should
be tackled following a model driven approach.

The rest of the paper is structured as follows.
Section 2 provides an overview of the method,
explaining the set of models use it and the existing
dependencies between them. Moreover, we state how
this proposal fits into the MDA approach. Section 3
presents briefly the Travel Agency System (TAS) case
study. In the following sections, from 4 to 6 we present
the method, by means of the TAS case study. Section 7
shows the strategy followed to build Web Services that
make accessible the Broker Agent implemented in the
TAS. In section 8 we outline how we generate the
interaction with external functionality provided in
different technologies. In section 9 we show the user
interfaces generated from the specifications made in
the Navigational Model. Finally, section 10 draws
some conclusions and outlines further work.

2. An Overview of the Model-Driven
Method

This method provides an extension to the OOWS
[12] approach. This extension introduces the required
expressivity to capture the integration requirements
that are necessary to build distributed web
applications.

Following the MDA guidelines, this method has
been organized in three views: the Computation
Independent Model (CIM), the Platform Independent
Model (PIM) and the Platform Specific Model (PSM).
Our proposal, as can be seen in figure 1, introduces
new models for: requirements elicitation (Task
Definitions) and supporting integration (the Services
and the Business Process Models). To support
integration when modeling navigation we extend the
already defined Navigational Model and reuse those
existing models like the Dynamic, Structural,
Functional and Presentation.

Due to the fact that our proposal is based on an
existing method that provides a code generation tool
(OlivaNova CASE tool1), in this extended version, we
want to provide a solution for (1) producing

1 http://www.care-t.com

functionality for third party consumption and (2)
integrating functionality supplied by external
providers. In particular, we focus on the integration of
external services at the Business Process and
Navigational level.

Dynamic Model

Application Tier
(J2EE, .NET components)

PIM

Structural Model

Functional Model

Business
Process Model

Services Model

Navigational
Model

Presentation
Model

CODE

Task Definition

Task Taxonomy

CIM

Presentation Tier
(HTML, ASP, JSP, Servlets)

PSM
Services

Model
Navigation &
Presentation

Model

Integration Logic
(Own & External services –

skeletons & stubs)

OlivaNova
Trans. Engine

Fig. 1 Method Overview

In Fig. 1 we can see how the models proposed are

organized in each different level (CIM, PIM, PSM and
code).

3. Applying the Method to the TAS Case
Study

The TAS is a Web Application that sells

electronically travels to its customers. In particular, we
only concentrate on providing transportation services
(plains, trains, cars, boats or combinations of those) for
a trip. This service can be either provided by external
Broker Agents (implemented by other Travel
Agencies) that work in conjunction with our TAS or
implemented in our system. These Broker Agents use
the services provided by Transportation Companies to
supply an offer that matches with the customer
requirements. In case a trip cannot be supplied by any
Transportation Company, it is the Broker Agent which
has to split the trip and try to compose the complete
trip from split services. Once the customer has selected
an offer that matches with his/her requirements, the
TAS uses the services provided by the corresponding
Financial Company to proceed with the payment of the
selected offer. Finally, once a month, the TAS pays
external Broker Agents for the services they have
provided during the previous month.

In the following sections we are going to apply the
TAS case study to the method roughly presented in the
previous section. Moreover, we will also include how

2

we build the Broker Agent business logic and the
strategy followed to construct the Web Services that
provide the functionality implemented by our Broker
Agent.

4. Defining the CIM

The Computation Independent Model (CIM)
proposed by MDA is built mainly to bridge the
existing gap between those that are experts about the
domain and those that are experts on how to build the
artifacts that satisfy the requirements domain [12].
Then, according to MDA, a CIM must describe the
requirements of the system.

We specify the early requirements of a Web
application by means of a task model. This model is
built from the tasks that users must be able to achieve
when interacting with the application as well as from
the tasks that the system must perform. The
requirements specified when building the task model
are used in following stages for systematically
generating part of the PIM. This approach allows us to
provide a higher degree of traceability than those
requirement specification methods which transform
models manually.

We propose two steps to define the task model:
(1) Task identification: we identify the set of tasks that
the system together an actor must achieve to
accomplish each requirement. An actor represents a
user or any other system that interacts with the system
under development [10]. The set of identified tasks are
organized in a task taxonomy.

(2) Task description. To accomplish the goal defined
by each leaf task included in the task taxonomy, we
describe the set of actions that must be performed to
succeed in achieving that goal. This description is
made by using the UML activity diagrams [10].

 4.1 Task Identification

To identify the set of tasks that represent the web
application requirements we must detect, as a first step,
which actors can interact with the system. Then, for
each detected actor we must define a task taxonomy
that represents the tasks that this actor can achieve
when interacting with the system.
 In the TAS example, we only detect an actor: the
internet user. The task taxonomy associated to this
actor is shown in Fig. 2. For the construction of the
task taxonomy, we take as the starting point, a
statement of purpose that describes the main goal of
the web application. The statement of purpose is
considered the most general task of the system. From

this task, a progressive refinement is performed,
obtaining as a result more specific tasks. Tasks are
decomposed into subtasks by following structural or
temporal refinements. The Structural refinement
(represented by solid lines in Fig. 2) decomposes
complex tasks into simpler subtasks. The Temporal
refinement (represented by dashed lines in Fig. 2)
provides order constraints for the children tasks
according to the task logic. To define these temporal
constraints we propose the use of the temporal
relationships introduced by the ConcurTaskTree
approach (CTT) [11]. In Fig. 2 we can see the temporal
relationship Enabling (>>) which represents that after
being finished the first task the second is activated.
The rest of temporal relationships proposed by the
CTT approach are not explained in this work due to
space constraints.

Book
Transportation

Book
Accommodation

Arrange a
Tourist Package

Arrange an
Excursion

Arrange a
trip

>>

Scope of this
work

Manage User
Preferences Arrangement

Statement
of Purpose

Fig. 2 A Task Taxonomy of the TAS

The statement of purpose of this system is decomposed
into two tasks: Manage User Preferences and
Arrangement. At the same time, the task Arrangement
is divided into three tasks: Arrange a Trip, Arrange a
Tourist Package and Arrange an Excursion. Finally, to
arrange a trip the user must first Book Transportation
and then (>> Enabling relationship) Book
Accommodation. On the other hand, regarding to the
Broker Agent (BA), Fig. 3 depicts the task taxonomy
that represents the requirements of this system. In this
case, there is only an actor that can interact with the
BA system, which is the TAS system.

Statement of
purpose

Confirm
Temporary

Booking

Cancel
Temporary

Booking

Search
Offers

|=|

Proceed
Booking

Fig. 3 A Task Taxonomy of the Broker Agent

In the following section we introduce a strategy to
describe each identified tasks. To better understand
this strategy we show the description of one task of
each presented task taxonomy: Book Reservation
(from the TAS) and Search Offers (from the BA).

3

4.2 Task Description

In order to describe the set of tasks detected in the
previous stage we extend the traditional descriptions
which specify the system actions that are needed to
achieve each task. We introduce information about the
interaction between actors and the system, indicating
explicitly when (at which exact moment) it is
performed. To do this, we introduce the concept of
interaction point (IP). An IP can define two different
types of interaction:

(1) Output Interaction: the system provides actors
with information and/or access to operations which are
related to an entity2. Actors can perform several
actions with both data and operations: they can select
information (as a result the system provides them with
new information) or activate an operation (as a result
the system carries out with an action).

(2) Input Interaction: the system is waiting for the
user to introduce some data about an entity. The
system uses this information to correctly perform a
specific action (for instance, to carry out with an on-
line purchase with the provided data client). In this
case, the only action that the user must perform is to
introduce the required data.

In order to perform descriptions based on IPs we
propose the use of UML Activity Diagrams [10] as can
be seen in Fig. 4 where:
− Each node (activity) represents an IP (solid line) or a

system action (dashed line). In addition, IPs are
stereotyped with the Output or the Input keyword to
indicate the interaction type.

− In the Output IPs, the number of information
instances3 that the IP includes (cardinality) is
depicted as a small circle in the top right side of the
primitive.

− As far as the Input IPs, we said that the data
introduced by the user is taken by the system to
correctly perform a specific action. To capture that
this kind of IPs exclusively depends on a system
action (it does not take part in the general process of
the task), nodes that represent both elements (input
IP and system action) are encapsulated into dashed
squares.

2 Any object of the real world that belongs to the system domain
(e.g. customer, product, invoice, etc)
3 Given a system entity (e.g. customer), an information instance is
considered to be the set of data related to each element of this entity
(Name: Joseph, Surname: Elmer, Telephone Number: 9658789).

PurchaseOffer

<<input>>
Customer

<<ouput>>
Offer

*
<<input>>

Trip

EstadoAcción1dddGet Offers

1

2

3a

3b

3c

4

Fig. 4 Book Transportation Business Process

Fig. 4 shows the description of the task Book
Transportation. This task begins with the system
action Get Offers (1). This action temporally books the
offers that match with the trip description introduced
by the actor (in this case, the internet user). This
description is introduced by means of the Input IP
defined previously to the system action. Once this
action is finished, the task continues with an Output IP,
where the system provides the internet user with the
list of matched offers (2). From this IP the internet user
can either start the process again to refine his/her trip
description (3a), reject all the supplied offers and quit
(3b) or select one offer (3c). When the internet user
selects an offer the system performs the action
Purchase Offer (4). To perform this action the user
must introduce its client information by means of an
Input IP. Then the task finishes. Fig. 5 shows the
description of the Search Offers task. This task starts
with the system action Search Transportation. This
action searches transportation that matches with the
trip information provided by the actor (the TAS
system) through an Input IP. Next, the system (the
Broker Agent) temporally books the transportation to
finally conclude the task.

<<input>>
Trip

EstadoAcción1dddSearch
Transportation

Book Temporarily
Transportation

Fig. 5 Search Offers Business Process
In order to make task descriptions easy, details

about the information exchanged (in each IP) between
the user and the system are not described (we just
indicate the entity which the information is related to).
This information is specified by means of a technique
based on information templates that is next introduced.

4.2.1 Describing the system data

The information that might be stored in the system
is represented by means of a template technique that is

4

based on data techniques such as the CRC Card [12].
We propose the definition of an information template
(see Fig. 6) for each entity identified in the description
of a task. In each template we indicate an identifier, the
entity name and a specific data section. In this section,
we describe the information in detail by means of a list
of specific properties associated to the entity. For each
property we provide a name, a description and a data
type. In addition, we use these templates to indicate the
information shown in each IP. For each property we
indicate the IPs where it is shown (if there is any). To
identify an IP we use the next notation: Output (Entity,
Cardinality) for Output IPs and Input (Entity, System
Action) for Inputs IPs.

Fig. 6 Information Template for the Customer

entity
According to the template showed in Fig. 6, the

information that the system must store about a
Customer is (see the specific data section): his/her
name, address, email, birthday date, credit card number
(which is requested in the IP Input(Trip, Pre-Book
Offers) and the phone number.

5. Building PIM models from the CIM

Five models should be specified in order to describe
the web application at the OOWS PIM level:

(1) the structural view of the system
(2) the external functionality that our system will

consume
(3) the business process of the application
(4) the navigational view of the system
(5) the presentation view of the system.
Although there is not an explicit order in which

these models might be built, the existing dependencies
between them introduce some constraints about the
sequence in which some of these views should be built.

Model transformation is applied at this point. From
the requirements gathered previously, we proceed to
transform them into more detailed models of the web
app.

We want to note that CIM models did not specify
what part of the system was going to be provided by an
external business partner, if any. Nevertheless, we
should state at this stage (PIM modeling) which

functionality is going to be provided by external
parties.

In the following subsections we proceed to model
the structure, external functionality, business
processes, navigation and presentation views of the
TAS case study.

5.1 Structural Modeling

The Structural Model specifies by means of a UML

Class Diagram the system structure (its classes,
operations and attributes) and relationships between
classes (specialization, association and aggregation).

This model can be partly obtained (just classes and
attributes) from the Templates built at the requirements
step (see section 4.2.1). As Fig. 7 shows, we have
obtained for the TAS case study four classes
(Customer, Trip, Broker Agent and Line Trip) that
describe the part of the domain that needs to be fully
managed by our system.

-origin
-destination
-departureDate
-departureTime
-arrivalDate
-arrivalTime
-price

Trip
-name
-surname
-birthDate
-address
-email
-phoneNumber
-preferences
-discount

Customer
-origin
-destination
-departureDate
-departureTime
-arrivalDate
-arrivalTime
-transportationCompany
-price

Line Trip

+calculate_amount()

-identifier
-bank_account_number

Broker Agent

1 *

*
1

1 *

Fig. 7 TAS Structural Model

For instance, the TAS requires keeping customer
data (such as his/her name, surname, preferences for
travel searches and the kind of discount associated to
him/her) among others.

5.2 Services Modeling

To build Web applications that make use of external
artifacts (such as components, class libraries, Web
services, etc.), we need to represent them at the
modeling level. Following this approach we can work
with external functionality as if they were native
elements of our system. Therefore, we model those
external artifacts that are going to interact with our

5

system in a specific model called the Services Model.
This model has been conceived to specify in a
technology independent fashion the external providers
based on the functionality that they supply. This
specification helps us to easily handle external
functionality as if they were part of the native system
at high level of abstraction.

In this model we define the services supplied by
external providers as well as the set of operations (their
interfaces) that they offer. This definition allows us to
have a generic description of functionality that is
provided at the same time by different partners and in
different technologies. There are two main benefits of
having a generic representation of external
functionality. The former is that the modeling process
gets easier because we work with a generic
specification (note that we define adaptors to match
real external operations with those generic modeled in
this model). The latter is that adding or/and removing
providers do not have a collateral effect in the rest of
models that depend on the services model.

As can be seen in Fig. 8 we have modeled each
external system type (the Broker Agent, The Financial
Company and the Transportation Company) with the
set of operations that they provide.

Broker Agent

+search_offer(trip: Trip):Offer_list
+confirm_booking(offer: Offer)
+cancel_booking(offer: Offer)

Financial Company

+payment(creditCard,amount)

Transportation Company

+get_offer(trip: Trip):Offer_list
+confirm_booking(offer: Offer)
+cancel_booking(offer: Offer)
+temporary_booking(offer: Offer)

Airline Boat Ferry Car

Fig. 8 TAS Services Model

5.3 Business Process Modeling

The Business Process Model defines the set of
business processes (BP) that characterize the business
of the application. The BPs that are defined in this
model correspond to processes that describe the flow
and operations that made up the system actions (nodes
in the task description) detected at the CIM level. In
the case of distributed web systems, as it is the case
with the TAS, these BPs can be formed not only of
activities performed by our system but also from
activities carried out by external partners. Therefore,
these processes can be made up by internal
(implemented by our system) or/and external activities
(provided by business partners). To differentiate in this

diagram the external activities we mark them with the
external stereotype.

For the TAS we have specified two task
taxonomies, one to specify the interaction between the
user and the TAS system (see Fig. 2) and another to
specify the tasks that should perform the Broker Agent
that implements our system.
Associated to the first task taxonomy, and taking the
task description specified for the Book Transportation
leaf in the task tree, we proceed to specify/refine the
description of the process that defines the system
actions (Get Offers and Purchase Offer) included in
the Book Transportation Business Process.

<<External>>
FinancialCompany.payment()

Selected Offer

Credit Card
details

[error]

[ok]

<<External>>
BrokerAgent.confirmBooking()

<<External>>
BrokerAgent.CancelBooking() Rejected Offers

Purchase Offer
Credit Card details: CreditCard
Selected Offer: Offer
Rejected Offers: Offer_list
Payment Error: Error

Payment Error

Fig. 9 Purchase Offer Process

In particular, Fig. 9 depicts the definition of the
process for the Purchase Order system action. This
process accepts as input the credit card details, the
offer to be purchased and the list with the rejected
offers. With this information it will proceed with the
payment to the corresponding Financial Company. If
this activity is correctly performed, the process
continues by confirming the selected offer and
canceling the temporary booking of discarded offers.

Split Trip

<<External>>
Airline.Search_offer()

<<External>>
Train.Search_offer()

<<External>>
Boat.Search_offer()

<<External>>
Car.Search_offer()

Combine Offer

Requested
Trip

Offer List

<<External>>
TC.get_offer()

<<External>>
TC.Temporary_booking()

[no_offers]

[offer_match]

[offer_match] [offer_match] [offer_match] [offer_match]

<<External>>
TC.Temporary_booking()

Search Offers
Requested Trip: Trip
Offer List: Offer_list

Fig. 10 Search Offers Process

For the Broker Agent task taxonomy we have
defined two tasks, which are Search Offer and Proceed
Booking. Fig. 10 depicts the activity diagram that
defines the Search Offer process. This process accepts

6

as input a requested trip (including preferences and
constraints) and manages to get a set of offers that
match with the specified trip.

Fig. 11 defines the process in charge of paying
external Broker Agents for the services supplied to our
TAS. In this figure, the once-a-month accept time
event action generates an output (signal) once a month
that is received by the Pay Broker Agent process. At
this moment, the process is performed.

Once
a

Month

Date
Pay BrokerAgent
Date: date

BrokerAgent.Calculate_amount()

Order_money_transfer()

Fig. 11 Pay Broker Agent Process

5.4 Navigational Modeling

Until this point we have already specified the back-
end of the system (structure, application logic and
external functionality). Nevertheless, as our goal is to
build Web applications, it is necessary to specify the
front-end of the system. This is done through the
Navigational Model.

In the Navigational view we build two models:
(1) the user diagram, This model expresses what

kind of users can interact with the web
application and the system visibility that they
should have.

(2) the navigational model. This model defines
the system visibility for each kind of user in
terms of navigational constructs.

5.4.1 User Diagram

To define what kind of users can interact in the
system we build the User Diagram. This diagram
provides mechanisms to properly cope with additional
user management capabilities, such as the user
specialization that allows defining user taxonomies to
improve navigational specification reuse.

As can be seen in Fig. 12, for the TAS case study
we have specified two user types, an anonymous user
(Anonymous user) that do not need to provide
information about his/her identity to the system
(depicted with a question mark symbol) and a
registered user (Registered customer), who needs to be
identified to connect the system (depicted with a
padlock).

Registered
Customer

Anonymous
User

?

Fig. 12 TAS User Diagram

Once users have been identified, a structured and

organized system view for each type must be specified.
These specifications are shown next in the
Navigational Model.

5.4.2 Navigational Model

The Navigational requirements of the system are
defined in the Navigational model. In this model we
provide a structured and organized view of the system
for each user type defined previously in the User
Diagram. Navigation requirements are captured in two
steps: the “Authoring-in-the-large (global view) and
the “Authoring-in-the-small” (detailed view).

For the definition of the navigational global view
we take as reference the task taxonomy specified in the
requirements modeling step (see Fig. 2). Only that
leafs from the task tree whose associated interaction-
actor is the user are transformed into Navigational
Contexts4 in the Navigational map. In particular, those
leafs targeted with Enabling relationships are defined
in the Navigational Map as Sequence Contexts
(contexts that can only be accessed via a predefined
navigational path by selecting a sequence link). The
rest of navigational contexts are defined as Exploration
Contexts. Exploration contexts are accessible from any
node of the application. Fig. 13 shows the global view
of the system for the registered customer user type.

«context»
Home

E

Registered
Customer

H
«context»
Excursion

E

«context»
Preferences

E
«context»

Transportation

E
«context»

Tourist
Package

E

«context»
Accomodation

S

Fig. 13 TAS Navigational Map

Once the global view has been defined we should
provide a navigational description for each
navigational node (detailed view). Each navigational
context is defined as a view over one of the three

4 Navigational Contexts represent user interaction units that
provide a set of cohesive data and operations to perform
certain activity.

7

models presented in the previous sections: the class
diagram, the services model and the business logic
model. On one hand, a view over the class diagram
(class view) is defined in terms of the visibility of class
attributes, operations and relationships (class views
defined by OOWS). On the other hand, when these
views are built from operations (defined in the services
model) or processes (defined in the business logic
model) they are defined in terms of the data returned
by these operations/processes (we call it Functional
Views). These Functional Views are organized in three
sections as follows:

(1) One section to specify the operation/process
name, including its input and output
parameters.

(2) A second section to specify which data from
the data returned by the operation/process is
going to be shown in the context.

(3) Finally, in a last section we include the
Operations/Processes that can be performed
with the data contained in the context.

An example of a view defined over the business
process model is depicted in Fig. 14. The way in which
a Functional View will be provided graphically is
explained next:

(1) If the operation that defines the Functional
view requires a set of input parameters these
will be asked to the user by means of a input
form. If not, the operation is directly executed
without providing any data. In Fig. 14 the user
should provide data about the trip as well as
some constraints and preferences related to it.

(2) As a result of this invocation, this context
would filter the data returned by the operation,
showing only the data specified at the central
section of the Functional view (which are
origin, destination, dateDeparture, etc).

(3) Finally, the operations that can be invoked
using the data contained in this context are
located in the bottom section of the Functional
view. In the exemplified Transportation
context, the ProceedBooking activity is made
accessible to proceed with the booking of the
selected offer as well as the cancellation of
those rejected offers that were temporarily
booked. To accomplish this operation an input
form is provided to the user in order to fill in
the credit card details required for this
operation.

E
<<context>>

Transportation
«Functional View»

PreBookOffers(Trip,Constraints,Preferences)
:Offer_list

-origin
-destination
-dateDeparture
-dateArrival
-timeDeparture
-timeArrival
-price
+proceedBooking (creditCard, selectedOffer, rejectedOffers)

Fig. 14 Transportation Navigational Context

5.5 Presentation Modeling

Once the navigational model has been built, we
specify presentational requirements using the
Presentation Model. Presentation requirements are
specified by means of properties that are associated to
the primitives of the navigational context. This
specification is strongly based on the Navigational
Model. It allows us to specify the organization of data
included in the Navigational Model.

To define this model we make use of the basic
presentation patterns defined by the OOWS approach,
which are Information paging, Ordering criteria and
Information Layout. Fig. 15 shows the presentation
defined for the Transportation context. It defines by
means of the Ordering criteria that the data contained
in the context must be presented ordered ascendant by
price. It also defines the layout in which data must be
organized. We decided to show the offer list following
the register pattern.

E
<<context>>

Transportation

Pattern: register
Order by: price (ASC)

<<Functional view>>
PreBookOffers():Offer_list

Fig. 15 Transportation Presentation Context

6. Building the PSM for the Services Model

At the PSM level Services Models should be

defined as many as different technologies our
application is going to interact with. For instance, we
should have a Services Model for Web Services in case
our application needs to interact with partners that
provide their functionality by means of this
technology.

The PSM for Services Models represent the specific
technological aspects of the different technologies. To
build these models we take the specific interface
specifications that they provide (WSDL for WS or IDL
for CORBA).

8

Services Model

Services Model
(for Web Services)

Services Model
(for CORBA)

Services Model
(for J2EE)

...

PIM

PSM

Fig. 16 Services Model at PIM and PSM levels

Once the PSMs are built, in order to solve the

differences that arise when integrating various
applications (different interfaces, different protocols,
different data formats, etc.) we should make use of
adapters. These adapters should define the mappings
between the operations defined at the PIM (abstract
representation) and the ones included at the PSM
(specific representation defined by providers). In Fig.
17 we show two Web Services imported from two
different travel agencies (BalearicTripsWS and
OceanicTripsWS). Both provide a set of operations
that fulfil the ones modelled in our PIM Services
Model. However, we still need to link the operation/s
from each service with the generic ones. For instance,
the search_offer operation defined for the Broker
Agent at the PIM Services Model is fulfilled by the
searchOffers operation from the OceanicTripsWS
and by the getOffers and temporaryBooking
operations from the BalearicTripWS.

...
<operation name="SearchOffers">

<input message="tns:SearchOffersRequestMsg"/>
<output message="tns:SearchOffersResponseMsg"/>

</operation>
...

...
<operation name="getOffers">

<input message="tns:getOffersRequestMsg"/>
<output message="tns:getOffersResponseMsg"/>

</operation>
...

<<Ext-WebServices>>
OcanicTripsWS

- http://webservices.oceanictrips.com/…

+searchOffers(trip:Trip):Offer_list
+confirmBooking(offer:Offer)
+cancelBooking(offer:Offer)

<<Ext-WebServices>>
BalearicTripsWS

- http://webservices.balearictrips.com/…

+getOffers(trip:Trip):Offer_list
+temporaryBooking(offer:Offer)
+confirmBooking(offer:Offer)
+cancelBooking(offer:Offer)

Fig. 17 An excerpt of two Imported Web Services

7. Generating a Web Service for the
Broker Agent

In order to make available to external parties the

Broker Agent implemented in our system, we are
going to generate a Web Service (WS) that provides
access to its functionality.

<<External>>
Transportation_Company.Cancel_Booking()

Offer
Cancel Booking
Offer: offer

Split Trip

<<External>>
Airline.Search_offer()

<<External>>
Train.Search_offer()

<<External>>
Boat.Search_offer()

<<External>>
Car.Search_offer()

Combine Offer

Requested
Trip

Offer List

<<External>>
TC.get_offer()

<<External>>
TC.Temporary_booking()

[no_offers]

[offer_match]

[offer_match] [offer_match] [offer_match] [offer_match]

<<External>>
TC.Temporary_booking()

Search Offers
Requested Trip: Trip
Offer List: Offer_list

<<External>>
Transportation_Company.Confirm_Booking()

Offer

Confirm Booking
Offer: offer

<wsdl:portType name="ApplicationLogicSoap">
 <wsdl:operation name="search_offer"/>

<wsdl:input message="tns:searchOfferSoapIn" />
 <wsdl:output message="tns:getOfferSoapOut" />
 <wsdl:operation name="confirm_booking"/>

<wsdl:input message="tns:confirmBookingSoapIn" />
 <wsdl:output message="tns:bookOfferSoapOut" />

<wsdl:operation name="cancel_booking"/>
<wsdl:input message="tns:cancelBookingSoapIn" />

 <wsdl:output message="tns:cancelOfferSoapOut" />
 </wsdl:portType>

Fig. 18 Application Logic WSDL for the Broker

Agent
For the construction of the WSDL definition of the WS
we take the business processes defined for the internal
Broker Agent in the Business Processes Model. This
model was made up of three processes which are going
to be included in the WS. These are search_offer,
cancel_booking and confirm_booking. These
processes definitions include the necessary information
for building the WSDL definition (including the input
and output parameters of each process).
A graphical schema that defines how to obtain the
WSDL definition is provided in Fig. 18.

8. Generating the Interaction with
External Parties

Depending on the technology that a provider uses to

export its functionality, we should provide an
appropriate solution for each case. As Fig. 19 shows,
for each instance from each PSM Services Model we
should build the required client artifact in charge of
interacting with the corresponding service provider.

Services Model

Services Model
(for Web Services)

Services Model
(for CORBA)

Services Model
(for J2EE)

...

PIM

PSM

Code

Stub Java Classes

...

Client stubs Stub Java Classes

Fig. 19 Generating the appropriate Interaction

9

Based on the interfaces supplied by their respective
providers we can generate the corresponding clients to
fulfill the interaction with the external partner.

For instance, when functionality is provided
following the Web Services model we generate from
the associated WSDL definition the necessary client
stubs to consume the supplied operations via SOAP,
REST or XML-RPC depending on the characteristics
of the available WS.

9. Generating the Web Interface

Web interfaces are generated taking as input the

information modeled in the Navigational and
Presentation Model. For the running example, we have
modeled in section 5.4 the Transportation context as a
functional view for the PreBookOffer operation.

The web interface that implements the
Transportation context includes (as the top of Fig. 20
shows) direct access to those Navigational Contexts
that we have defined as Exploration Contexts
(Preferences, Transportation, Tourist Packages and
Excursions).

The set of input parameters of this operation define
the information that is required to the user in order to
provide the corresponding data (an offer list provided
by external broker agents). In Fig. 20 we can see how
the input parameters (trip details, constraints and
preferred transportation) are included in the
Transportation context to allow the user to specify the
parameters for the PreBookOffer operation.

Fig. 20 Web Form for the Transportation Context

When this operation is executed, the context is

shown as a Web page (see Fig. 21) that includes the
offer list gathered from the Broker Agents. In Fig. 21
we can identify the register pattern applied to the
retrieved offer list from the Broker Agents that work
with our system.

Fig. 21 Web Page with the Offer list

10. Conclusions and Further Work

In this work we have presented through the TAS
case study the set of models that need to be built in
order to develop a Web application that integrates
functionality from external parties.

This approach is being incorporated to the OO-
Method CASE tool (the software automatic production
environment that gives support to the OO-Method
[13]).

As further work we have planned to define the
transformations that generate automatically the Web
Services not only to provide the business logic of the
application, moreover we plan to provide the
information gathered also in the Navigational and
presentation models.

In order to define transformations between models
defined at CIM and PIM level we follow a strategy
based on graph transformations. After completing the
preliminary PIM models obtained from this first
transformation, we plan to use the OlivaNova tool to
obtain the application code for a specific platform.

10. References

[1] D. Schwabe, and G. Rossi, “An Object Oriented
Approach to Web-Based Application Design”, Theory and
Practice of Object System 4(4), Wiley and Sons, New York,
1998, ISSN 1074-3224.

[2] O. De Troyer and C. Leune, “WSDM: A user-centered
design method for Web sites”, In Proc. of the 7th
International World Wide Web Conference, 1998.

[3] N. Koch and M. Wirsing, “Software Engineering for
Adaptive Hypermedia Applications”, In 3rd Workshop on
Adaptive Hypertext and Hypermedia, 2001.

[4] N. Koch, A. Kraus, C. Cachero and S. Meliá,
“Integration of Business Processes in Web Application
Models”. Journal of Web Engineering. Vol. 3, No. 1 (2004)

[5] M. Brambilla, S. Ceri,, S. Comai, P. Fraternali and I.
Manolescu, “Model-driven Development of Web Services

10

and Hypertext Applications”, SCI2003, Orlando, Florida,
July 2003

[6] P. Dolog, “Model-Driven Navigation Design for
Semantic Web Applications with the UML-Guide”. In
Maristella Matera and Sara Comai (eds.), Engineering
Advanced Web Applications

[7] R. Tongrungrojana and David Lowe, “WIED: A Web
Modelling Language for Modelling Architectural-Level
Information Flows”. Journal of Digital Information, Vol 5
Issue2.

[8] J. Fons, V. Pelechano, M. Albert and O. Pastor,
“Development of Web Applications from Web Enhanced
Conceptual Schemas”, Proc. Of the International Conference
on Conceptual Modelling, 22nd Edition, ER'03, Chicago,
EEUU, 2003, pp. 232-245.

[9] MDA Guide Version 1.0.1.

[10] Object Management Group. Unified Modeling
Language (UML) Specification Version 2.0 Final Adopted
Specification. www.omg.org, 2003.

[11] F. Paternò, C. Mancini and S.Meniconi,
“ConcurTaskTrees: a Diagrammatic Notation for Specifying
Task Models”, INTERACT’97, Chapman & Hall, 1997, pp.
362-369.

[12] Wirfs-Brock, B. Wilkerson, and L. Wiener, “Designing
Object–Oriented Software.”, Prentice–Hall, 1990.

[13] O. Pastor, J. Gómez, E. Insfrán and V. Pelechano, “The
OO-Method Approach for Information Modelling: From
Object-Oriented Conceptual Modeling to Automated
Programming”, Information Systems Elsevier Science, 2001,
Vol. 26, Number 7, pp. 507-534

11

The PIM to Servlet-Based PSM Transformation
with OOHDMDA

Hans Albrecht Schmid
University of Applied Sciences Konstanz,

Brauneggerstr. 55
 D 78462 Konstanz

xx49-07531-206-631 or -500

schmidha@fh-konstanz.de

Oliver Donnerhak
University of Applied Sciences Konstanz,

Brauneggerstr. 55
D 78462 Konstanz

xx49-07531-206-631 or -500

o.donnerhak@kinemotion.de

ABSTRACT
OOHDMDA generates servlet-based Web applications from
OOHDM. An OOHDM application model built with a UML
design tool is complemented with the recently proposed
behavioral OOHDM semantics to serve as a PIM. This paper
describes the transformation from the PIM to a servlet-based
PSM, which have a great semantic distance. Therefore, the
navigational transformation applies intelligent techniques in
order to avoid a very great complexity. The resulting
transformation rules are quite simple. The XMINavigational-
Transformer implements each rule by a transformation class
that uses the services provided by an XMI parser; it
transforms the PIM XMI-file into a PSM XMI-file.

1. INTRODUCTION
The Object-Oriented Hypermedia Design Method OOHDM
by Schwabe and Rossi [SR98] is a modeling and design
method, which describes hypermedia-based Web applications
by an object model on three levels: the conceptual level, the
navigational level, and the interface level. OOHDM may be
considered as a platform-independent domain-specific
language for Web applications that provides an object model,
in contrast to other Web application modeling languages.
A domain-specific language that is to be used as a platform-
independent model (PIM) for a model-driven architecture
(MDA) [OMG MDA], should have a well-defined formal
semantics. Therefore, we use an OOHDM application model
only as a base PIM, adding to it the behavioral semantics
definition of OOHDM core features and business processes,
proposed by Schmid and Herfort [SH04]. The behavioral
semantics definition derives the application-related OOHDM
classes from behavioral model classes with a fixed predefined
behavioral semantics, so that they are well-defined and
executable.
Schmid [S04] gives an overview over OOHDMDA, which
covers all core constructs of OOHDM together with business
processes [SR04]. This paper describes in detail the
transformation of the PIM to a servlet-based PSM, and in
particular the transformation rules used to perform the
transformation. This paper presents the transformation of all
core constructs of OOHDM, including fixed page, dynamic
page and advanced navigation, which are considerably more
complex than the usual MDA transformations [JCP01]
[KWB04]. The transformation generates from an OOHDM
application model and the behavioral semantics model a
servlet-based Web application front-end, which accesses
backend classes.

After an overview on the MDA-process with OOHDM in
section 2, we describe the PIM for dynamic navigation with
the behavioral semantics definition in section 3. Section 4
presents the transformation to a servlet-based PSM. Section 5
presents the transformation rules in detail. Section 6 shows
how the transformations rules are implemented; section 7
presents an optimization of the transformation that reduces
the number of the classes to be transformed, and section 8
presents related work

2. MDA PROCESS
2.1 Base PIM and PIM
A Web application designer designs with with OOHDMDA
(see Figure 1) the OOHDM conceptual and navigational
schema of a Web application as the base PIM for the MDA
process, using any UML-based design tool, like Rational
Rose or Poseidon, that produces an XMI-file as output. The
designer has to mark the application-related OOHDM classes
with a stereotype indicating the model class, from which the
OOHDM class is derived (see [SH04]).

The Base PIM to PIM transformation transforms the
output XMI-file of the design tool to a XMI-file with a
modified UML class diagram. The main transformation rules
are: replace navigational links by model classes for
navigational links; derive the base PIM classes from model
classes according to the stereotype; add the model classes to
the PIM; add directed associations from nodes to the
associated conceptual schema entities.
The OOHDM conceptual and navigational schemas represent
two different, relatively independent aspects of a Web
application, the Web front-end, and the application backend.
Consequently, we partition also the PIM into a conceptual
PIM sub-model and the navigational PIM sub-model (see
Figure 1).

2.2 Navigational Transformation
The conceptual and navigational PIM to PSM transformation
are completely independent, except for operation invocations
of conceptual PSM objects from the navigational PSM,
where the kind of invocation may vary. Thus, you may select
and combine the implementation technology and platform of
the conceptual PSM and the navigational PSM quite
independently, as [S04] shows.

12

OOHDM
Conceptual

Schema

Conceptual
Schema

+
Behavioral
Semantic

EJB
Backend

Application

OOHDM
Navigational

Schema

Navigational
Schema

+
Behavioral
Semantik

Servlet
Technology

Base PIM
XMI-File

PIM
XMI-File

Servlet-Based
Navigational

Transformation

PSM
XMI-File

XML-Parser

Transform. 1

Transform. n

XMI Navigational
Transformer

UML
Editor

Behavioral
Model

Classes

Transformed
Behavioral

Model
Classes

Pre-
defined
Classes

Code

Manual
Transfor-
mation

Platform-Specific
Transformations

XML-Parser

Transform. 1

Transform. n

BasePIM->PIM
Transformer

Fig. 1. Conceptual and navigational Base PIM, PIM and transformation to servlet-based navigational PSM with
XMINavigationalTransformer

For example, you may transform the conceptual PIM into an
EJB-based conceptual PSM in order to implement the
application backend with Enterprise JavaBeans (EJB). This
conceptual transformation, which is not very complex,
transforms the different categories of objects from the
conceptual schema into different kinds of Enterprise
JavaBeans, as described shortly in [S04a].
This paper focuses on the navigational transformation from
the navigational PIM into a servlet-based navigational PSM,
both represented by files in XMI format. It is described by
transformation rules.
Since we could not find a transformation tool to be
parameterized with the transformation rules, we constructed
an XMINavigationalTransformer that implements each rule
by a transformation class that uses the services provided by
an XMI parser; it transforms the PIM XMI-file into a PSM
XMI-file.
The simple PSM-code transformation generates from a PSM
XMI-file executable Java code, that is Java servlets and
classes, which work quite efficiently.

3. PIM MODEL CONSTRUCTS FOR
FIXED, DYNAMIC AND ADVANCED
NAVIGATION
The OOHDM behavioral semantics derives the OOHDM
application model from behavioral model classes. That
means conceptual schema entities, like CD, are derived from
a model class, like Entity or subclasses, and navigational
schema nodes, like CDNode, from a model class, like Node
or subclasses. Model classes collaborate with a Web
Application virtual Machine (WAM), which models basic

Web-browser characteristics, i.e. HTTP-HTML
characteristics, as seen from a Web application. Both model
classes and WAM have a well-defined behavioral semantics
[SH04].
Class Node defines the operations: getPage(): Page, getField(
n:Name): Value, setField(n: Name, v: Value),
getFieldNames(): Name [], which are mainly used by the
WAM to display the content of a page. A Node refers to the
entity or entities it displays, and contains an array of
InteractionElements like Anchor’s or Button’s, and a Page.
Node has subclasses FixedEntityNode and DynEntityNode
that represent pages with a fixed content and dynamically
generated content.
We distinguish two kinds of navigation, navigation to a Web
page with fixed content and dynamic content, i.e. navigation
to a FixedEntityNode and DynEntityNode. Advanced
navigation allows a user to trigger an action that enters or
updates information in entities from the conceptual schema.
We present two examples: the PIM model construct for
dynamic navigation from CDNode to PerformerNode; and
the PIM model construct for advanced navigation when a
user triggers the execution of the addToCart-method of
CDNode. For an easier understanding, we present both PIM
model constructs independently from each other; that means
we assume that CDNode allows either dynamic navigation or
advanced navigation. When CDNode allows to do both
dynamic navigation and advanced navigation, both PIM
model constructs are superimposed such that there is only a
single class CDNode with the union of the class members.

13

clicked() {
 this.navigate(); }+getLinkKey() : Key

-concreteAnchor : Anchor

«dyn entity node»
CDNode

1 *

navigate() {
 theLink.traverse(myNode.getLinkKey()); }

+traverse(k:Key)()
-targetNode : DynEntityNode

«model»
DynPageLink

+addToCart()
+find(k:Key)()
+set()

«dyn entity node»
PerformerNode traverse(k:Key) {

 targetNode.find(k);
 targetNode.set();
 WAM.display(targetNode); }

11

1
1

+clicked()()
+abstract navigate()

«model»
Anchor

+navigate()()

-theLink : DynPageLink
-myNode : EntityNode

«model»
DynPageAnchor

+getPage() : Page
+abstract find(k:Key)()
+abstract set()

«model»
DynEntityNode

+static find(k:Key)()

«entity»
Performer

Fig. 2. PIM for dynamic navigation from CDNode to PerformerNode

+action()
-sourceNode : CDNode

«button»
AddToCartButton

+addToCart()
+getField(n:Name)() : Value

-name : String
-performer : String
-price : String
-concreteButton : Button
-shoppingCart : ShoppingCart
-key : Key

«dyn entity node»
CDNode

1 *

addToCart() {
 value = this.getField(key);
 shoppingCart.add(value); }

+clicked()
+abstract action()

«model»
Button

action() {
 sourceNode.addToCart(); }

clicked() {
 this.action(); }

1

1

Fig. 3. PIM for advanced navigation: executing the addToCart-action triggered by AddToCartButton

3.1 Dynamic Page Navigation
Figure 2 shows the PIM model construct for dynamic
navigation over a link from (the user-defined classes)
CDNode to PerformerNode. The source node of the link, like
CDNode, references a DynPageAnchor that references a
DynPageLink, which references the target node of the link, a
DynEntityNode like PerformerNode. These references are set
by constructor parameters when the model classes are
configured to work together.
The WAM has the attribute currentNode, which references
the currently displayed Node. When a user clicks at an
InteractionElement of the currently displayed Web page, like
the anchor of a dynamic link on the CD Web page, the WAM
calls the clicked-operation of the corresponding
InteractionElement of the currentNode, like that of
DynPageAnchor of CDNode, which forwards the call to the
navigate operation. The navigate-operation fetches the key of
the dynamic content that the target node should display, from
the source node CDNode (referenced by attribute myNode),
calling its getLinkKey-method that returns a key, like a
Performer name. Then it calls the traverse-operation, passing
the key as a parameter.
The traverse-operation of DynPageLink calls the find-
operation of its target node, like PerformerNode with the key
as a parameter, and then its set-operation so that the target
node sets its dynamically generated content. Last, traverse

calls the display-operation of the WAM with the target node
as a parameter. The method display(n: Node) sets that node n
as the current node and calls its getPage-operation to display.
the page.

3.2 Fixed Page Navigation
Fixed page navigation is a simplified dynamic page
navigation. The main difference is that no key is required to
identify the content of the page, since the content is always
the same. Therefore, the PIM for fixed page navigation is
similar to the PIM for dynamic page navigation. The
differences are that the class FixedPageLink (that replaces
DynPageLink) has a traverse-method without a key-
parameter, which calls directly the display-method of the
WAM (without the find- and set-calls of the target node); and
that the the navigate-method of class FixedPageAnchor (that
replaces DynPageAnchor) does not pass a key parameter
with the call of traverse.

3.3 Advanced Navigation
Figure 3 presents the PIM model construct for advanced
navigation (for details, see [SH04]). Advanced navigation
allows a user to trigger an atomic action by pressing a button
on a Web page. An atomic action enters or edits information
in a Web application, modifying the state of application
objects that are modeled in the conceptual schema.
For example, consider the addToCart operation of the
CDNode in Figure 3, which is triggered by the

14

AddToCartButton. The navigational PIM (see Figure 3)
shows the model class Button with the operations clicked and
action. A derived application-specific class, like
AddToCartButton, implements the action-method, which
calls an operation of the source node, like addToCart of
CDNode.
When the WAM displays a Web page, i.e. a node, and a user
clicks at a button on this page, the WAM calls the clicked-
operation of the corresponding InteractionElement of the
currentNode, like Button. The clicked-method forwards the
call to the action-method, which forwards the call to the
addToCart-method of the CDNode. This method fetches the
value from the key-field of the (currently presented) CD and
sends the message add(value) to the ShoppingCart object,
which changes the state of the shopping cart. Note that the
execution of an atomic action does not imply the navigation
to another node.

4. SERVLET-BASED NAVIGATIONAL
PSM
This section gives an overview on the servlet-based PSM for
fixed page, dynamic page and advanced navigation. The
semantic distance between PIM and PSM is very great, in
contrast to what is usual with MDA. Therefore, the
navigational transformation applies intelligent techniques in
order to avoid a very great complexity. The resulting
transformation rules are quite simple. Details on them are
given in section 5.
A servlet connects the backend application with the Web; it
runs on a Web server, receiving an HTTP request as a
parameter of a doGet- or similar operation, and sending out a
HTTP response as a result of the operation. The doGet-
method analyses the user input and creates the new Web page
as output.
The processing performed by a servlet is similar to the
processing performed by the WAM in the navigational PIM.
The doGet-method of a servlet is triggered by a user
interaction and reacts on that interaction by creating a Web
page as a response, in the same way, as the OOHDM
behavioral model is triggered by the WAM on a user
interaction and creates and displays a mask for a Web page
on the WAM.
As a consequence, the navigational transformation replaces
the WAM by a servlet. The EntityNodeToServlet
transformation rule, which applies to all entity nodes,
generates from each PIM Entity Node class, like CDNode, a

PSM servlet class, like CDNodeServlet (see Figure 5), that
has a reference to the node, like PSM::CDNode, which is not
modified from the PIM. When a user presses an interaction
element of the Web page, the doGet-method of the generated
servlet analyses the response parameter and calls the clicked-
method of the pressed InteractionElement of the referenced
node (see Figure 4).

The navigational transformation modifies also the
navigational PIM classes like Anchor, PageAnchor, and
Link, such that the new page is not displayed by the WAM,
but put into the response-parameter of the doGet-method.
Doing that straightforwardly would result in the navigational
PSM being very different from the navigational PIM, which
would make the navigational transformation a complex
expenditure. To keep the transformation as simple as
possible, we developed the solution that the servlet provides,
similarly as the WAM, a display-method putting the node
into the response parameter.
Since that responsibility is identical for all node servlets, we
introduce with the EntityNodeToServlet transformation rule
the PSM class OOHDMDAServlet, extending HttpServlet, as
common superclass of all NodeServlet classes.(see Figure 4).
Its method display(targetNode: Node) gets the associated
Page from the parameter targetNode; since it has no direct
access to the response parameter of doGet, it writes the Page
to the member variable “response” that refers to the
HttpResponse, after an assignment by the doGet-method (see
Figure 4). Thus, the page contained in the parameter
targetNode is put as content into the response parameter and
displayed as Web page at the return from the doGet-method
call.
The navigational transformation rules InteractionElement,
Anchor, Button, PageAnchor, Link, Button and
ActionUserButton modify each the clicked-method of the
class InteractionElement, Anchor or Button, the navigate-
method of the class FixedPageAnchor or DynPageAnchor,
the traverse-method of FixedPageLink or DynPageLink, and
the action-method of UserButton, so that the traverse-method
of FixedPageLink or DynPageLink or the action-method of
UserButton can call the display-method provided by the
servlet: a reference to the servlet is added as an additional
parameter to these methods and forwarded from call to call.

 +doGet(...)()
+sourceNode : Node

CDNodeServlet

+display(n:Node)()
+response : HttpServletResponse

OOHDMServlet

public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws ... {
 response = res;
 if (req.getParameter("action").equals("anchor"))
 sourceNode.getAnchor().clicked(this);
 if (req.getParameter("action").equals("…"))
 …
}

void display(targetNode: Node) {
 //get Web page created from Node
 Page p = targetNode.getPage();
 //write Web page p to response-parameter
 out = response.getWriter();
 while (p.hasMoreElements())
 out.println(p.next());
}

HttpServlet

Fig. 4. PSM-classes CDNodeServlet with doGet-method analyzing request parameter and calling clicked-method of the clicked-
at InteractionElement, and OOHDMDAServlet

15

clicked(s:OOHDMServlet) {
 this.navigate(s); }+getLinkKey() : Key

-concreteAnchor : Anchor

«dyn entity node»
CDNode

1 *

navigate(s:OOHDMServlet) {
 theLink.traverse(myNode.getLinkKey(), s); }

+traverse(k:Key,s:OOHDMServlet)()
-targetNode : DynEntityNode

«model»
DynPageLink

+addToCart()
+find(k:Key)()
+set()

«dyn entity node»
PerformerNode traverse(k:Key, s:OOHDMServlet) {

 targetNode.find(k);
 targetNode.set();
 s.display(targetNode); }

11

1
1

+clicked(s:OOHDMServlet)()
+abstract navigate()

«model»
Anchor

+navigate(s:OOHDMServlet)()

-theLink : DynPageLink
-myNode : EntityNode

«model»
DynPageAnchor

+getPage() : Page
+abstract find(k:Key)()
+abstract set()

«model»
DynEntityNode

+static find(k:Key)()

«entity»
Performer

+doGet(...)()

CDNodeServlet

+display(n:Node)()

OOHDMServlet HttpServlet

Fig. 5 Servlet-based PSM for dynamic navigation

clicked(s:OOHDMServlet) {
 this.action(s); }

action(s:OOHDMServlet) {
 sourceNode.addToCart(s);
 s.display(sourceNode); }

+action(s:OOHDMServlet)()
-sourceNode : CDNode

«button »
AddToCartButton

+addToCart()
+getField(n:Name) : Value()

-name : string
-performer : string
-price : string
-concreteButton : Button
-shoppingCart : ShoppingCart
-key : Key

«dyn entity node»
CDNode

addToCart() {
 value = this.getField(key);
 shoppingCart.add(value); }

1

1

+abstract action(s:OOHDMServlet)()
+clicked(s:OOHDServlet)()

«model»
Button

1*

+doGet(...)()
+display(n:Node)()

«OOHDMServlet»
CDNodeServlet

Fig. 6. Servlet Servlet-based PSM for advanced navigation

4.1 Servlet-Based PSM for Dynamic
Navigation
Figure 5 shows the PSM construct for dynamic navigation that is
the result of the transformation. The method doGet of
CDNodeServlet, which has a reference to CDNode, calls the
clicked-method of the corresponding interaction element of
CDNode, which is a DynPageAnchor, passing a reference to the
servlet as a parameter. The transformed behavioral model classes
collaborate in the same way as described in section 3, passing
additionally a reference to CDNodeServlet as a parameter. The
traverse-method calls the find- and set-method of the target node
so that PerformerNode gets the dynamic page content from the
DynEntity Performer, and inserts it into the DynPage that contains
already the static HTML page content. Then, traverse calls the
display-method of CDNodeServlet with PerformerNode as a
parameter.
The navigational PSM for fixed navigation is similar to the
navigational PSM for dynamic navigation, except for the
differences between the respective PIMs described in section 3.

4.2 Servlet-Based PSM for Advanced
Navigation
Figure 6 shows the PSM construct for advanced navigation that is
the result of the transformation. The method doGet of
CDNodeServlet, which has a reference to CDNode, calls the
clicked-method of the corresponding interaction element of
CDNode, which is a Button, passing a reference to the servlet as a

parameter. The clicked-method calls the action-method of
AddToCartButton, passing a reference to the servlet as a
parameter, which calls in turn the addToCart-method of CDNode.
This method gets the key that identifies the CD presented to the
user, and calls the add-method of the ShoppingCart object.

5. TRANSFORMATION RULES FOR THE
NAVIGATIONAL TRANSFORMATION
The navigational transformation from the PIM to the servlet-based
PSM is formed by a set of independent atomic transformations.
We describe a transformation in this section for a better
understanding by a semi-formalized transformation rule. A
transformation rule has
1. a name
2. a source, which describes the PIM class or classes to be

transformed. It indicates the class name and/or the stereotype
of the class to be transformed, like <<DynEntityNode>>, and
possibly additional selection criteria

3. a target, which describes the transformed PSM class or classes
4. a ToDo section that describes the modifications that are to be

applied to the PIM class or classes to generate the PSM class
or classes

5. a graph section. It represents on the left the source graph with
the PIM classes and associations among them, and on the
right the destination graph with the PSM classes and
associations among them.

16

We present all transformation rules that the navigational
transformation uses to transform the PIM for fixed page, dynamic
page and advanced navigation. The same rules apply for fixed
page and dynamic page navigation, as Table 1 shows, since the
differences among them are expressed by different OOHDM and
behavioral model classes, and not generated by the MDA
transformations. Advanced navigation shares two rules with them
and adds two more rules. Table 1 gives an overview on the
transformation rules and for which kind of navigation they are
used.

 Area of Use
Rule

FixedPage
Navigation

DynPage
Navigation

Advanced
Navigation

EntityNode
ToServlet

X X X

InterAction
Element

X X X

Anchor X X

PageAnchor X X

Link X X

Button X

Action
UserButton

 X

Table 1 Overview on the transformation rules and their use
The transformation rules are presented in an abbreviated form in
Figures 7 and 8.

The transformation rule EntityNodeToServlet (see Figure 7) is
applied to all nodes derived from FixedEntityNode or
DynEntityNode. It generates from a class PIM::<AnyClass>

• an unmodified class PSM::<AnyClass>

• a class PSM::OOHDMDAServlet (that is the same for all
entity nodes)

• and a class PSM::<AnyClass>Servlet for which a doGet-
method is generated as described in section 4 (see Figure 4): it
analyses the request parameter to determine the anchor or
button etc. clicked-at, and invokes the corresponding clicked-
method of the associated node.

The transformation rule InteractionElement (see Figure 8 a) is
applied to the abstract base class InteractionElement from which
Anchor, Buton, etc. are derived. Note that the class
InteractionElement was left off in the class diagrams.
The transformation rule Anchor is applied to the class
PIM::Anchor, PageAnchor is applied to PIM::FixedPageAnchor
or PIM::DynPageAnchor, Link is applied to PIM::FixedPageLink
or PIM::DynPageLink (see Figure 8 b-d).
The transformation rules Anchor and PageAnchor add each a
parameter of type OOHDMDAServlet to the methods: clicked of
Anchor, respectively navigate of FixedPageAnchor or
DynPageAnchor, and modify the behavioral semantics of these
methods so that each forwards the newly added parameter to the
navigate-, respectively traverse-method. The transformation rule
Link adds a parameter of type OOHDMDAServlet to the traverse-

method, and replaces the WAM as the receiver of the display-call
by the servlet parameter.

Name EntityNodeToServlet

Source PIM::<AnyClass> with stereotype <<DynEntityNode>>
or <<FixedEntityNode>>

Target PSM::<AnyClass> and PSM::<AnyClass>Servlet and
PSM::OOHDMDAServlet

ToDo no modifications in class <AnyClass>

generate OOHDMDAServlet

generate a servlet class <AnyClass>Servlet derived
from OOHDMDAServlet, which has a reference to
<AnyClass>

generate case-distinction in doGet-method

Graph

Figure 7 Navigational transformation rule EntityNodeToServlet

There is only one transformation rule that is applied to transform
both the navigate-methods of the classes FixedPageAnchor and
DynPageAnchor, though both methods have a different number of
parameters and a different behavioral semantics. The same holds
for the traverse-method of the classes FixedPageLink and
DynPageLink.

Name InteractionElement

Source PIM::InteractionElement

Target PSM::InteractionElement

ToDo add a parameter of type OOHDMDAServlet to
method clicked()

Graph not shown, since trivial

Figure 8 a Navigational transformation rule InteractionElement

Name Anchor

Source PIM::Anchor

Target PSM::Anchor

ToDo add a parameter of type OOHDMDAServlet to
method clicked();

modify behavioral semantics of clicked to
forward the added parameter with call of
navigate-method

Graph not shown, since trivial

Figure 8 b Navigational transformation rule Anchor

17

Name PageAnchor

Source PIM::FixedPageAnchor or
PIM::DynPageAnchor

Target PSM::FixedPageAnchor or
PSM::DynPageAnchor

ToDo add a parameter of type OOHDMDAServlet to
method navigate;

modify behavioral semantics of navigate to
forward the added parameter

Graph not shown, since trivial

Figure 8 c Navigational transformation rule PageAnchor

Name Link

Source PIM::FixedPageLink or PIM::DynPageLink

Target PSM::FixedPageLink or PSM::DynPageLink

ToDo add a parameter of type OOHDMDAServlet to
method traverse()

modify behavioral semantics code of traverse
to replace the WAM as
receiver of the display-call by the newly
introduced parameter

Graph not shown, since trivial

Figure 8 d Navigational transformation rule Link

Name Button

Source PIM::Button

Target PSM::Button

ToDo add a parameter of type OOHDMDAServlet to
method clicked();

modify behavioral semantics of clicked to
forward the added parameter with call of
action-method

Graph not shown, since trivial

Figure 8 e Navigational transformation rule Anchor

Name ActionUserButton

Source PIM:: <AnyClass> with stereotype
<<Button>>

Target PSM:: <AnyClass>

ToDo add a parameter s of type OOHDMDAServlet
to method action;

modify behavioral semantics code of action-
method to add at the end a display-call with s
as a parameter and the sourceNode as receiver

Graph not shown, since trivial

Figure 8 f Navigational transformation rule UserButton

6. IMPLEMENTATION OF THE
TRANSFORMATION RULES
The navigational transformation is performed by the
XMINavigationalTransformer (see Figure 1). It has as input and

output each an XMI file. From the output file, executable Java
classes are generated.
We programmed the described transformation rules in the
XMINavigationalTransformer, since we could not find a
transformation tool that could handle the described
transformations, which are relatively complex.
The XMINavigationalTransformer contains an XML parser, and
for each transformation rule a C# class implementing that rule. A
transformation class uses query functions supplied by the XML
parser to find a PIM class that meets the criteria described in the
source part of the transformation rule. Then, a further query
function is used to find the part of the class that is to be modified,
like a certain method. When e.g. a parameter is to be added, a
prefabricated XMI template with placeholders is used, that means
modified and inserted into the XMI tree.
We selected C# as a programming language for the transformation
classes since it provides a rich XML functionality. As a
consequence, the transformation classes are short, simple and well
structured.
Our experience is that it is much simpler to program the
transformation rules than to use a tool to implement them.

7. TRANSFORMATION OPTIMIZATION
The PIM behavioral model classes like PIM::InteractionElement,
PIM::Anchor, PIM::FixedPageAnchor, PIM::DynPageAnchor,
PIM::FixedPageLink, PIM::DynPageLink and PIM::Button have
a fixed predefined semantics. As a consequence, it is not
necessary to transform each time with each transformation
process, when we transform the OOHDM application-model
classes.
Therefore, we create once pre-transformed PSM classes:
PSM::InteractionElement, PSM::Anchor, PSM::FixedPage
Anchor, PSM::DynPageAnchor, PSM::FixedPageLink,
PSM::DynPageLink, and PSM::Button; and add them after the
navigational transformation to the transformed OOHDM
application-model classes. Since the class
PSM::OOHDMDAServlet is the same for all nodes, we do not
need to generate it with each transformation process, but provide
it also as a pre-transformed PSM class.

8. RELATED WORK
Different Web application design methods, like WebML by Ceri,
Fraternali, and Paraboschi [C00], W2000 by Baresi, Garzotto, and
Paolini [B00], UWE by Koch and Kraus [KKCM03], OO-H by
Cachero and Melia [KKCM03], and OOWS by Pastor, Fons and
Pelechano [PFP03], generate code from the Web page design or a
design model.
We distinguish a model-based process from a code-generation
process. A model-based process transforms a formal PIM model
into a formal PSM model. In contrast, a code-generation process
does not use a formal PIM model, but an informal model, like e.g.
a user design of a Web page and a verbal semantics of that design.
We classify the approach taken by WebML and W2000 as a code
generation process, and the approach taken by UWE, OO-H, and
OOWS together with our approach as a model-based process.
UWE and OO-H use UML as a formal PIM model language, and
OOWS captures functional system requirements formally to
construct from them the Web application.
Taguchi, Jamroenderarasame, Asami and Tokuda distinguish and
compare tow code-generation approaches, the annotation

18

approach and the diagram approach for the automatic construction
of Web applications [TJAT04].

9. CONCLUSIONS
We have presented how the OOHDMDA approach generates
servlet-based Web applications from an OOHDM design model.
OOHDMDA comprehends all core constructs of OOHDM and the
business process extension [SR04]. OOHDMDA may be
complemented easily with concepts currently not included, like
navigational contexts, once a behavioral semantics is defined.
The base PIM to PIM transformation, which is a small effort, is
done manually. The tools provided to perform the PIM to PSM
transformation and the PSM to code transformation are running.
OOHDM is used together with the recently proposed behavioral
semantics model as a PIM. The advantages of a model-based
transformation process with a formally defined domain-specific
language as a PIM are:
1. The semantics of the Web application model is well-defined

by the domain-specific PIM language, and it may be extended
when required. Consider e.g. dynamic navigation: if getting
the key for the page content from the old page is more
complicated than described by the behavioral semantics of the
DynPageAnchor class (see Figure 2), a class that overrides the
navigate-method may be derived from DynPageAnchor.

2. The software structure of the generated Web application is
well-described by the transformation rules; it may be extended
or modifed when required. Consider e.g. the
EntityNodeToServlet transformation rule: it states clearly
that an own servlet is generated for each entity node. If that
would not be desired, it is quite easy to provide an alternative
EntityNodeToServletA transformation rule which generates
one servlet class for all entity nodes of an Web application,
and to provide also an alternative transformation class
implementing that modified rule.

This transparency is an important advantage if a tool is used to
generate real-world applications for greater companies, since there
are company-internal standards to be adhered to. Extension of the
behavioral semantics or modification of the transformation rules
makes it possible to adhere to different standards.

10. ACKNOWLEDGEMENTS
Our thanks are due to Gustavo Rossi for hosting Oliver in La
Plata; the International Bureau of the BMBF, Germany, for the
Bilateral Cooperation with Argentina support; and the
Ministerium fuer Wissenschaft und Forschung, Baden-
Württemberg for a partial support of the project.

11. REFERENCES
[B00] L. Baresi, F. Garzotto, and P. Paolini. ”From Web Sites to

Web Applications: New issues for Conceptual Modeling”. In
Procs. Workshop on The World Wide Web and Conceptual
Modeling, Salt Lake City (USA), October 2000.

[C00] S. Ceri, P. Fraternali, S. Paraboschi: ”Web Modeling
Language (WebML): a modeling language for designing Web
sites”. Procs 9th. International World Wide Web Conference,
Elsevier 2000, pp 137-157

[JCP01] Java Community Process Document JSR26:“UML/EJB
Mapping Specification“

[KKCM03] N.Koch, A.Kraus, C.Cachero, S.Melia: “Modeling
Web Business Processes with OO-H and UWE“. IWWOST 03,
Proceedings 3rd International Workshop on Web-Oriented
Software Technology, Oviedo, Spain, 2003

[KWB04] A.Kleppe, J.Warmer, W.Bast: “MDA Explained“,
Addison-Wesley Pearson Education, Boston, USA, 2004

[OMG MDA] http://www.omg.org/mda/
[PFP03] O.Pastor, J.Fons, V.Pelechano: “OOWS: A Method to

Develop Web Applications from Web-Oriented conceptual
Models“. IWWOST 03, Proceedings 3rd International
Workshop on Web-Oriented Software Technology, Oviedo,
Spain, 2003

[S04] H. A. Schmid: “Model Driven Architecture with OOHDM“.
Engineering Advanced WebApplications, Proceedings of
Workshops in Connection with the 4th ICWE, Munich,
Germany, 2004, Rinton Press, Princeton, USA

[S04a] H. A. Schmid: “Model Driven Architecture with
OOHDM“. Proceedings IWWOST 04, Munich, Germany,
2004

[SH04] H. A. Schmid, O.Herfort “A Behavioral Semantics of
OOHDM Core Features and of its Business Process
Extension“. In Proceedings ICWE 2004, Springer LNCS 3140,
Springer, Berlin, 2004

[SR04] H. A. Schmid, G. Rossi “ Modeling and Designing
Processes in E-Commerce Applications“. IEEE Internet
Computing, January 2004

[SR98] D. Schwabe, G. Rossi: ”An object-oriented approach to
web-based application design”. Theory and Practice of Object
Systems (TAPOS), Special Issue on the Internet, v. 4#4,
pp.207-225, October, 1998

[TJAT04] M. Taguchi, K. Jamroenderarasame, K. Asami and T.
Tokuda “Comparison of Two Approaches for Automatic
Construction of Web Applications: Annotation Approach and
Diagram Approach” In Proceedings ICWE 2004, Springer
LNCS 3140, Springer, Berlin, 2004

19

Model Integration Through Mega Operations

Th. Reiter, E. Kapsammer, W. Retschitzegger

W. Schwinger

Department of Information Systems

Johannes Kepler University Linz

Department of Telecooperation

Johannes Kepler University Linz

{reiter | ek | werner}@ifs.uni-linz.ac.at wieland.schwinger@jku.ac.at

Abstract

With the advent of the Model Driven Architecture,

models are replacing code as the major artifact in

software development. A critical success factor for this

is the possibility to derive models from each other in

terms of transformations. Existing approaches, such as

the forthcoming QVT-standard, will provide a proper

foundation for transforming models on a fine-grained

level. They, however, do not provide appropriate

abstraction mechanisms for different integration

scenarios, such as integrating models representing

cross-cutting concerns or integrating models even from

different domains. This paper proposes so called mega

operations representing an abstraction mechanism

which allow to specify model integration at the meta-

level, thus forming the prerequisite to automatically

derive a set of directives carrying out the actual

integration at the model level. To cope with different

integration scenarios, tight as well as loose integration

of models is supported on top of a QVT-like language.

1. Introduction

The OMG has initiated the Model Driven Architecture

(MDA), a software design methodology emphasizing

the construction of models and the subsequent

generation of executable code on basis of those models

[23]. Thus models are replacing code as the major

artifact in software development [4]. One of MDA’s

main benefit is the abstraction of core business

functionality from implementation specific details

resulting in platform independent models (PIM) and

platform specific models (PSM).

The derivation of a model from another model is

carried out through a transformation - ideally

automated. In order to standardize such a model

transformation language, several proposals for a

Query/Views/Transformations (QVT)-language have

been submitted to the OMG [12]. Model

transformations as envisaged by QVT focus on

transforming a model ma at the level M1 conforming to

a meta-model Ma at the level M2 into a model mb

conforming to a meta-model Mb, where Ma and Mb may

potentially be the same.

QVT definitely represents a major building block

technology for basic model transformations in the

MDA. It does not provide, however, appropriate

abstraction mechanisms for different kinds of model

integration scenarios, which are highly needed in

practice and well-known from other research areas such

as federated information systems [29], [32],

megaprogramming [31], web service composition and

[19] and aspect-oriented programming [18]. Such

integration scenarios would require a series of basic

model transformations which will simply not scale up

when manually specified for complex models.

Following, for example, the basic principle of

separation of concerns in the modeling realm would

avoid the construction of large, monolithic domain

models which are difficult to handle and comprehend.

At the same time, these models, each of them

describing a certain cross-cutting concern of a whole

domain (e.g., security aspects and transactional aspects

of a web-based tourism information system), need to be

tightly integrated into one coherent model representing

the entire domain, as required for MDA.

Integration is not only needed in the case of models

representing aspects of the same domain, but also in

case of models covering different domains. For

example, it would be highly desirable to integrate web-

based reservation systems covering different domains

like transportation (e.g, car rental) and accommodation

(e.g., hotel booking) in order to allow them to

interoperate providing new services for customers. This

20

scenario requires for loose integration, i.e.,

synchronizing both domain models in certain ways by

explicitly representing the model’s interrelationships,

while providing their autonomy.

Although these two scenarios look quite differently

at a first sight, they bear several commonalties in mind.

Both call for integrations which can be defined in an

abstract and thus, scalable way, without burden the

modeler with transformation primitives. Integration

should not have to be defined repeatedly each time

when models should be integrated, but rather be

specified once at a meta-level, thus facilitating reuse of

integration knowledge. Finally, in order to prevent ad-

hoc integration of models, the actual integration at the

model level should be governed at the meta level and

performed fully automated.

To deal with these requirements and based on our

experience with various web-based model integration

scenarios (cf. [15], [16], [20], [26], [28]) we introduce

so-called mega operations1 providing abstraction

mechanisms for model integration, thus allowing

modelers to develop web systems of several

interrelated models. Mega operations offer a set of

operators for dealing with model heterogeneity as well

as synchronization and provide the possibility to

specify integration constraints. Specified at the level of

meta-models that are MOF-based [24], a set of

integration directives can be automatically derived,

carrying out the actual integration at the model level.

To fulfill the needs of the integration scenarios

outlined above, integration done by mega operations

are required to follow two strategies. Facilitating the

integration of aspect models into a coherent domain

model, a so called weaving mega operation is

proposed, achieving tight model integration.

Integrating independent domain models requiring, e.g.,

synchronization and loose coupling to preserve their

autonomy is supported by a so called sewing mega

operation. These mega operations are based on a

common architecture using primitive QVT-

transformations underneath.

This paper introduces these two mega operations in

Section 2 and 3, together with a set of appropriate

operators for each of them. In Section 4, an architecture

supporting these mega operations is outlined. After a

detailed discussion of the benefits of our approach with

respect to other closely related approaches in Section 5,

1 The term “mega operation” is influenced by the notion of

megaprogramming - a DARPA research program

conducted in the late 1980's and early 1990's (cf. [5], [31])

- and megamodel which is defined to be a model, whose

elements represent models [4].

we conclude the paper pointing out further research

issues.

2. Weaving

Weaving provides for a tight integration of models.

This means that a model ma conforming to a meta-

model Ma and a model mb conforming to a meta-model

Mb, can be woven to produce a model mab which in turn

conforms to a woven meta-model Mab (cf. Fig. 1).

Figure 1. The Weaving Mega Operation

Note that the term weaving is adopted from aspect-

oriented programming (AOP) [18], where it describes

the process of weaving code representing a cross-

cutting-concern into a base program. Transferring this

basic idea into the modeling realm, but differently to

the concept of weaving introduced by Bézivin et al. [3]

(cf. Section 5), our weaving mega operation

encompasses two steps:

(1) The weaving of aspect meta-models each of them

describing a certain cross-cutting concern

produces a woven meta-model (cf. Fig. 2)

(2) The subsequent weaving of aspect models,

produces a woven model (cf. Fig. 3).

These two steps run automatically, provided that a

particular weaving specification defines how to execute

the weaving mega operation (cf. below).

Instead of only recording the semantic relationships

between model elements, creating a woven model is

necessary in case further processing or code generation

mechanisms require so.

Furthermore, an advantage of defining a woven

meta-model prior to the weaving of models is the

ability to perform conformance checks with respect to

the woven meta-model. Furthermore, having a meta-

model for any given model is beneficial for defining

transformations in the sense of MDA.

«Metamodel»

M a

«Model»

m a

«Metamodel»

M b

«Model»

m b

«Model»

m ab

«Metamodel»

M ab

21

In the following we use a simplistic, though still

sufficient running example to illustrate our basic ideas,

stemming from the well-known domain of petri nets

[25].

The meta-model MPetri describes some basic

structural aspects of a petri net consisting of places and

transitions connected by arcs, whereas the meta-model

MMark represents the aspect of markings, constituting

places and marks (cf. Fig. 2).

The first step of the weaving mega operation - meta-

model weaving - results in a woven meta-model

MPetriMark, representing a petri net with certain markings.

Figure 2. Meta-Model Weaving

The second step deals with the weaving of models

(cf. Fig. 3). Governed by the new woven meta-model

MPetriMark, the woven model mPetriMark is produced, which

consists of model elements from both source models

mPetri and mMark.

Figure 3. Model Weaving

Applying weaving mega operations as described

above may yield the following benefits:

� Weaving allows the composition of domain meta-

models, and thus enables the re-use of previously

existing domain knowledge.

� Weaving allows several teams to model

independently and weave their models as needed.

� Weaving allows the evolution of a domain, as new

concerns can be woven in the form of aspect

models, and thus supports incremental

development of models.

� Weaving supports scalability, as there are no

monolithic meta-models and models impairing

comprehensibility.

� Weaving allows libraries of models to be built up

for later re-use.

� Weaving makes modeling an activity of

assembling pre-existing “components”.

The following subsections discuss the pre-requisites

for putting the weaving mega operation into use, in

terms of the weaving specification, comprising weaving

operators and model integration constraints.

2.1. Weaving Operators

This subsection discusses several operators which are

essential for defining weaving operations. Such

operators need to address the reconciliation of

overlapping concepts and allow basic model re-

organization (cf., e.g., [30]). The set of operators

comprises overrides, references, prune, and

rename and does not claim to be complete.

Overrides. In case that two meta-models overlap in

the form of elements representing the same concept, a

weaving specification has to denote how to reconcile

these model elements. Adopted from [30], but in

contrast to them applied at a meta-level (cf. Section 5),

we make use of an overrides operator which

specifies that one meta-model element (qualified by

“::”) and its properties at the left hand side, take

precedence over another meta-model element at the

right-hand side.

With respect to the example shown in Fig. 3, the

overrides operator expresses that meta-model

element Place of the meta-model MMark replaces its

pendant within the meta-model MPetri.

MMark::Place overrides MPetri::Place;

References and Inherits. If two meta-models do

not conceptually overlap, a references operator

M Petri

Place
id : Integer
name : String

Transition
id : Integer
name : String

Arc
id : Integer
name : String

M Mark

Place
id : Integer
name : String

Mark
id : Integer
name : String

overrides

M PetriMark

Place
id : Integer
name : String

Transition
id : Integer
name : String

Arc
id : Integer
name : String

Mark
id : Integer
name : String

Weaving

m Mark

m PetriMark

m Petri

place
id = '1'
name = 'A'

place
id = '1'
name = 'X'

Weaving

transition

transition

place
id = '2'
name = 'B'

place
id = '3'
name = 'C'

place
id = '4'
name = 'D'

Arc
Arc

arc
Arc
Arc arc

Mark

place
id = '3'
name = 'Y'

mark transition

transition place
id = '4'
name = 'D'

Arc
Arc

arc
Arc
Arc arc

place
id = '1'
name = 'X'

place
id = '3'
name = 'Y'

Mark mark

place
id = '2'
name = 'B'

22

denotes to connect meta-model elements via a new

association. This operator also allows to specify the

multiplicities of the association established between

two meta-model elements. In our example, this

expresses the fact that a place is able to hold an

arbitrary number of marks.

MMark::Mark references(*,1) MPetri::Place;

Similar to the references operator, but naturally

not allowing for specifying multiplicities, we use an

inherits operator to connect model elements via

inheritance relationships.

Prune and Rename. As the previously introduced

weaving operators “enrich” meta-models with

elements, only, they cannot deal with the renaming or

the deletion of possibly obsolete model elements, as

portrayed in [30].

Therefore, a prune operator serves to rid all

unnecessary meta-model elements in a meta-model.

The example below shows the pruning of the obsolete

Mark element.

MMark::Mark prune;

Renaming of meta-model elements can be done by

applying a rename operator. As opposed to the

previously mentioned weaving operators, prune and

rename are unary in terms of meta-model elements.

The example below shows the name change of the

Place element.

MPetri::Place rename(‘State’);

2.2. Model Integration Constraints

Besides weaving operators, a weaving specification

shall contain certain constraints, called model

integration constraints (MIC). MICs are used to restrict

the application of a weaving operator when integrating

at the model level, thus forming some kind of

precondition.

A MIC can be annotated for each application of a

weaving operator. This means that the application of

the operator at the model level is only carried out for

those model elements, meeting the corresponding

constraint. Thus, the MIC acts like a “filter”, sorting

out all invalid weaving operations and is indicated after

the keyword “MIC:” .

As shown in Fig. 3, only the Place model elements

with id=‘1’ and id=‘3’ from the model mMark

override the Place model elements in the mPetri model

with the matching values. For this, the previous

example of the overrides operator is extended by the

following MIC-specification:

MIC: MMark::Place.id == MPetri::Place.id;
MMark::Place overrides MPetri::Place;

2.3. Performing Meta-Model Weaving and

Subsequent Model Weaving

A weaving operation can be reduced to a set of QVT

transformations on the meta-model as well as on the

model level. For the generation of the woven meta-

model QVT transformations, derivable from the

weaving specification, can be specified on the

transformation’s meta-level (M3) and applied to meta-

models. In this way QVT populates the woven meta-

model with model elements stemming from the meta-

models to be woven. Likewise the subsequent weaving

of models is specified in QVT on the transformation’s

meta-level (this time on M2) and applied to the model

level. The actual QVT transformations to apply depend

on the weaving operators involved and their attached

MICs resulting in a certain transformation behavior.

According to the latest QVT 2.0 proposal [26] and

to the best of our knowledge, Fig. 4 depicts an example

transformation which could be derived from a weaving

as shown in Fig. 2 and Fig. 3. Assuming that a

transformation executed beforehand has populated the

mPetriMark model with the model elements from mPetri, the

execution of the transformation below in the direction

of the mPetriMark model, would enforce the overriding of

place model elements and the creation of the

according mark model elements.

Figure 4. Example QVT Transformation

 id = ip
 name = np

 id = ip
 name = np

mt:Mark

 id = im
 name = nm

 ms:Mark

 id = im
 name = nm

Mark2PetriMark

C E

mark :
Mark

petrimark :
PetriMark

ps.id = pt.id;
when

 «domain» «domain»

ps:Place pt:Place

23

3. Sewing

As already mentioned, the weaving mega operation

provides for a tight integration of models, by

composing a coherent domain model from aspect

models. Besides that, a loose coupling of models is

required to integrate independent models pertaining to

different domains and to keep them autonomous at the

same time.

Therefore, apart from weavings, we see the

necessity to introduce another mega operation called

sewing. Sewing seems an appropriate analogy, as loose

coupling can be seen as a form of stitching the involved

models together, and thereby connecting without

modifying them.

Analogous to weaving, a model ma conforming to a

meta-model Ma and a model mb conforming to a meta-

model Mb can be sewn to produce a set of mediators

[32] realizing the integration, by “supervising” the

sewn model elements (cf. Fig. 5).

Similar to a weaving specification, a sewing

specification consists of operators annotated with

MICs, and thus defines how to execute a sewing mega

operation (cf. below). Specifying sewings on meta-

models prior to the sewing of models, is deemed

necessary to enable a meta-modeler to clearly define

which model elements are valid to be sewn, and to

henceforth rule out the ad-hoc creation of possibly ill-

defined sewings.

Figure 5. The Sewing Mega Operation

Continuing our running petri net example, let’s

imagine that we would like to have a graphical user

interface (GUI) for a petri net simulation (cf. Fig. 6).

The mega operator sewing could establish (similar to

the model-view-controller paradigm) a loose coupling

between the name attribute of the Place meta-model

element belonging to the petri net model, and the

title attribute of a TextField meta-model element

belonging to the GUI model.

A tight coupling in the form of weaving the GUI

model and the petri net model would not be adequate in

this situation, as different domains are involved and

weaving would simply entangle the different domain

concepts.

Figure 6. Meta-Model Sewing

As shown in Fig. 7, the application of a sewing

mega operation at the meta-level results in the

establishment of mediators between model elements,

guided by MICs.

Figure 7. Model Sewing

Applying sewing mega operations as described

above may yield the following benefits:

� Sewing integrates models, but still allows them to

exist independently without affecting their

structure and thus keeping their autonomy.

� Sewing serves to keep models synchronized.

m GUI

Container

m Petri

Transition Arc

window

Label

container Button

textfield
title = 'A' textfield

title = 'B'
textfield

title = 'C' textfield
title = 'D'

place
name = 'D'

place
name = 'X'

Arc Arc Arc Arc arc
transition

place
name = 'Y'

place
name = 'B'

button

Label
Label
label

: Mediator

'synchronizes'

: Mediator

«Metamodel»

M b

«Metamodel»

M a

«Model»

m a

«Model»

m b

Mediators

M GUI

M Petri

Transition Arc

Window

Label

Container

Button
TextField

title : String

Place

name : String

synchronizes

24

� Sewing integrates models pertaining to different

domains without entangling their concepts.

The following subsections discuss sewing operators

together with their corresponding MICs and realization

in terms of mediators.

3.1. Sewing Operators

The particular behavior of mediators depends on the

specific operators in the sewing specification. The

following subsection introduces such operators, namely

synchronizes and depends, which are useful for

the sewing of models. Such operators enforce to

supervise the sewn model elements by observing their

states and appropriately propagate changes.

Synchronizes. In case that, for instance, attributes

of two model elements should be kept synchronized, a

synchronizes operator can be used to denote that

fact. With respect to the previous example (cf. Fig. 6

and Fig. 7) the synchronizes operator together with

a MIC is employed as follows:

MIC: MGui::TextField.title ==

 MPetri::Place.name;

MGui::TextField.title synchronizes

MPetri::Place.name;

According to the MIC, synchronizations are

established between TextField model elements and

Place model elements, only, if having equal values for

their title and name attributes, respectively. Applied

on the model level (cf. Fig. 7), changing the value of

the title attribute would lead to a change in the value

of the name attribute.

Depends. The depends operator is used to denote

that the existence of one model element depends on the

existence of another. If two teams are working on two

separated, though related models, it can be useful to

establish such correspondences between the related

model elements. Thus, if one team decides to delete a

model element, the related model element should

immediately be deleted as to avoid inconsistencies

among the teams’ models. The example below shows a

sewing specification for the meta-model element

TextField depending on the meta-model element

Place.

MIC: MGui::TextField.title ==

MPetri::Place.name;
MGui:TextField depends MPetri::Place;

It has to be noted, that sewing is focused on

integrating existing models, not on creating them anew

from another model, as QVT allows. Sewings therefore

have a narrower domain and aim at simplifying certain

integration tasks that would probably be more

cumbersome to express using QVT alone.

3.2. Sewing realized by Mediators

The application of a sewing operator does not result in

a newly produced, integrated model per se, as it is the

case with weaving, where heterogeneities in the form of

conceptual overlap can be eliminated through the

establishment of woven meta-models and models. On

the contrary, sewing has to handle, or better to say,

transparently resolve existing overlap throughout sewn

models. Thus, the outputs of the sewing mega-

operation are mediating entities producing the desired

integration behavior.

On the model level, mediators can manifest as QVT

transformations propagating attribute changes or

creating and deleting model elements accordingly.

 Operators other than the two previously introduced

depends and synchronizes, which would for

instance allow model elements to be transparently

connected via associations and generalizations across

model boundaries, could be realized using the Java

Metadata Interface (JMI) [10] and the Eclipse

Modeling Framework (EMF) [9]. They provide an

infrastructure for the generation of programming

interfaces to instantiate and manipulate models as Java

run-time objects. Such programs resulting from sewn

models have to be adapted in a way, as to reflect the

semantics and the mediating behavior of the specific

operator. In case that it is not possible to influence the

model code generation, an elegant solution would be to

utilize an aspect-oriented approach and weave the

necessary code fragments for the mediator pattern into

the model code. The aspect code necessary would be

derived from the sewing specifications.

However, when finally code is to be produced from

models, the mediating behavior also has to be realized

on the system level, specific to a certain platform.

Sewings can of course manifest as models themselves,

which describe the respective semantics and the

integration behavior imposed on models. The

generation of platform specific “bridge” code

facilitating a loose coupling on the system level is thus

rendered a common task like any other model driven

development, as integration of heterogeneities is taken

care of on the model level. The mediation on the

system level could for instance be carried out by a web

service, connected to different systems generated from

sewn models.

25

4. Architecture

This section proposes a first sketch of an architecture

for the implementation of a mega-operation toolkit and

briefly discusses relevant technologies. Fig. 8 shows a

GUI component as means for handling a Mega-

Operations Controller, which orchestrates the toolkit’s

components as required. A MOF repository serves as

basis for storing meta-models and models. To access

and manipulate them programmatically, programming

interfaces like JMI or EMF Java mappings can be used.

Although EMF and JMI provide the necessary

infrastructure for manipulating models, they are not

capable of model transformations in the sense of QVT.

Hence, a QVT-like model transformation tool such as

Marius
2
, which has been developed in the course of a

former cooperation between the University of Linz and

the University of South Australia, is employed for

model transformation. Enforcing constraints on models

can be accomplished by an Object Constraint Language

(OCL) checker like [1].

Figure 8. Architecture for Mega Operations

As already mentioned, the weaving mega operation

can essentially be expressed as a series of QVT-like

transformations, as can the sewing mega-operation

concerning the model level. Thus, weaving and sewing

specifications are parsed and input into a QVT

generator, which can be seen as the toolkits core

component, “compiling” weavings and sewings into

QVT-code. The resulting code is in turn executed by a

QVT-engine upon models stored in the repository to

achieve the integration of models. A code generation

component serves to create bridge code realizing the

sewing mega-operation’s loose coupling on the system

level. The therefore necessary “glue” code can be

incorporated into the code derived from models either

directly through customisation of the generated code or

through an aspect weaver like AspectJ [18].

2 The name Marius stems from Gaius Marius, a Roman

consul and general, best known for initiating a series of

reforms 107 B.C., completely restructuring the

organization equipment and tactics of the Roman army.

5. Related Work

This section gives an overview on other approaches

most relevant with respect to our idea of mega

operations. For this, the main focus of each approach is

summarized briefly, followed by clearly pointing out

similarities and differences to our own approach.

Table 1 summarizes the results by giving an

overview on operators supported as well as whether the

approach deals with arbitrary MOF-based models

either on the M1 or the M2 level and if the

specification on M2 is used for model integration on

M1.

Table 1. Comparison of Related Approaches

o
v
e
rr

id
e

s

re
fe

re
n

c
e

in
h

e
ri

ts

p
ru

n
e

s
 /

 r
e
n

a
m

e
s

s
y
n

c
h
ro

n
iz

e
s

d
e

p
e
n

d
s

AMMA 3 3 3 3 3

Rondo 3 3 3 3

Model Composition

Semantics
3 3 3

Model Composition

Directives
3 3 3 3

GME 3 ~ 3 3 3

C-SAW 3 3

Domain Composition

Approach
~ 3

Legend: 3 ...

...

~ ...

 not explicitly supported

 explicitly supported

 not applicable

A
p

p
ro

a
c

h

M
O

F
-b

a
s
e
d

M
2

 m
e

ta
-l

e
v
e

l

M
1

 m
o

d
e

l-
le

v
e

l

M
IC

s

Operators

M
e

ta
-l

e
v
e

l
b

a
s
e

d
 i
n

te
g

ra
ti
o

n Operators

Weaving Sewing

AMMA. Bézivin et al. [3], [4], [21] are developing

the Atlas Model Weaver (AMW) as part of the AMMA

model engineering platform, which is soon to be

released under the Eclipse GMT project [8]. The AMW

aims at supporting modelers to establish semantic links

between elements of different models or meta-models,

which can serve as input for further tools. Model

weaving in the sense of Bézivin et al. seems to be a

manual operation specifying links between elements of

different models or meta-models. The set of links

produced by such a weaving operation is represented

by a weaving model. A weaving model appears to be

similar to a weaving specification in our approach,

which specifies operators linking meta-model elements.

Generation Rules
Parser for

Weaving Sewing

Specifications

GUI

Mega-Operations Controller

Weaving Sewing

QVT Generator

Sewing

Operator

Sewing
Operator

Sewing
OperatorSewing

Operator

Sewing
Operator

Weaving
Operators

Constraint
Language

QVT-Engine

MOF-ModelsMOF-ModelsMOF-Models

MOF-Repository

Code Generation

26

Our approach, however, extends the notion of weaving

from an activity that establishes semantic links between

meta-models, to a mechanism that actually interprets

operators specified between meta-model elements and

carries out operations accordingly. These operations

involve the automatic generation of a new woven

metamodel, which is an integration of the original

metamodels. Furthermore, we provide a mechanism to

automatically integrate models into a new woven model

conforming to the new woven meta-model. In our

understanding, weaving is treated as a distinct

abstraction mechanism for the integration of both,

models and meta-models.

Rondo. Within the Generic Model Management

initiative, Bernstein et al., [2], [22] work on merging

meta-data in the form of relational schemata and XML

schemata. Rondo is an implementation thereof,

providing model management operators that enable

modelers to deal with models rather than model

elements. Similar to our weaving and sewing operators,

these operators include a match operator, which

automatically establishes semantic correspondences

between similar schema elements and a merge operator

allowing to combine different model elements.

In contrast to them, however, we explicitly focus on

MOF-models in the sense of MDA, keeping a later

code-generation step following model integration in

mind. Furthermore, in our approach, a meta-modeler is

able to specify the integration of models and meta-

models on a meta-level, instead of providing generic

model management operators to manipulate models.

Model Composition Semantics. Clark [7]

introduces a composition mechanism for UML class

diagrams. This approach deals with the composition of

models representing different separated concerns.

Overlapping concepts are identified in these models

and thus merged as specified by a composition

relationship, following so-called merge and override

strategies. Merge integration for example applies when

equivalent classes appear in multiple design models,

and conflicts need to be reconciled among these.

Override integration can be used to substitute obsolete

parts of a design with new modeling constructs. Based

on these basic integration behaviours, composition

patterns [6] are introduced as an extension to UML

templates.

This approach, however, focuses on UML models,

only, and does not provide for deletion of obsolete

model elements after a weaving is performed, as

required for our approach.

Model Composition Directives. Based on [7],

Straw et al. [30] propose so called composition

directives for composing UML class diagrams. These

basically include name rewriting, adding and deleting

of model elements, change of references, and control of

execution order. Inspired by aspect-oriented

programming concepts, so-called primary models are

composed with aspect models, which represent a cross-

cutting-concern to be interwoven.

Although composition directives are comparable to

our weaving operators, their primary focus seems to be

on model weaving but not on meta-model weaving. We

believe that our mega operations could in turn be

transformed into composition directives at the model

level. Since we avoid an ad-hoc integration of models,

with our mega operations, licit integrated models can

be generated, only.

GME. The Generic Modeling Environment (GME)

proposed by Karsai et al. [17] is a modeling and meta-

modeling toolkit based on UML notation and a GME-

specific meta-metamodel. GME allows for the

composition of meta-models similar to our approach.

The composition mechanisms comprise an equivalence

operator creating a union of two model elements,

similar to the merge semantics in [7] and two different

inheritance operators, realizing implementation

inheritance and interface inheritance.

One major difference to our approach is that GME

is not based on the MOF standard. Furthermore, we

believe that our approach goes beyond the

functionalities for meta-model composition in the GME

by introducing model integration constraints, allowing

even fine-grained integration of models.

C-SAW. C-SAW, developed as a plug-in for the

above-mentioned GME by Gray et al. [13], [14], is a

so-called cross-cutting-concern weaver. Aspects are

specified using the Embedded Constraint Language

(ECL), which is a superset of OCL, additionally

providing imperative constructs for model

manipulation.

The transformation capabilities of ECL are,

however, limited to models of the same meta-model

and it lacks support for abstract integration mechanisms

as supported by our approach.

Domain Composition Approach. Estublier et al.

[9] propose a UML profile to allow the composition of

separately designed domain models, as required when

facing the federation of immutable components off the

shelf. UML associations and association classes are

specialized by dedicated stereotypes to express feature

correspondence and concept overlapping.

In principle, this approach is similar to our sewing

mega operation. In contrary to this UML-based

approach, our sewing mega operation is applicable to

arbitrary MOF models. In addition, it seems that their

27

focus lies not on tight integration of models, as done by

our approach.

6. Conclusion and Outlook

This paper proposes mega-operations for model

integration and shows the benefits that can be gained

thereof. Apart from QVT-like mappings, which can be

seen as the base requirement to the MDA approach, the

introduced mega-operations weaving and sewing

provide abstraction mechanisms to cope with complex

modeling scenarios, allowing for a tight and loose

coupling, respectively. Thus, enhanced scalability and

further re-use capabilities of a model-driven approach

are gained.

Future work will especially concentrate on clearly

defining the integration behavior enforced by weaving

and sewing operators.

Therefore, on the one hand the proposed operators

have to be specified in detail, and on the other hand,

further operators have to be conceived. Detailing

would, e.g., include clarifying different reconciliation

behaviors of the overrides operator, propagation

behavior of the synchronizes operator, as well as

detecting and resolving conflicts arising from the

application of the mega-operations.

With respect to both, weaving and sewing, a clear

syntax and means for representing the mega-operations

as MOF models have to be developed.

Furthermore, an important issue to resolve will be to

find ways to derive platform specific implementations

for mediators.

Finally, a prototypical implementation for mega-

operations shall be developed. Experiments with this

prototype should yield valuable insight into the

applicability of mega-operations as devised in this

paper.

References

[1] D. Akehurst, O. Patrascoiu, “OCL 2.0-Implementing

the Standard for Multiple Metamodels”, Proc.s of the

UML'03 workshop, Electronic Notes in Theoretical

Computer Science, November 2003.

[2] P. A. Bernstein, “Applying Model Management to

Classical Meta Data Problems” Proc. of the Conf. on

Innovative Database Research (CDIR03), Asilomar,

California, Jan. 2003, pp. 209-220.

[3] J. Bézivin, F. Jouault, P. Valduriez, “First Experiments

with a ModelWeaver”, OOPSLA & GPCE Workshop,

Vancouver, October 2004.

[4] J. Bézivin., F. Jouault, P. Valduriez, “On the Need for

Megamodels”, OOPSLA & GPCE Workshop,

Vancouver, October 2004.

[5] B. Boehm, B. Scherlis, “Megaprogramming”,

Proceedings of the DARPA Software Technology,

Conference, 1992.

[6] Clarke, S., Walker, R.J. “Composition Patterns: An

Approach to Designing Reusable Aspects”,

Proceedings of International Conference on Software

Engineering (ICSE), Toronto, Canada, 2001.

[7] S. Clarke. “Extending standard UML with model

composition semantics”, Science of Computer

Programming, Elsevier Science, Volume 44, Issue 1,

July 2002, pp. 71-100.

[8] Eclipse Foundation, Generative Model Transformer

(GMT), http://www.eclipse.org/gmt/, 2005.

[9] Eclipse Foundation, Eclipse Modeling Framework

(EMF), http://www.eclipse.org/emf, 2005

[10] Java Community Process, Java Metadata Interfaces

(JMI), 2002, http://java.sun.com/products/jmi/

[11] J. Estublier, A. D. Ionita, G. Vega, “A Domain

Composition Approach”, Proc. of the International

Workshop on Applications of UML/MDA to Software

Systems (UMSS), LasVegas, USA, June 2005.

[12] T. Gardner, C. Griffin, J. Koehler, R. Hauser, “A

review of OMG MOF 2.0 Query / Views /

Transformations Submissions and Recommendations

towards the final Standard”, Object Management

Group (OMG), ad/2003-08-02.

[13] J. Gray, T. Bapty, S. Neema, A. Gokhale, “Generating

Aspect-Code from Models”, OOPSLA Workshop on

Generative Techniques for Model-Driven Architecture,

Seattle, WA, November 2002.

[14] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A.

Gokhale, B. Natarajan, “An Approach for Supporting

Aspect-Oriented Domain Modeling”, Generative

Programming and Component Engineering (GPCE),

Springer-Verlag LNCS 2830, Erfurt, Germany,

September, 2003, pp. 151-168.

[15] G. Kappel, E. Kapsammer, W. Retschitzegger

“Integrating XML and Relational Database Systems”,

World Wide Web Journal (WWWJ), Kluwer Academic

Publishers, Vol. 7(4), December 2004, pp. 343-384

[16] E. Kapsammer, W. Schwinger, W. Retschitzegger,

“Bridging Relational Databases to Context-Aware

Services”, Proc. Of the CAiSE Workshop on

Ubiquitous Mobile Information and Collaboration

Systems (UMICS), Springer LNCS, Porto, Portugal,

June 2005.

[17] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J.

Sztipanovits, “Composition and Cloning in Modeling

and Meta-Modeling Languages”, IEEE Transactions

on Control System Technology, special issue on

Computer Automated Multi-Paradigm Modeling,

March 2004, pp. 263-278.

28

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, L.

Videira, J.-M. Loingtier, J. Irwin, “Aspect-Oriented

Programming”, Proc. Of the European Conference on

Object-Oriented Programming (ECOOP), Springer

LNCS 1241, Finland, 1997.

[19] J. Koehler and B. Srivastava, „Web service

composition: Current solutions and open problems.”,

Proc. of the ICAPS, Workshop on Planning for Web

Services, Trento, Italy, June 2003.

[20] G. Kramler, E. Kapsammer, G. Kappel, W.

Retschitzegger, “Towards Using UML 2 for Modelling

Web Service Collaboration Protocols”, Proc. of the

First Int. Conference on Interoperability of Enterprise

Software and Applications (INTEROP-ESA), Geneva,

Switzerland, February 2005.

[21] D. Lopes, S. Hammoudi, J. Bézivin, F. Jouault,

“Mapping Specification in MDA: From Theory to

Practice”, First International Conference on

Interoperability of Enterprise Software and

Applications (INTEROP-ESA), Geneva, Switzerland,

February 2005.

[22] S. Melnik, “Generic Model Management: Concepts

and Algorithms”, Springer LNCS 2967, 2004.

[23] Object Management Group, “MDA Guide”, Version

1.0.1, June 2003 [http://www.omg.org/docs/omg/03-

06-01.pdf]

[24] Object Management Group (OMG), “MOF 2.0 IDL

Specification”, July 2004, [http://www.omg.org/cgi-

bin/apps/doc?ptc/04-07-01.pdf]

[25] C. A, Petri, “Fundamentals of a Theory of

Asynchronous Information Flow”, Proc. of IFIP

Congress 62, Amsterdam: North Holland Publ. Comp.,

1963, pp. 386-390.

[26] QVT-Merge Group, “Revised Submission for MOF 2.0

Query/View/Transformation RFP(ad/2002-04-10)”,

Version 2.0, ad/2005-03-02, March 2005

[27] Th. Reiter, “Transformation of Web Service

Specification Languages into UML Activity

Diagrams”, Master Thesis, Dept. of Information

Systems, Johannes Kepler University Linz, March

2005.

[28] M. Schrefl, M. Bernauer, E. Kapsammer, B. Pröll, W.

Retschitzegger, T. Thalhammer, “Self-Maintaining

Web Pages”, Information Systems (IS), International

Journal, Vol. 28/8, Elsevier Science Ltd., 2003, pp.

1005-1036

[29] A.P. Shet, J.A. Larson, “Federated Database Systems

for Managing Distributed, Heterogeneous and

Autonomous Databases”, ACM Computing Surveys,

Vol. 22, No 3., Sep. 1990, pp. 182-236.

[30] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and

J. M. Bieman, “Model Composition Directives”, 7th

UML Conference, Lisbon, Portugal, October, 2004.

[31] G. Wiederhold, P. Wegner, S. Ceri. “Toward

Megaprogramming”, Communications of the ACM,

November 1992.

[32] G. Wiederhold, “Mediators in the Architecture of

Future Information Systems”, IEEE Computers, Vol.

25, No. 3, March 1992, pp. 38-49.

29

Applying WebSA to a case study: A travel agency system

Santiago Meliá and Jaime Gómez
Web Engineering Research Group.

Dept. of Languages and Information Systems. Universidad de Alicante
{santi,jgomez}@dlsi.ua.es

Abstract

Web engineering research community has proposed
several web design methods that have proven
successful for the specification of the functional and
navigational requirements posed by Web information
systems. However, the architectural features are often
ignored in the design process. This situation causes
Web applications with rigid and predefined
architectures depending on the Web design method the
designer is applying. To overcome this limitation, we
propose a generic approach called WebSA. WebSA is
based on the MDA (Model-driven Architecture)
paradigm. It proposes a Model Driven Development
made up of a set of UML architectural models and
QVT transformations as a mechanism to integrate the
functional aspects of the current methodologies with
the architectural aspects. In this paper, we apply
WebSA with the OO-H method using as a running
example the Travel Agency specification.

1. Introduction

The Web Engineering community is well aware that, in
order to keep track of the changes and assure the
feasibility of applying their methods to commercial Web
applications, it is necessary to evolve the different
proposals that should now integrate the explicit
consideration of architectural features in the Web
application design process. In order to do so, several
authors propose the use of well known techniques in the
Software Architecture discipline [1] in order to identify
and formalize which subsystems, components and
connectors (software or hardware) should make up the
Web application.

These architectural features are especially important in
methodologies that provide a code generation
environment WebML [5], OO-H [7], UWE [13], etc he
addition of an architectural view would cover the gap that
nowadays exists between the Web design models and the

code architecture. Therefore, the inclusion of one such
model would decrease the set of arbitrary decisions that
are usually taken in order to generate the code in such
environments, decisions that sometimes compromise the
universal usefulness of the solution. Also, the addition of
an architectural model would provide a mechanism to
discuss, document and reuse (by means of pattern
catalogs) the architectural decisions that answer the
different non-functional user requirements.

For this purpose, we propose the WebSA (Web
Software Architecture) [14] [15] approach based on the
standard MDA (Model Driven Architecture) [17]. The
MDA framework provides WebSA not only with the
possibility to specify a set of Web-specific models, but
also to specify each process step from the models to
implementation by means of a set of transformation rules.
In order to define these transformations, there are several
initiatives related to the MDA approach, among others the
Request for Proposals for a Query
/Views/Transformations (QVT) [20] language. QVT is, in
our opinion, the most interesting one as it is well defined
language and it comprises a graphical as well as a textual
notation.

In order to understand this approach, we explain each
of steps of the WebSA development process through the
running example a Travel Agency.

The paper is organized as follows: Sections 2 and 3
give an overview of the WebSA development process and
the OO-H approach, respectively. Section 4 presents the
most important model in analysis phase of WebSA, the
Configuration model. Section 5 proposes the specification
of the T1 transformations that specify the merging of the
functional and the architectural models in the QVT
language. Section 6 explains the Integration model.
Section 7 shows how the T2 transformation is defined in
order to obtain a J2EE implementation. In section 8, the
relevant related work is compared to our approach and
finally, in section 9, some future steps of the application
of WebSA to the development of Web applications are
outlined.

30

2. An overview of the WebSA Approach

WebSA is a proposal whose main target is to cover all
the phases of the Web application development focusing
on software architecture. It contributes to cover the gap
currently existing between traditional Web design models
and the final implementation. In order to achieve this, it
defines a set of architectural models (see Sect. 2.1) to
specify the architectural viewpoint which complements
current Web engineering methodologies such as [7], [13].
Furthermore, WebSA also establishes an instance of the
MDA Development Process [11], which allows for the
integration of the different viewpoints of a Web
application by means of transformations between models
(see Sect. 2.2).

2.1 WebSA Architectural Models

The WebSA approach proposes three architectural
models:
• Subsystem Model (SM): determines the subsystems

that make up our application. It is mainly based on the
classical architectural style defined in [3] – the so
called “layers architecture” – where a layer is a
subsystem encapsulating a certain level of abstraction.
Furthermore, it makes use of the set of architectural
patterns defined in [22] that determine which is the
best layer distribution for our system.

• Configuration Model (CM): defines an architectural
style based on a structural view of the Web application
by means of a set of Web components and their
connectors, where each component represents the role
or the task performed by one or more common
components identified in the family of Web
Applications. This is explained with more detail in
Sect. 4.

• Integration Model (IM): merges the functional and
the architectural views into a common set of concrete
components and modules that will make up the Web
application. This model is inferred from the mapping
of the components which are defined in the
configuration model, the subsystem model and the
models of the functional view.
The formalization of these models is obtained by

means of a MOF-compliant [19] repository metamodel
and a set of OCL constraints (both part of the OMG
proposed standards) that together specify (1) which is the
semantics associated with each model element, (2) which
are the valid configurations and (3) which constraints
apply.

2.2 WebSA Development Process

The WebSA Development Process is based on the
MDA development process, which includes the same
phases as the traditional life cycle (Analysis, Design, and
Implementation). However, unlike in the traditional life
cycle, the artifacts that result from each phase in the MDA
development process must be a computable model. These
models represent the different abstraction levels in the
system specification and are, namely: (1) Platform
Independent Models (PIMs) defined during the analysis
phase and the conceptual design, (2) Platform Specific
Models (PSMs) defined in the low-level design, and (3)
code.

Functional
Models

(OO-H,UWE)

T1

J2EE models .NET models Other models

T2'

Web Functional Viewpoint Web Architectural Viewpoint

Merge Models to Model
Transformation

Subsystem
Model

Configuration
Model

Analysis

Platform
Independent Design

Implementation

Integration Model

T2 T2'’

Fig. 1. The WebSA Development Process

In order to meet these requirements, the WebSA
development process establishes a correspondence
between the Web-related artifacts and the MDA artifacts.
Also, and as a main contribution, WebSA defines a
transformation policy driven by the architectural
viewpoint, that is, an “architectural-centric” process [10]
(see Fig. 1).

Fig. 1 also shows how in the analysis phase the Web
application specification is divided vertically into two
viewpoints. The functional-perspective is given by the
Web functional models provided by approaches such as
OO-H [7] or UWE [13], while the Subsystem Model
(SM) and the Configuration Model (CM) define the
software architecture of the Web Application. In the
analysis phase, the architectural models are based on two
different architectural styles to define the Web
application. As it is defined in [3], “an architectural style
is independent from its realization, and does not directly

31

refer to a concrete application problem it is intended to
solve”. In this way, these models fix the application
architecture orthogonally to its functionality, therefore
allowing for their reuse in different Web applications.

The PIM-to-PIM transformation (T1 in Fig. 1) from
analysis models to platform independent design models
provides a set of artifacts in which the conceptual
elements of the analysis phase are mapped to design
elements where the information about functionality and
architecture is integrated. The model obtained is called
Integration Model (IM), which merges in a single
architectural model the information gathered in the
functional viewpoint with the information provided by the
Configuration and Subsystem Models.

It is important to note that the Integration model, being
still platform independent, is the basis on which several
transformations, one for each target platform (see e.g. T2,
T2’ and T2’’ in Fig. 1), can be defined. The output of
these PIM-to-PSM transformations is the specification of
the Web application for a given platform.

The inclusion of an architectural view in this process
plays a pre-eminent role for the completion of the
specification of the final Web application, and drives the
refinement process from analysis to implementation.

The rest of the article details this process step by step
applying it to the travel agency. Next section presents the
Web engineering approach OO-H method used by the
WebSA process to gather the functional aspects.

3. A Web Functional Design Method: OO-

H

The OO-H (Object-Oriented Hypermedia) method [7]
is a generic model, based on the object-oriented paradigm
that provides the designer with the semantics and notation
necessary for the development of Web-based interfaces.
OO-H defines a set of diagrams, techniques and tools that
shape a sound approach to the modeling of Web
interfaces. The OO-H proposal includes: (1) a design
process, (2) a pattern catalog, (3) a navigation diagram,
and (4) a presentation diagram.

The extension to “traditional software” production
environments is achieved by means of two complementary
views: (1) the navigation diagram (ND) that defines a
navigation view, and (2) the presentation diagram (PD)
that gathers the concepts related to the abstract structure
of the site and the specific presentation details,
respectively.

Fig. 2. Conceptual Model of the Travel Agency.

For the purposes of this paper, only the ND are

relevant. The ND diagram enriches the domain view
provided by a standard UML class diagram with
navigation and interaction features. Fig. 2 depicts a
potential class diagram for the travel agency running
example. The customer provides a description of the
required trip to the system, including personal constraints
(Tripconstrains) and preferences (CusDetails). The trip
description (TripReq) contains the cities of origin and
destination, as well as the departure and return dates. For
one-way trips, only the departure cities and dates are
required. Constraints on the trip may include bounds on
the total price of the trip, duration of the trip itself, and
any undesired transportation method (e.g. the customer
does not like planes). Preferences may include the
preferred transportation mechanisms. Once trip
requirements has been selected, the system receives the
request from the Customer, checks that it is well formed,
and selects the Broker Agents (BrokerAgent) that work
with them and that can service the trip. The system
interacts with each Broker Agent, asking them for an offer
(Offer) that fulfils the Customer’s requested trip. Each
Broker Agent may work with several Transportation
Companies (TransportationCompany), asking them to
provide an offer for the requested service. If the offer
matches the customer requirements (select method of the
Offer class), the Broker Agent will ask the Transportation
Company to temporarily book the service
(confirmBooking method of the BrokerAgent class). In
case the service has to be split (e.g. a plane, a train and a
boat need to be used), the Broker Agent will be the one in

Customer

CusDetails

1..1

1..1

TripReq

BrokerAgent

*

*

TripConstrains

Offer

new

Trip

TransportationCompanyFinancialCompany

1..1
1..*

* *

*

1..1

1..1

*

undesiredTransport
discount

creditCard

cityOrg
cityDest
dateDest
dateReturn
isOneWay

custOrder
price
isSelected
isPaid

name accNumber

isPart

name

priceUBound
duration
preferredTransport
orderCriteria

cityOrg
cityDst
dateDep
dateArrival
price

select
reject

newRequest
rejectAllOffers

createOffer
bookOffer

createOffer
createGlobalOffer

confirmBooking
cancelBooking

setPaid
delete

setBrokers
createOfferSet
orderOffers

chargeAccount
transferAccount

freeOffer
confirmBooking

has2Split
splitTrip

setParts
getParts
hasOffers4AllParts

*

1..1

*

1..1

1..1

* selectOffer

customerName
customerAddress

newTripConst

Customer

CusDetails

1..1

1..1

TripReq

BrokerAgent

*

*

TripConstrains

Offer

new

Trip

TransportationCompanyFinancialCompany

1..1
1..*

* *

*

1..1

1..1

*

undesiredTransport
discount

creditCard

cityOrg
cityDest
dateDest
dateReturn
isOneWay

custOrder
price
isSelected
isPaid

name accNumber

isPart

name

priceUBound
duration
preferredTransport
orderCriteria

cityOrg
cityDst
dateDep
dateArrival
price

select
reject

newRequest
rejectAllOffers

createOffer
bookOffer

createOffer
createGlobalOffer

confirmBooking
cancelBooking

setPaid
delete

setBrokers
createOfferSet
orderOffers

chargeAccount
transferAccount

freeOffer
confirmBooking

has2Split
splitTrip

setParts
getParts
hasOffers4AllParts

*

1..1

*

1..1

1..1

* selectOffer

customerName
customerAddress

newTripConst

32

charge of dividing it into separate services and ask
different Transportation Companies for separate offers. If
a complete service can be successfully put together with
all the Transportation Companies’ offers, the Broker
Agent will temporarily book them, and the separate offers
will be then combined to provide a single offer to the
Personal Travel Assistant.

Fig. 3. Navigation Model of the Travel Agency.

Once the designer has specified a class diagram, to
define navigation and visualization constraints, a ND must
be designed. This diagram is based on four types of
constructs: (1) navigation classes, (2) navigation targets,
(3) navigation links and (4) abstract pages. Also, when
defining the navigation structure, the designer must take
into account some orthogonal aspects such as the desired
navigation behaviour, the object population selection, and
the order in which objects should be navigated or the
cardinality of the access. These features are captured by
means of different kinds of navigation patterns and filters
associated with links and abstract pages [8].

Fig. 3 depicts a potential ND for the travel agency
running example. The navigation starts with a home page
that has a link to create a new instance of customer trip
constraints. Once trip constraints has been set, the trip
description including cities of origin and destination as
well as departure and return dates must be introduced by

the customer. The execution of the SLNR service link
produces as a result a set of offers. Each offer has a
reference of the broker that provides the offer, the name
of the transportation company that manages the trip, and
finally a combination of one or several trips that fulfill the
trip customer requirements from origin to destination. The
customer can accept an offer by means of the SLSO
service link (selectOffer). In that case, the customer must
provide their credit card data to formalize the booking.
This is modeled with the SLCA service link
(chargeAccount).

A default PD reflecting the page structure of the
interface can be derived from the ND. The OO-H CASE
tool (VisualWADE) gives tool support to this process.
This default PD gives a functional but rather simple
interface (with default location and styles for each
information item), which will probably need further
refinements in order to become useful for its inclusion in
the final application. It can, however, serve as a prototype
on which to validate that the user requirements have been
correctly captured. We have modeled the travel agency
running example with VisualWADE and the result can be
viewed in [25].

At this point funcional models (class, navigation and
presentation models) has been specified. The next step in
the analysis phase of WebSA is to specify the web
architectural models. For the purposes of this paper, only
the configuration model needs to be specified.

4. Web Architectural Viewpoint:

Configuration Model

The Configuration model defines an architectural style
based on the structural view of the Web application by
means of a set of Web components and their connectors,
where each component represents the role or the task
performed by one or more common components identified
in the family of Web applications. In this way, CM uses a
topology of components defined in the Web application
domain, and this allows us to specify the architectural
configuration without knowing anything about the
problem domain. At this level, we can also define
architectural patterns for the Web application as a reuse
mechanism.

A Configuration model is built by means of a UML 2.0
Profile of the new composite structure model, which is
well-suited to specify the software architecture of
applications. The main modeling elements of the CM are
WebComponent, WebConnector, WebPart and
WebPattern. Their notation and semantics will be
specified in [16].

TC: TripConstrains home

Entry PointContext.TC->isEmpty()

TripReq2: TripReq

newRequest

newTripConst

S
LT

C

Offer1: Offer

custOrder
price

selectOffer

SLNR

TCo: TransportationCompany

name

BA: BrokerAgent

accNumber

FC1: FinancialCompany

chargeAccount

Trip1: Trip

cityOrg
cityDst

Customer: Customer

customerName
customerAddress

ok charge

SLSO

home
bac

k2Hom
e

SLCA

Context.TC->isNotEmpty()

TC: TripConstrains home

Entry PointContext.TC->isEmpty()

TripReq2: TripReq

newRequest

newTripConst

S
LT

C

Offer1: Offer

custOrder
price

selectOffer

SLNR

TCo: TransportationCompany

name

BA: BrokerAgent

accNumber

FC1: FinancialCompany

chargeAccount

Trip1: Trip

cityOrg
cityDst

Customer: Customer

customerName
customerAddress

ok charge

SLSO

home
bac

k2Hom
e

SLCA

Context.TC->isNotEmpty()

33

In order to represent the architectural style defined by
the Configuration Model, the CM Profile has been
defined as an extension of the UML Composite Structure
model including Web components and properties of the
Web application domain. Some authors [12], [23]
consider the Composite Structure model as one of the
major improvements incorporated to UML 2.0, because it
allows us to specify software architectures following a
proper component-based notation that incorporates ports,
and provided interfaces and required interfaces,
connectors, parts, etc.

The CM profile will also provide the necessary
information for the T1 transformation defined in the
WebSA development process (see Fig. 1) for integrating
the functionality with the architecture in the IM model.

In this way, the CM profile has incorporated all the
classes of its metamodels as stereotypes, extending the
UML metaclasses. The CM stereotyped classes will add
the domain specific semantic defined in the Configuration
metamodel to the semantic inherited from the UML
metaclasses.
Therefore in this article we give an overview of the Travel
Agency configuration model. Fig. 4 shows a general view
of the CM representing the Travel Agency architecture,
which is made up of the set of components and connectors
that are described next.
In order to deduce architectural aspects needed for the
travel agency, we have based our work on the
accessibility requirements and functional requirements
proposed at the Workshop. In this way, we have
established five architectural assumptions:
• There must be a separation between the user interface

that has to adapt to the different devices (p.e cell
phone, PDA, web, etc) and the presentation logic
which is common to all users.

• Due to the navigation requirements are different for
each device, the MVC 2 pattern is applied. It allows
to locate the navigation from the different devices in
a independent way (p.e in a external file or store).

• Continuously, the application has to present different
offers from the agencies and the user interface has to
modify. It drives to maintain the user interface every
day.

• As the travel agency is an Internet application and has
a large amount of clients. This application has to
provide a very good performance by means of a
middleware with distributed components applying the
Façade pattern.

• In order to obtain data from different companies
about the offered trips. The application will need to
connect to legacy systems.

Once we have the architectural assumptions of the
travel agency, we established its Configuration model (see
Fig. 4).

Fig. 4. Configuration Model of Travel Agency

In the front-end part of the model we can find three
different components UserAgent, that is, the component
or device that allows user to interact with the system. In
the travel agency there are three UserAgent: browsers,
PDAs and mobiles. In order to decouple the different
graphical interfaces with the same presentation logic, we
have applied the Model-View-Controller 2 pattern. First,
the view is provided by the ServerPage which receives the
user’s requests and renders the response in their device.
Each ServerPage component provides a separate interface
in order to attend each UserAgent. It also contains the
functionality information and is responsible for sending
messages to the Controller component. The instances of a
ServerPage are obtained from the navigational classes of
the navigation models of OO-H [7] or UWE [13].

The Controller receives the requests through the
WebPort ClientHandler. In order to establish the
navigation, it is connected to Store component
(Navigational Path) containing information about the
links between pages. It separates the navigational aspects
from the presentation aspects.

«UserAgent»
Browser

«UserAgent»
PDA

«UserAgent»
Mobile

«ServerPage»
WebPages

W ebInterface PDAInterface MobileInterface

«WebComponent»
Façade «WebPattern»

FaçadePattern

«Datasource»
DS1

«Store»
DB

- access: = R/W
- organization: = Relational
- type: = Conceptual

0..* 0..* 0..*

0..*

1..*

0..*0..*

1..* 1..*1..*

«Controller»
MainController

«View»
ViewClass

-

«EntityData»
Model

1..*

1..*
1

111

«LegacyView»
ExtEntities

- isSynchronous: = false

«Store»
NavigationalPaths

- access: = Read
- organization: = flat
- type: = navigational

0..*

1

1..*

1..*1..*

1

LegacyServices

Process Component

model

dataConnection

clientHandler viewData

modelData modelData

dbInterface

otherInterface

1

3..*

«represents»

«UserAgent»
Browser

«UserAgent»
PDA

«UserAgent»
Mobile

«ServerPage»
WebPages

W ebInterface PDAInterface MobileInterface

«WebComponent»
Façade «WebPattern»

FaçadePattern

«Datasource»
DS1

«Store»
DB

- access: = R/W
- organization: = Relational
- type: = Conceptual

0..* 0..* 0..*

0..*

1..*

0..*0..*

1..* 1..*1..*

«Controller»
MainController

«View»
ViewClass

-

«EntityData»
Model

1..*

1..*
1

111

«LegacyView»
ExtEntities

- isSynchronous: = false

«Store»
NavigationalPaths

- access: = Read
- organization: = flat
- type: = navigational

0..*

1

1..*

1..*1..*

1

LegacyServices

Process Component

model

dataConnection

clientHandler viewData

modelData modelData

dbInterface

otherInterface

1

3..*

«represents»

«WebPattern»
FaçadePattern

«Datasource»
DS1

«Store»
DB

- access: = R/W
- organization: = Relational
- type: = Conceptual

0..* 0..* 0..*

0..*

1..*

0..*0..*

1..* 1..*1..*

«Controller»
MainController

«View»
ViewClass

-

«EntityData»
Model

1..*

1..*
1

111

«LegacyView»
ExtEntities

- isSynchronous: = false

«Store»
NavigationalPaths

- access: = Read
- organization: = flat
- type: = navigational

0..*

1

1..*

1..*1..*

1

LegacyServices

Process Component

model

dataConnection

clientHandler viewData

modelData modelData

dbInterface

otherInterface

1

3..*

«represents»

34

Each instance ServerPage needs an interface to access
the required data objects. Such interface is provided by
the WebPort ViewData of the View component. We can
observe that the model component needs information from
the components that implement the business logic. This is
obtained through the IProcessComponent interface
offered by the Façade WebPattern.

The Façade WebPattern represents a group of one or
more stateless ProcessComponents (e.g. a Session
Stateless), which receives the requests through the BLogic
WebInterface from the MVC2, and resends them to the
Entity. This pattern requires the interface dataConnection
to access the Datasource to store the information. The
WebComponent Façade is in turn related to the
component LegacyView, which offers a series of services
that come from the LegacyServices port to other
applications and converts the received asynchronous calls
into requests and sends them to the business logic.
Finally, the specified remote and transactional Datasource
allows the connection to a Store component that contains
the information modelled in the conceptual model of the
functional view, which also has a read/write access, as
well as a relational organization.

5. The WebSA transformation process

The WebSA transformation policy is driven by the
architectural viewpoint, i.e. it is defined by a set of
transformations in which first class citizens are the classes
of the architectural view. The WebSA development
process consists of two types of transformations: T1 and
T2. T1 merges the elements of the architectural models of
WebSA with those of the functional models, and
translates them into a platform independent design model
called Integration Model. T2 maps the platform specific
implementation models (e.g. J2EE or .NET) from the
Integration Model. Both transformations are complex, i.e.
they are made up of a set of smaller transformations,
which are executed in a deterministic way in order to
complete the transformation.

In MDA [18] there are different alternatives to getting
the information necessary for transforming one model into
another (e.g. using a profile, using metamodels, patterns
and markings, etc). For WebSA we have selected a
metamodel mapping approach to specify the
transformations, because it allows us to obtain the
information of the different Web approaches just with
their MOF metamodel. In this article we limit ourselves to
explain the merging process of WebSA with the OO-H
models (T1 in Fig. 1). In order to obtain this integration
we extend the MDA model transformation pattern of
Bezibin [2]. The extension of this pattern integrates the
OO-H and WebSA models by means of the metamodel

based transformations. These metamodels based on the
MOF language are the source of the transformation
models that carry out the transformation to the target
metamodel elements. The transformation models are
defined in the QVT language which is an MDA standard
also based on the MOF language.

Recently, OMG has launched a new Request For
Proposals (RFP) for QVT on MOF 2.0 [20]. This new
version of QVT has been developed by the different
groups of people who presented the previous proposals of
QVT. The QVT specification has a hybrid declarative
/imperative nature. The declarative part is split into a
user-friendly part based on transformations which
comprises a rich graphical and textual notation, and a core
part which provides a more verbose and formal definition
of the transformations. The declarative notation is used to
define the transformations that indicate the relationships
between the source and target models, but without
specifying how a transformation is actually executed. In
this way, QVT also defines operational mappings that
extend the metamodel of the declarative approach with
additional concepts. This allows to define the
transformations which use a complete imperative
approach.

The QVT metamodel is defined using EMOF from
MOF 2.0 and extends the MOF 2.0 and OCL 2.0
specifications. It allows for the expression of higher order
transformations and fits in the central concept of MDA,
namely, that transformations are themselves models. QVT
transformations can be composed and extended by
inheritance or overriding, which is necessary for
scalability and reusability.

Next, we present an example of a T1 transformation
using the graphical notation of QVT and also an example
of a T2 transformation in the textual notation of QVT.

5.1 Transformation T1: Merging Web

Functionality with Architectural models

Due to the complexity of the T1 transformation, it is
helpful to build a map of transformations that indicates
the flow of execution and avoids redundancies in the
specification. In the transformation map each
transformation is related to the rest by means of three
different types of relationships: (1) Composition – A
transformation can be composed by one or more
transformations (2) Dependency – A transformation must
be executed before another transformation (3) Inheritance
– A transformation extends or overrides another
transformation.

35

CM2IM

Subsystem2Module

UI2Module

Server2Module

Persistence2Module

PlaceCompCM2Module

CompCM2CompIM

OOH&CM2IM

PlacePersistentComp2Module

CacheWebCM2CacheWebIM

NavigationalOOH&CM2IM

ConceptualOOH&CM2IM

SM2IM

Functional&CM2IM
Fig. 5. T1 Transformation Map

Therefore, we have chosen to define a simple UML
profile to represent the transformation map as a UML
class model (see Fig. 5). The first transformation shown in
the T1 map is from Subsystem Model to Integration
Model.

The second transformation (CM2IM) maps from
Configuration Model to Integration Model. It is composed
by a set of two types of transformations.

The first one places components into the modules
(PlaceComp2Modules), and the second one transforms
each configuration component into one or more
integration components (CompCM2CompIM). The last
transformation Functional&CM2IM merges the functional
OOH models (conceptual and navigation) with the
Configuration Model and introduces the functional
aspects into the components of the Integration Model.

Fig. 6 shows an example using the QVT graphical
notation for the ServerPage-OOH2Integration
transformation which involves three domains: Navigation,
Configuration and Integration models. First, the
transformation checks if there is a set of instances in the
Navigation model and another set of instances in the
Configuration model (the arrow with the ‘c’ indicates that
only this domain is being checked). At this moment, a set
of instances in the Integration Model will be created,
modified or deleted (the arrow with the ‘e’ indicates
enforced, that is, the values of this domain will be
modified in order to satisfy the rule).

Specifically, this transformation checks whether there
is at least one instance of ServerPage in the Configuration
model (see Fig. 4), as well as two NavigationalClasses
with a set of NAttributes and NOperations which are
related through a NavigationalLink with its isSamePage

attribute with true value in the Navigational model (see
Fig. 3). Only if all these conditions are satisfied, will the
transformation create one ServerPage in the Integration
model that merges the NOperations and NAttributes from
the two NavigationalClasses into its WebServices and
WebAttributes, respectively. Additionally, the where
clause contains a set of transformations that extends the
previous transformation. SPOperation2WebService
generates for all NOperation of each NavigationClass
element a WebService in a ServerPage.
SPNAttribute2WebAttribute generates for all NAttribute
of each NavigationClass element a WebAttribute in a
ServerPage.

Fig. 6. Example of T1: NavigationalOOH&CMToIM

6. Integration Model

IM defines a complete structural design of our
application in a platform independent way. It integrates
SM and CM with the functional viewpoint made for a
specific problem. Therefore, this model plays a
preponderant role in WebSA, due to the fact that certain
application characteristics are only identifiable when we
consider functional and non-functional aspects together.
For instance, in order to determine the granularity of the

sp1:ServerPage

sp2:ServerPage

name=nc

ServerPageOOHIntegration

a3set:WebAttribute

im:IntegrationModel

cm:ConfigurationModel

where

n1:NavigationalClass
name=nc

a1set:NAttribute

o1set:NOperation

origin

s1set:WService

nm:NavigationalModel

 i1set:NavigationalLink
isSamePage=true

SPOperation2WService (o1set, s1set)
and SPOperation2WService (o2set, s1set)
and SPNAttribute2WebAttribute (a1set,a3set)
and SPNAttribute2WebAttribute (a2set,a3set)

n2:NavigationalClass

target
a2set:NAttribute

o2set:NOperation

c e

c

<<domain>>

<<domain>>

<<domain>>

36

business logic components, it is necessary to know both
architectural structure (e.g. whether this logic is likely to
be distributed) and the business logic functionality itself
(the tasks to be performed).

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

«Module»
LogicPresentation

«Model»

:TripModel

«View»

:FinancialCompany

«Model»

:TripReqModel

«ServerPage»

:TripReqPage

«Model»

:OfferModel

«View»
:Offer

«View»
:TripReqView

«ServerPage»

:Offer
«ServerPage»

:FinancialCompany

«Model»

:FinancialCompM

«ServerPage»
:Menu

«Controller»
:MainController

IProcessComponentIModelData

WebInterface

IMobileInterface PDAInterface

IModelOffer

IFCModel

IViewTripReqIViewFC

IModelTripReq

IViewOffer

IModelTrip

IClientHandler

IFCModel
IModelTripReq

IClientHandler
IClientHandler

IModelOffer

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

EA 4.10 Unregistered Trial Version

«Module»
LogicPresentation

«Model»

:TripModel

«View»

:FinancialCompany

«Model»

:TripReqModel

«ServerPage»

:TripReqPage

«Model»

:OfferModel

«View»
:Offer

«View»
:TripReqView

«ServerPage»

:Offer
«ServerPage»

:FinancialCompany

«Model»

:FinancialCompM

«ServerPage»
:Menu

«Controller»
:MainController

IProcessComponentIModelData

WebInterface

IMobileInterface PDAInterface

IModelOffer

IFCModel

IViewTripReqIViewFC

IModelTripReq

IViewOffer

IModelTrip

IClientHandler

IFCModel
IModelTripReq

IClientHandler
IClientHandler

IModelOffer

Fig. 7. Integration Model of Logic Presentation Module of

Travel Agency

The IM does not need to be built up from scratch. The
model is obtained by means of a PIM-to-PIM
transformation applied on the SM and the CM together
with the functional view (see T1 in Fig. 1). This mapping
is based on a set of transformation rules defined in QVT
that may vary depending on the abstract component
and/or the abstract dependency types. This automated
mapping reduces the modeling effort. Also, this
automated mapping causes the IM to inherit the
architecture and design patterns defined in the CM, which
will be now reflected in the concrete application.

The resulting model is the basis on which the designer
may perform further refinements in order to fine-tune the
architecture to the system needs.

It is also important to stress that this model still centers
on design aspects (WebComponents, their WebPorts and
WebParts, WebInterfaces, WebModules and
WebConnectors), and does not say anything about
implementation. In this way, the model is still independent
from the target platform. From this model, we define a
transformation to the different specific platforms such as
J2EE, .NET, PHP, etc (see T2 Fig. 9).

This makes possible to classify it as a PIM (Platform
Independent Model) in the context of MDA.

Fig. 7 shows a portion of the Travel Agency IM that
depicts the module LogicPresentation. This module
contains a set of WebParts that represent the instances of
the WebComponents and their relationships obtained by
the T1 transformation. On the top, the module has three
interfaces which are provided by the ServerPages that
correspond to the three UserAgent. Each ServerPage
instance is obtained from one or more navigational classes
(e.g. Offer, Menu, etc.). A ServerPage needs an interface
to access the required View component and another
interface to access the Controller. The Controller receives
the requests through the IClientHandler and invokes the
interfaces defined by the model components. Each of
these model components is derived from one class of the
domain model (e.g. TripReqModel, TripModel,
OfferModel, etc.). Finally, we can observe that each
different model component requires and provides
information through the IModelData and
IProcessComponent interfaces, respectively.

«ServerPage»
TripReqPage

+ newRequest() : TripReqPage «interface»
IViewTripReq

+ getCityOrg() : String
+ getCityDest() : String
+ getDateOrg() : Date
+ getDateDest() : Date

«interface»
IClientHandler

+ post() : HTTPResponse
+ get() : HTTPResponse

IViewTripReq

IClientHandler

«ServerPage»
TripReqPage

+ newRequest() : TripReqPage «interface»
IViewTripReq

+ getCityOrg() : String
+ getCityDest() : String
+ getDateOrg() : Date
+ getDateDest() : Date

«interface»
IClientHandler

+ post() : HTTPResponse
+ get() : HTTPResponse

IViewTripReq

IClientHandler

Fig. 8. Definition of the TripReq ServerPage and its

interfaces.

The definition of the complete WebComponents and
WebInterfaces can be made on the component definition,
but it is usually more useful to define them elsewhere in
the model using component and interface classes, as
shown in Fig. 8. This makes it easier to maintain the
model, because their definitions are usually used in more
than one place. By having a single definition that is reused
by referencing it where needed, it is easy to make changes
without introducing errors. Fig. 8 depicts the
TripReqPage component which is a ServerPage that
contains one service (newRequest) and two interfaces
(IClientHandler and IviewTripReq). Furthermore, we can
see all the services offered by each interface.

37

7. Transformation T2: Transformation
from PIM to a PSM

Once the transformation T1 is completely executed,

the functionality becomes interwoven into the
architectural aspects in the Integration Model. Now, we
can tackle the final step of the WebSA development
process, defining a set of PIM-to-PSM transformations for
each target platform such as J2EE, .NET from the
Integration Model. As is specified in [18], in order to
make a transformation from PIM-to-PSM, design
decisions must be made. These decisions are specified in
the transformation T2 and taken in the context of a
specific implementation design. Therefore, T2 is made up
of a set of simple transformations in which one Integration
Model component is transformed into a platform specific
component with the specific properties of this platform.
To specify the T2 transformation, it is necessary to have
the metamodels of the target platforms (e.g. the J2EE
metamodel can be obtained from [21]).

Fig. 9. Example of T2: ServerPage2J2EE

Fig. 9 shows a QVT example of transformation T2 for
J2EE using the textual notation. It transforms each
ServerPage component of the Integration Model specified
in the first domain into a JavaServerPage specified in the
second domain. The elements of the Integration Model
domain are only checked in order to accomplish the
transformation, but the J2EEModel domain has to create,
modify or delete its elements to satisfy it. In this example,
the ServerPage has a set of WebServices, each one of
them is translatable into a java method, a javascript
method or an HTML form. In this example, we have
chosen a translation into an HTML form by the
WebService2Form transformation defined in the forall

OCL sentence of the {where} part. In the same way, each
of View elements related to the ServerPage is translated
into a JavaBean through the View2Bean transformation.
The PSMs obtained from the WebSA process are
considered an implementation, because they provide all
the information needed to construct an executable system.

8. Related Work

This section compares our work with related research
in the area of Web Engineering: On the one hand, MDA
applied to the development of Web applications. On the
other hand, we focus on the approaches that address the
software architecture of Web applications.

An example of approach based on MDA for Web
Applications is Tai et al [24]. They provide different
kinds of artifacts in a consistent and cohesive way by
means of a metamodel. In contrast, our approach
formalizes the code generation by means of
transformation rules, and uses the traditional views from
the Web engineering methodologies.

Another model-driven methodology for Web
Information System development is MIDAS [4]. This
methodology uses XML and object-relational
technologies for the specification of the PSMs. Unlike the
WebSA approach, it does not establish the transformation
mapping following the standard QVT, and it does not
provide any architectural aspect of the Web application.

On the part of the Web architecture, the approaches are
focused on emphasizing the scalability, independent
deployment, and interaction latency reduction, security
enforcement, and legacy systems encapsulation. For
instance, approaches such as Representational State
Transfer (REST) [6] architectural style, to represent Web
architectures, with focus upon the generic connector
interface of resources and representations. However,
REST has only served both as a model for design
guidance, and as test for architectural extensions to the
Web protocols. WebSA has used some concepts of this
architectural style to define a process development for the
production of Web applications.

Finally, Hassan and Holt [9] also present an approach
aimed at recovering the architecture of Web applications.
The approach uses a set of specialized parsers/extractors
that analyze the source code and binaries of Web
applications. They describe the schemas used to produce
useful architecture diagrams from highly detailed
extracted facts. Conversely, WebSA follows the opposite
process that goes from the representation of the
architecture to the implementation. However, it does not
describe the transformation rules used to realize this
reverse engineering process.

relation ServerPage2J2EE {

checkonly domain IntegrationModel sp:ServerPage {
 name=nc,
 services = Set((WService) {name=on,
type=ot}),

 views = Set ((View) {name = vn})
 }
 enforce domain J2EEModel jsp:JavaServerPage {
 name=nc,

 forms = Set((Form) {name=on, type=ot}),
 beans = Set((JavaClass) {name = vn}

 }
 where {

 services->forAll (s1| WebService2Form (s1, forms))
 views-> forall (v | View2Bean (v, beans))
}

 }

38

9. Conclusions and Further Work

WebSA is an approach that complements the currently
existing methodologies for the design of Web applications
with techniques for the development of Web architectures.
WebSA comprises a set of UML architectural models and
QVT transformations, a modeling language and a
development process. The development process also
includes the description of the integration of these
architectural models with the functional models of the
different Web design approaches.

In this paper we focus on the development process of
WebSA and describe how models are integrated and
generated based on model transformations. For the
specification of the transformations we choose a
promising QVT approach that allows for visual and
textual description of the mapping rules.

We are currently working on a tool to represent the set
of QVT transformation models that support the WebSA
refinement process. This work will allow to represent the
transformations while guaranteeing the traceability
between those models and the final implementation.

10. References

[1] L. Bass, M. Klein, F. Bachmann. Quality Attribute Design

Primitives, CMU/SEI-2000-TN-017, Carnegie Mellon,
Pittsburgh, December 2000.

[2] J. Bézivin. In Search of a Basic Principle for Model
Driven Engineering, Novática nº1, June 2004, 21-24

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal. Pattern-Oriented Software Architecture – A System of
Patterns, John Wiley & Sons Ltd. Chichester, England,
1996

[4] P. Cáceres, E. Marcos, B. Vela. A MDA-Based Approach
for Web Information System, Workshop in Software Model
Engineering, WisME 2004.

[5] S. Ceri, P. Fraternali, M. Matera. Conceptual Modeling of
Data-Intensive Web Applications, IEEE Internet
Computing 6, No. 4, 20–30, July/August 2002

[6] R. Fielding, R. Taylor. Principled Design of the Modern
Web Architecture, ACM Transactions on Internet
Technology, Vol. 2, No. 2 , 115-150, May 2002

[7] J. Gomez, C. Cachero, O. Pastor. Extending a Conceptual
Modelling Approach to Web Application Design. In 12th
CAiSE '00. International Conference on Advanced
Information Systems, LNCS 1789, Springer, 79-93, 2000

[8] J. Gómez, C. Cachero, O. Pastor. Conceptual Modeling of
Device-Independent Web Applications. IEEE Multimedia,
8(2), 26–39, 2001

[9] A. Hassan, R. Holt. Architecture Recovery of Web
Applications, International Conference on Software
Engineering (ICSE’02), May 2002

[10] I. Jacobson, G. Booch, J. Rumbaugh. The Unified
Software Development Process, Addison-Wesley, 1999

[11] A. Kleppe, J. Warmer, W. Bast. MDA Explained: The
Model Driven Architecture, Practice and Promise,
Addison-Wesley, 2003

[12] C. Krobyn. UML 3.0 and the Future of Modeling,
Software and System Modeling, Vol. 3, No. 1, 4-8, 2004

[13] N. Koch, A. Kraus. The Expressive Power of UML-based
Web Engineering, In Proc. of the 2nd. Int. Workshop on
Web-Oriented Software Technology, CYTED, Málaga,
Spain, 105-119, June 2002

[14] S. Meliá, C. Cachero, J. Gomez. Using MDA in Web
Software Architectures, 2nd OOPSLA Workshop of
Generative Techniques in the Context of MDA,
http://www.softmetaware.com/oopsla2003/mda-
workshop.html, October 2003

[15] S. Meliá, C. Cachero. An MDA Approach for the
Development of Web Applications, In Proc. of 4th
International Conference on Web Engineering (ICWE’04),
LNCS 3140, 300-305, July 2004

[16] S. Meliá. The WebSA Composition Model Profile.
Technical Report TR-WebSA2, http://www.dlsi.ua.es/
~santi/pPublicaciones.htm, November 2004.

[17] OMG. Model Driven Architecture, OMG doc.
ormsc/2001-07-01

[18] OMG. MDA Guide, OMG doc. ab/2003-05-01
[19] OMG. Meta Object Facility (MOF) v1.4, OMG doc.

formal/02-04-03
[20] OMG. 2nd Revised submision: MOF 2.0 Query / Views

/Transformations RFP, OMG doc. ad/05-03-02
[21] OMG. UML Profile for Enterprise Distributed Object

Computing Specification. OMG doc. ad/2001-06-09
[22] K. Renzel, Wolfgang Keller: Client/Server Architectures

for Business Information Systems: A Pattern Language,
PLoP Conference, 1997

[23] B. Selic: An Overview of UML 2.0 (Tutorial), UML 2004.
[24] H. Tai, K. Mitsui, T. Nerome, M. Abe, K. Ono. Model-

Driven Development of Large-scale Web Applications,
IBM J. Res. & Dev. Vol. 48 No. 5/6, Sep/November 2004

[25] VisualWADE Case Tool. http://www.visualwade.com,
May 2005

39

Web Engineering does profit from a Functional Approach

Torsten Gipp and Jürgen Ebert
University of Koblenz-Landau

e-mail: (tgi|ebert)@uni-koblenz.de

Abstract

Founding web site development on models is the state of
the art. This paper aims at showing that functional specifica-
tions are a powerful means of modelling specific aspects of a
web application and that it may be employed to gain overall
coherency and an integrated set of models. The composition
of pages from fragments, the incorporation of content based
on queries, the definition of dynamics of the web applica-
tion, as well as the transformation of pages into appropriate
presentation level languages: all these aspects are different
models, and they are specified and integrated using a func-
tional language. All models constitute a coherent view on
the web site as a whole.

At the same time, using this functional approach proffers
openness and extensibility to incorporate well-established
tools and technologies.

1 Introduction

Initial creation and maintenance of websites are two sides
of the same coin. A common approach for generating web-
sites and for keeping dynamic websites up-to-date involves
separating the different concerns of web site description into
different yet integrated documents.

We assume a model-based view on web sites: a web site is
described by a set of models, each emphasising a particular
point of view and at the same time being part of one coherent
and consistent ‘big picture’ of the web site as a whole. In
other words, it does not suffice to regard the different models
in isolation. Instead, it must be guaranteed that the models
are integrated. It is important to have a coherent and precise
description of all relevant web engineering aspects and of
the artefacts (models) that are relied upon. Thanks to the
clearly defined integration of the models, which also clarifies
that they are separate concerns, each model can be tackled
individually.

In addition to the models, the process of the creation and
evolution of a web site has to be considered as well. This
is an orthogonal aspect that applies to, and should reflect in,
every model.

A prominent focus in our work is maintenance. One inher-
ent characteristic of a web site is that it changes and evolves
over time, and indeed rapidly so. Therefore, every model
created during the development of a web site is potentially
changed or even rewritten at any point of time.

One of the core contributions of this paper is to use a
functional programming approach and a functional language
to describe and specify the web site’s single pages. We
employ the functional programming language Haskell [1]
as an example language. The functional specifications are
executable and they are used by the run-time system to actu-
ally drive the web site. The approach is general enough to
provide that the realisation is not constrained to a particular
functional language or a particular run-time system. The
focus clearly lies on integration, be it on the tools level or on
the modelling level.

Relying on functional specifications for the definition of
web sites is quite natural insofar as retrieving a web page
via HTTP actually is a function call. Parameters may be
passed in, and the final page is delivered as the result. This
result is declaratively defined by a function, which in turn
can include calls to other functions so to compose a page
from smaller parts. One gains a true amount of coherence
since everything in this specification is a function.

At the same time, this approach fosters modularity. The
granularity of the fragmentation can be chosen with all flex-
ibility of the functional language, and it can also differ on
a page-to-page basis. This allows for doing template-based
page generation, which we exploit by proposing an example
template mechanism to build pages with a consistent lay-
out. This mechanism can easily be substituted or extended if
more complexity is needed.

A functional specification is a formal description. At
the same time, it is an implementation that can be executed.
This advantage can be exploited for prototyping and even
for simulation of web sites. The specification represents a
high-level view on the page definitions, but also lends itself
to ‘drilling down’ due to its inherent rigourousity.

Common maintenance activities, e.g., established con-
figuration management disciplines, can be applied almost
naturally to the functional specifications.

40

(tgi | ebert)@uni-koblenz.de

calls

calls

calls

refersTo

refersTo

calls

calls

refersTo Content

Page
Function

Navigation
Structure

Dynamics
Function

Query,
Update

Function

Presentation
Function

Figure 1. Artefact integration

As suggested in the call for papers, the approach will be
presented by using the travel agency system (TAS) as an
example. Cf. [2] for a description of this system.

The remainder of the paper is structured as follows. The
following section 2, backed up by the TAS example, intro-
duces the models that yield the ‘big picture,’ giving a detailed
explanation of the application of the functional specifications.
Section 3 emphasises the model integration, section 4 gives
an overview of related work, and section 5 concludes by
summarising the core items of this text.

2 Models for the TAS example

According to the separation of concerns mentioned in the
introduction, we provide a set of core models that, taken to-
gether, capture the application domain and its projection into
a set of web pages. We consider: the content, the navigation
structure (site map), the pages (navigation objects), queries
and updates, the presentation, and the dynamics. The models
are integrated, and sections 2.1 to 2.6 each describe one
model and its integration with the others. Figure 1 visualises
the interdependency of the models. After introducing the
single models, section 3 will re-focus on their integration.

2.1 Content

The content model captures the concepts of the applica-
tion domain and their relationships. A UML class diagram is
used to write down the model (see fig. 2). For demonstration
purposes, it is sufficient to consider a subset of the classes
only. The diagram in figure 2 only contains classes that deal
with the description of a trip and the storage of a customer’s
preferences in terms of transportation methods and routes.

using►
City Route Transportation

Method

◄from

◄to

Route
Prefs

Method
Prefs

Transportation
MethodPrefs

Trip
Description

Trip
Prefs

Trip
Constraints

Customer

Figure 2. Content model for the TAS example

The UML diagram describes the structure of the reposit-
ory that keeps all contents. A query facility (see section 2.4)
allows the extraction of information for the inclusion in the
web pages.

2.2 Navigation Structure

The navigation structure determines the relation of the
single pages with respect to the hyperlinks between them.
It is modelled with a visual language that provides special
features, like distinct page types and authorisation-dependent
navigation, thus defining the site map. This language has
been successfully applied in some of our web engineering
projects.

Figure 3 visualises the site map for the TAS. The primary
navigation structure, given by the solid arrows, defines a tree
of page nodes. This tree assigns a unique path to every page.
Also, this tree structure is easy to communicate to a web site
visitor, who can create a mental image of the site map fairly
quickly, which in turn is a very important ergonomic feature.

The secondary navigation structure is visualised by
dashed arrows. They represent arbitrary links between pages,
without heeding the tree structure.

There are four different types of pages, visually differenti-
ated by four different page icons (cf. the legend in fig. 3). A
lightning bolt marks a page as being dynamic, i.e., as a page
whose relevant content is calculated (and thus potentially
varies) at the time of access. In contrast, the content of static
pages does not change at run-time. The classification of
a page as being either static or dynamic is not necessarily
unambiguous, because the definition of ‘relevant content’
is subject to interpretation. The distinction merely serves
communicative purposes during modelling. There are no
consequences on the implementation level.

41

<script
 var a=
 var xl
 if(xls

AboutUs

roles = [Customer]
scope = subtree

EditPrefs(id)

<script
 var a=
 var xl
 if(xls

Homepage

TripList TripDetails(id) BillingDetails OrderConfirmation

1
1Customer

Home(id)

<script
 var a=
 var xl
 if(xls

TripDescription

primary secondary
navigation structure

static
page

dynamic
content

virtual
pageform

<script
 var a=
 var xl
 if(xls

authentication-based
navigation

Legend:

Figure 3. Navigation structure

Pages providing a form to let a web site visitor enter some
data can be distinguished by a corresponding form icon.

A small piece of script code on a stacked page icon signi-
fies a virtual page that is computed by a script. In contrast to
the ‘lightning bolt’ pages with dynamic content, the script-
generated pages are entirely calculated by a set of parameters,
where one (the first) parameter defines the name of the page.
The virtual pages do not exist under a pre-defined identifier,
like the pages with dynamic content do. They are rather cre-
ated and evaluated on-the-fly, every time the page is called.
We will use the term instance to talk about concrete virtual
pages. There is one instance for each possible identifier.

These four basic web page flavours can also be mixed on
one page. A virtual, a static, or a dynamic page can contain
a form (or more than one). Since non-dynamic virtual pages
do not make much sense – because this would mean that
every instance looked the same and did not make use of the
identifying parameter – the lightning bolt adornment will
not be applied to virtual page icons, and virtual pages will
count as always being dynamic.

Technically, pages of all four page types are defined by a
page function, and every page function has the same signa-
ture. Therefore, the page type chosen in the site map diagram
is of no relevance implementation-wise (see section 2.3).

The navigation structure diagram may also contain in-
formation on authorisation-dependent navigation. In the
example, the primary link to CustomerHome(id) is annot-
ated with a role-icon. It states that a web site visitor must
possess the role Customer in order to access the page. The

scope=subtree declaration expands this constraint to the
whole subtree rooted at this page. The alternative value
thisPage for scope would prohibit this expansion. The ac-
tual mechanism for checking the authorisation of a given
user, a given action and a given object is intentionally left
open in our approach. We can encompass any matrix-based
scheme that assigns any number of permissions to perform
actions to a list of roles. Thus, the actual mechanism of the
implementation platform can be used here.

The diagram can also capture the multiplicity of links to
or from virtual pages. This is useful because virtual pages
are like classes in that they represent a set of instances. Thus,
we adopted a subset of the UML’s multiplicity symbols to
lay down how many instances may be connected. In figure 3,
each CustomerHome(id) instance is connected to exactly one
instance of EditPref(id).

The actual checking of constraints and of the authorisa-
tion is contained in the associated page functions. They also
contain the definition of the links for the secondary navig-
ation structure. Thus, we can employ the full power of the
underlying functional language to provide conditional links,
whose behaviour or mere existence depends on the system
state and other context information.

2.3 Pages

The pages that constitute the navigation space, i.e., the set
of objects or nodes that can be visited, are called navigation
objects. Each page is defined by a page function that returns
an abstract regular structure which can be mapped to a con-
crete renderable page description using a presentation level
language. Every time a page is accessed, the corresponding
page function is evaluated, the result is transformed into the
appropriate presentation language, and the result is sent to
the client (see section 2.5).

We define a data type, the abstract page description
(APD), that allows for defining a page on an abstract level in
terms of nested, labelled, and attributed elements (analogous
to XML). Here is the definition of this data type (in Haskell):

data APD =
Text String

| Element Name Attrs ElementList
| Link Name Attrs ElementList Identifier Params
| Form Name Attrs ElementList Identifier Params
| Field Name Attrs String
| Empty

There are six constructors for the APD type. An APD term
can be a simple text node (Text); an element (Element) with
a name, a list of attributes, and a list of child terms; a link
or a form (Link and Form) with a name, a list of attributes,
a list of child terms, the identifier of the destination page,
and a list of parameters that should be passed to this page; a

42

field in a form (Field) with a name, a list of attributes and a
default field content; or it can simply be empty (Empty).

This declaration uses some type synonyms (syntactical
abbreviations):

type Name = String
type Attrs = [(String, String)]
type ElementList = [APD]
type Params = Attrs
type Identifier = String

The name of an element is a string. Attributes and para-
meters are modelled as lists of key/value-pairs. Elements as
well as forms can contain child nodes, so they use ElementL-
ist as a container for a list of arbitrary APD structures.

The type PageFunc is the function type for pages, map-
ping parameters to an APD structure. It is used for every
page definition.

type PageFunc = Params → APD
type Id2PageFunc = Identifier → PageFunc

Links and form destinations are defined in terms of func-
tion identifiers. In this context, a function of the type
Id2PageFunc maps identifiers to real page functions. This
implies that links are represented by terms in an APD struc-
ture, attached with a reference to the page function they link
to. This allows for link consistency checks.

First Example. As an example page function, consider
the following (simplistic) definition:

greetingPage :: PageFunc
greetingPage [(”name”, name)] =

Element ”pageheading” []
[Text ”Hello”
, Element ”paragraph” [] [Text name]
]

This page is to be called with one parameter (called name)
and results in an APD term that consists of a root element
pageheading, which comprises a text element and a para-
graph element. The latter finally produces another text ele-
ment which corresponds to the value of the parameter that
was passed to the page function. This is a first, albeit dull,
demonstration of how to access page parameters and how to
incorporate dynamic content.

Example with query. In general, the page functions are
the place where we define the incorporation of the actual
content into the pages. We suggest using a set of functions
that encapsulate queries on the content repository. Since this
is a separate level of abstraction, we treat these queries as a
model of its own. Section 2.4 goes into more detail.

As an example, incorporating a list of a customer’s trans-
portation method preferences into the TripDescription page
is done with a function

getMethodPrefs :: String → [String]

Given a customer’s id as parameter, it returns a list of
transportation method names. The actual query may be
arbitrarily complex, but this does not matter at this point.

In the corresponding page fragment that calls this func-
tion, the delivered result is transformed into a list structure
so it can be presented to the web site visitor:

−− generates a list of a customer’s preferences
tasPreferencesList :: PageFunc
tasPreferencesList params =

let
methodPrefs = getMethodPrefs (1)

(fromJust (lookup ”customerId” params))
in

foreach
methodPrefs
(Element ”list” [] [])
(λ (methodName) →

Element ”item” [] [Text methodName]
)

This listing shows the page function that builds an APD
for the presentation of a customer’s preferences (only the
transportation methods are considered). The page function
receives a customer id as its parameter. The main body of
the function calls getMethodPrefs in the line marked (1) and
then iterates over the resulting list of transportation method
names. The iteration is achieved via the foreach construct.
This is a simple iterator that applies a given function to each
element in a given list and returns an APD with the result.
Here, we can see how powerful the approach can get in
respect to the specification complexity: iterators (and other
control flow constructs, like higher level functions) can be
defined and easily applied, thus lifting the specifications to a
higher level of abstraction and allowing for more dynamics.

Example with template. For standard applications it ap-
pears to be appropriate to divide pages into several areas.
Figure 4 visualises such a general page layout by showing a
page template with slots. The slots are the places where the
actual content is to be put in.

The presentation of a page as a function can be based on
this template. As such, it serves as an additional abstraction
of a page: the overall layout of the page in terms of its
presentation can be defined without caring about the concrete
content. The presentation of the content is again defined
independently.

A page template is a function f : APD→ APD. This sig-
nature emphasises that it is a filter that can be interposed in
the transformation process (in the sense of a pipe/filter archi-
tecture). The functional approach allows for employing any
number of these filters, resulting in further abstraction levels

43

heading

navi
gation body

footer

Figure 4. Page template with named slots

for pages. The levels can be established in correspondence
to the complexity of the particular application at the time of
modelling. There is no need to change the definition for the
APD. The actual levels employed can even vary from page
to page.

In order for a template to work as a filter, the input has
to be an APD as well. Therefore, each filter traverses the
given APD and searches it for content fragments that are
marked with slot identifiers, thus signalling where to put
them in the resulting page. That is, one can regard pages
that make use of page templates as containing a mapping
from slot identifiers to slot content. Calling a page template
then involves creating the output APD and inserting the slot
contents at the defined places by using this mapping.

We gain a further degree of coherence by defining the
mapping as an APD as well. A page using a particular page
template contains elements that have the same name as the
slots defined in the page template. The children of these
elements are then put at the appropriate place in the resulting
APD.

The following listings show the definition of the Trip-
Description page. This page uses a page template
(tasMainTemplate) whose Haskell code is given further be-
low. The page template tasMainTemplate is called with an
element named slots as its argument. This element serves
as a container for the slot content mapping. The adherence
to this convention is expected by the page template, which
searches the given APD for the slots it is responsible for.

tasTripDescription :: PageFunc
tasTripDescription params = tasMainTemplate

(Element ”slots” []
[Element ”heading” [] [Text ”Trip Description”]
, Element ”navigation” [] [tasNavigation params]
, Element ”body” []

[(tasTripDescriptionForm [])
, (tasPreferencesList params)
]

, Element ”footer” [] [Text ”Footer”]
])

Here is the main template:

−− Main template. Returns a complete HTML page.
tasMainTemplate :: APD → APD
tasMainTemplate (Element ”slots” a es) =

Element ”html” a
[Element ”head” [] −− HTML head

[Text ”TAS”]
, Element ”body” [] −− HTML body

[Element ”div” [(”class”, ”heading”)]
(−− pageheading slot

if (length headingContent) 6= 0 then
headingContent

else
[]

)
, Element ”div” [(”class”, ”body”)]

(−− body slot
if (length bodyContent) 6= 0 then

bodyContent
else

[]
)

−− (navigation slot, footer slot omitted)
]

]
where

headingContent =
(filter (isElementWithName ”heading”) es)

bodyContent =
(filter (isElementWithName ”body”) es)

The function isElementWithName used in the where
clause is a boolean function that returns true if, and only
if, a given element has the name given.

The other functions necessary to constitute the complete
TripDescription page are given below, to present a rather
complete example. Note that they only build a very ‘naked’
version of that page. The page fragment building the nav-
igation tree is omitted for the sake of brevity. The tree is
defined by the primary navigation which is laid down in the
navigation structure diagram.

tasNavigation :: PageFunc
tasNavigation = Empty

tasTripDescriptionForm :: PageFunc
tasTripDescriptionForm [] =

let
originCities = foldr

(λa b → a ++ ”\n” ++ b) ”” getOriginCities
destCities = foldr

(λa b → a ++ ”\n” ++ b) ”” getDestCities
in

Form ”TripDescriptionForm” []
[Field ”originCity”

[(”type”, ”optionlist”), (”values”, originCities)] ””
, Field ”destCity”

44

[(”type”, ”optionlist”), (”values”, destCities)] ””
, Text ”Date of departure:”
, Field ”dateOfDeparture” [] ””
, Text ”Date of return:”
, Field ”dateOfReturn” [] ””
]
”tasTripDetails” []

The get...-functions used here encapsulate queries to
the content repository. For the example assume that get-
MethodPrefs returns [”Train”, ”Car”], getOriginCities returns
[”Paris”], and getDestCities returns [”New York”, ”Rio”, ”Tokyo”]
(section 2.4 will present an example query).

Besides the isElementWithName function, a whole set of
auxiliary functions has been defined in order to make the
definitions shorter and easier to maintain. Examples for tasks
they perform is working with parameters lists, traversing
APDs to find specific elements (especially links and forms),
and displaying debug information.

One of the debugging functions prints a textual repres-
entation of an APD. Calling it with the results of the TripDe-
scription page yields:

Element ”html” []
[Element ”head” [] [”TAS”]
,Element ”body” []
[Element ”div” [(”class”,”heading”)]

[Element ”heading” [] [”Trip Description”]]
,Element ”div” [(”class”,”body”)]
[Element ”body” []

[Form ”TripDescriptionForm” []
[Field ”originCity” [(”type”,”optionlist”),

(”values”,”Paris\n”)] ””
,Field ”destCity” [(”type”,”optionlist”),

(”values”,”New York\nRio\nTokyo\n”)] ””
,”Date of departure:”
,Field ”dateOfDeparture” [] ””
,”Date of return:”
,Field ”dateOfReturn” [] ””
]
<page: ”tasTripDetails” []>

,Element ”list” []
[Element ”item” [] [”Train”]
,Element ”item” [] [”Car”]
]

]]]]

Figure 5 visualises this result, hinting at the final present-
ation of the page. The abstract language used is quite close
to XHTML already, but this is not a necessity. The final
transformation into a concrete presentation level language is
performed in a separate step, described in section 2.5.

2.4 Queries and Updates

Since the content model is given in terms of classes and
relationships, it is possible to use almost any kind of rep-

html

head
TAS

body

div (class="heading")
heading

Trip Description

div (class="body")
body

TripDescriptionForm (to: tasTripDetails)

originCity destCity

Date of departure:

Date of return:

dateOfDeparture

dateOfReturn

- Train
- Car

Figure 5. Visualisation of the abstract page structure
for the TripDescription page.

resentation for the underlying content repository. In our
implementation we rely on a graph repository which keeps
the data as TGraphs [3], i.e. typed, attributed and ordered
directed graphs. This repository supplies a functional query-
ing language that allows for accessing the graph at run-time,
including updates.

The queries used for content integration can be of arbit-
rary complexity. While the query API may well be very
simple, the full strength of the functional language can be
used to work on the query results before incorporating them
into the pages. Thus, each query is a proper function in its
own right. This allows for defining arbitrarily complex views
on the content. We prefer this amount of flexibility in favour
of only allowing simple one-to-one mappings between the
content model and the hypertext model. The goal is to keep
the page functions as simple as possible and to avoid a too
strong intermixing of content accessing functionality into the
page definitions. This is perfectly achieved by using query
functions that return simple objects like single ‘records’ or
lists of records. The page functions then simply access the
records or iterate over a list. Any necessary computation is
encapsulated inside the query functions.

Consider, as an example, the following query that re-
trieves the list of all available cities:

45

queryAllCities :: AttributedGraph → [String]
queryAllCities g =

nodesToValues
g
(λ lbl → getValue lbl ”id”)
(query g (nodes g) [constrainByType ”City”])

Without diving into the implementation details, we can
note that this function returns a list of strings, given a con-
crete Graph g, by first selecting all nodes that are of type
City, and then mapping a function that extracts the value of
the id attribute over this list of nodes, resulting in the desired
list of city names.

2.5 Presentation

The presentation model is given by defining one or more
mappings (presentation functions) from an APD to the cor-
responding presentation level language. In the case of a web
application that is to be delivered via HTTP and is destined
to be rendered by a user agent that understands XHTML,
a simple transformation of the regular APD into XHTML
can be implemented as a Haskell function. Alternatively, the
APD could be converted to any other XML dialect first, and
subsequent transformations may be done with technologies
like XSLT. All conceivable possibilities are open at this point,
and the approach can be easily adapted to a great number
of run-time systems. Note that the actual transformations
can be selected at run-time, even on a page-to-page basis,
or according to context information. This opens the path to
customisation, personalisation, and multi-mediality.

For our current implementation, we use the Zope [4] web
application server and we integrated a Haskell interpreter
(Hugs, [5]) that evaluates page functions on-the-fly. The
page functions (via a presentation function) return complete
XHTML documents which can be delivered without further
transformation.

2.6 Dynamics

The behavioural aspect of the TAS can be modelled el-
egantly by looking at the different functions that have to be
carried out by the actors. Thus, the ‘business logic’ is broken
down into well-specified functions that can be glued together
in the page function definitions. Table 1 lists three example
functions. It states the function provider and the name of the
function in the first line, followed by a short description of
its semantics. The rows marked ‘In’ and ‘Out’ describe the
input and output parameters, respectively.

Since the page functions are executable formal specifica-
tions, the dynamics of the system can be subjected to simula-
tion and testing. One can devise test cases by anticipating the
results of relevant functions and test them by calling them
with appropriate arguments.

Table 1. Function list

PTA.checkWellformedness
Checks a trip description for plausibility (e.g.,
return date lies before departure date)

In trip description (TripDescription)
Out true, if trip description is well-formed, i.e.,

plausible; false, otherwise

PTA.prepareTripList
Processes a well-formed trip description and
presents a list of matching trips

In trip description (TripDescription)
Out ordered list of trips that match the trip descrip-

tion

TC.bookTemporarily
Temporarily books a transportation service, if
possible. Reports any failure.

In service request (Route with associated origin,
destination, and transportation method; date of
departure)

Out confirmation of success (true or false)

PTA: personal travel agency; TC: travel company

3 Integration

The integration of the different models just described in
section 2 is achieved by making functions call one another
and by referring to the concepts from the content model in
the functional specifications. Figure 1 depicts these rela-
tionships. A page function declaratively specifies what one
navigation object consists of, thus being a model for it. At
the same time, it is a callable function that returns the actual
page upon evaluation. In other words, the functions are ex-
ecutable models. The page functions call query and update
functions as well as dynamics functions, which makes them
the integral and pivotal glue that holds the system together.
They also implement the secondary navigation structure by
including corresponding links.

By accessing instance data that complies to the content
model, the functions refer to concepts from the application
domain. Functional requirements are captured by specific
dynamics functions that also contribute to building higher-
level, integrating and integrated functions that can be used
in the other specifications.

We showed how a complete website can be described by
six different kinds of documents. Content is modeled by a
conventional UML class diagram and the site’s structure is
modeled by a site graph. The site graph is written in a visual
language that differentiates between four different page types
(static, dynamic, form-based, and virtual pages) and allows
to include authorisation-dependent navigation constraints.

46

presentation
function

page
function

query,
update
function

dynamics
function

content
repository

usesuses

APD XHTMLparameters

site graph

specifies

accesses accesses

Figure 6. Artefact integration: data flow

All other information necessary to fully define the web site,
i.e., the pages themselves, including all page fragments that
are part of them, the queries supplying content information
to the pages, the rendering of the pages for presentation, and
the dynamics of the pages, are described as functions using
a functional language.

All this effectively guarantees a high level of coherency.
Figure 6 visualises the integration of the different artefacts,
focussing on the flow of data, from the receipt of paramet-
ers to the production of a document in the desired output
language. The page functions are the integrating unit, using
queries, updates, and dynamics functions to define the incor-
poration of data into the pages and the execution of ‘business
logic’. The page functions also specify the site graph by
creating APD terms that represent links.

4 Related Work

Relying on models for describing and specifying web
sites has quite a long tradition. Overviews and comparisons
of the most prominent approaches are given e.g. in [6], [7],
and [8]. The approaches can be very coarsely classified by
their ‘foundations’: some focus on object-oriented models,
others rely on entity-relationship models, and again others
put documents into the center of interest. The most influen-
tial ‘schools’ are the graph-based Strudel approach [9], the
TSIMMIS project [10], the ER-based RMM [11], Araneus
[12], HDM [13] and OOHDM [14], WebML [15], and UWE
[16].

Significant effort has been put in developing and describ-
ing diverse methodologies for web site generation, of which
none, to our knowledge, relies as much on functional spe-
cifications as we do. We envision a synergetic potential for

the integration of our findings into existing approaches, or,
vice versa, the integration of selected parts of the aforemen-
tioned approaches into ours. This vision was the reason for
our approach being as abstract and as extensible as possible.
The idea of integrating the models by making them functions,
which is unique to our approach, clearly works best when
all models are specified as functions.

It is interesting to compare the various notations used in
the respective approaches. Some approaches rely on propri-
etary notations for some of the diagram types, especially for
the hypertext models. A majority of the current approaches
employs the UML (and its extension mechanisms) for the
notation of diagrams. The main reasons stated for using
UML are the availability of tools ([17, p. 2]), the fact that
the UML is well-documented ([18, p. 2]), and the coherence
gained by using UML for a web application that is connected
to other systems that are already modelled using UML ([19,
p. 64]). As of today, one can state that using UML class
diagrams for the notation of entity-relationship views simply
is standard practice.

It is not just recently that the community realises that
aspect-orientation can very well be applied to web engin-
eering problems. Many cross-cutting aspects have been
identified (principally: authorisation, contextuality), and the
models are defined in a way to allow for the inclusion of
aspects (e.g., [20]). Our approach nicely fits into this line, as
the functions offer well-defined cut points.

Our approach is based on functional specifications. We
aim at integrating the advantages of this ‘way of thinking’
into existing web engineering practice. To the best of our
knowledge, only very little effort has been put into this
direction. Producing HTML and XML with a functional
language in a type-safe way is, e.g., investigated in [21],
[22]. A way of representing graphs in Haskell is proposed
in [23], accompanied by a working implementation.

5 Summary and Conclusion

This text presented a coherent approach to web engineer-
ing by relying on functional specifications. Page functions
are the formal foundation upon which whole web sites can
be built.

At the same time, the approach is general and open
enough to incorporate existing tools and technologies, like
graph querying for the inclusion of content, web application
servers or web content management software that provide
session management and access control, or configuration
management software to take care of the artefacts produced
during development and evolution. Testing and simulation
can be done by executing the specifications.

Note that abstracting pages, the dynamics, queries, and
updates as functions effectively paves the way to the encap-
sulation of selected functions as web services.

47

Exploiting the ease of use and extensibility of the func-
tional approach, we introduced a simple template mechanism
to describe pages on a higher level of abstraction.

Once a consolidated library of functions is available, cre-
ating the functional specifications is not very hard work.
However, there is also room for further improvement, espe-
cially when thinking of software tools that let the web en-
gineer work in a more visual environment. These tools then
deliver the functional specification as their output. It might
make sense to constrain the expressive power of these tools,
so as to be able to maintain a two-way consistency between
the generated functional specifications and the visual docu-
ments shown to the user.

We regard our approach as a contribution that shall serve
as a foundation, paving the ground for building upon and
exploiting its possibilities.

References

[1] J. Peterson and O. Chitil, “The Haskell Home Page.”
http://www.haskell.org/, Dec 2004.

[2] “A travel agency system.” http://www.lcc.uma.es/∼av/
mdwe2005/TheTASexample/, May 2005.

[3] J. Ebert and A. Franzke, “A Declarative Approach to
Graph Based Modeling,” in Graphtheoretic Concepts
in Computer Science (E. Mayr, G. Schmidt, and G. Tin-
hofer, eds.), no. 903 in LNCS, (Berlin), pp. 38–50,
Springer, 1995.

[4] “Zope.org.” http://www.zope.org, May 2005.

[5] “Hugs 98 Web Site.” http://www.haskell.org/hugs/, Au-
gust 2004.

[6] N. Koch, “A comparative study of methods for hyper-
media development,” Technical Report 9905, Ludwig
Maximilians-Universität München, November 1999.

[7] P. Fraternali, “Tools and approaches for developing
data-intensive Web applications: a survey,” ACM Com-
puting Surveys, vol. 31, no. 3, pp. 227–263, 1999.

[8] G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger,
eds., Web Engineering: Systematische Entwicklung von
Web-Anwendungen. Heidelberg: dpunkt.verlag, 2004.

[9] M. Fernández, D. Florescu, A. Y. Levy, and D. Suciu,
“Declarative specification of Web sites with Strudel,”
VLDB Journal, vol. 9, no. 1, pp. 38–55, 2000.

[10] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. D. Ullman, and J. Widom, “The
TSIMMIS project: Integration of heterogeneous in-
formation sources,” in 16th Meeting of the Information

Processing Society of Japan, (Tokyo, Japan), pp. 7–18,
1994.

[11] T. Isakowitz, E. A. Stohr, and P. Balasubramanian,
“RMM: A methodology for structured hypermedia
design,” Communications of the ACM, vol. 38, no. 8,
pp. 34–44, 1995.

[12] G. Mecca, P. Merialdo, and P. Atzeni, “Araneus in the
era of XML,” IEEE Data Engineering Bulletin, vol. 22,
pp. 19–26, September 1999.

[13] F. Garzotto, P. Paolini, and D. Schwabe, “HDM – a
model-based approach to hypertext application design,”
ACM Transactions on Information Systems, vol. 11,
no. 1, pp. 1–26, 1993.

[14] D. Schwabe and G. Rossi, “The object-oriented hyper-
media design model,” Communications of the ACM,
vol. 38, no. 8, pp. 45–46, 1995.

[15] S. Ceri, “Web Modeling Language (WebML): a mod-
eling language for designing Web sites,” Computer
Networks (Amsterdam, Netherlands: 1999), vol. 33,
no. 1–6, pp. 137–157, 2000.

[16] A. Knapp, N. Koch, G. Zhang, and H.-M. Hassler,
“Modeling business processes in web applications with
ArgoUWE,” in UML 2004 - The Unified Modeling Lan-
guage. Model Languages and Applications. 7th Inter-
national Conference, Lisbon, Portugal, October 11-15,
2004, Proceedings (T. Baar, A. Strohmeier, A. Moreira,
and S. J. Mellor, eds.), vol. 3273 of LNCS, pp. 69–83,
Springer, 2004.

[17] E. Gorshkova and B. Novikov, “Exploiting UML ex-
tensibility in the design of web information systems,”
in Proc. Fifth International Baltic Conference on Data-
bases and Information Systems, (Tallinn, Estonia),
pp. 49–64, June 2002.

[18] N. Koch, A. Kraus, and R. Hennicker, “The author-
ing process of the UML-based Web engineering ap-
proach.” http://www.dsic.upv.es/∼west/iwwost01/files/
contributions/NoraKoch/Uwe.pdf, June 2001. (on-line).

[19] J. Conallen, “Modeling Web application architectures
with UML,” Communications of the ACM, vol. 42,
no. 10, pp. 63–70, 1999.

[20] G. Zhang, H. Baumeister, N. Koch, and A. Knapp,
“Aspect-oriented modeling of access control in Web ap-
plications,” in Proc. 6th Int. Wsh. Aspect Oriented Mod-
eling (AOM), (Chicago, Illinois, USA), March 2005.

[21] P. Thiemann, “Modeling HTML in Haskell,” in Prac-
tical Aspects of Declarative Languages (E. Pontelli

48

http://www.haskell.org/
http://www.lcc.uma.es/~av/mdwe2005/TheTASexample/
http://www.lcc.uma.es/~av/mdwe2005/TheTASexample/
http://www.zope.org
http://www.haskell.org/hugs/
http://www.dsic.upv.es/~west/iwwost01/files/contributions/NoraKoch/Uwe.pdf
http://www.dsic.upv.es/~west/iwwost01/files/contributions/NoraKoch/Uwe.pdf

and V. S. Costa, eds.), vol. 1753 / 2000, (Second Inter-
national Workshop, PADL 2000, Boston, MA, USA),
p. 263, Jan 2000.

[22] P. Thiemann, “A typed representation for HTML and
XML documents in Haskell,” Journal of Functional
Programming, vol. 12, pp. 435–468, July 2002.

[23] M. Erwig, “Inductive graphs and functional graph
algorithms,” Journal of Functional Programming,
vol. 11, no. 5, pp. 467–492, 2001.

49

How to Model Aspect-Oriented Web Services

Guadalupe Ortiz
Juan Hernández

Pedro J. Clemente
Pablo A. Amaya

Quercus Software Engineering Group
University of Extremadura

Computer Science Department
gobellot@unex.es
juanher@unex.es

jclemente@unex.es
pabloama@unex.es

Abstract

Web Services provide a new and successful way of

enabling interoperability among different web
applications. In this paper, an MDA approach to
modelling Web Services, in which aspect-oriented
techniques are also applied, is provided. The UML
profiles required to model aspects and Web Services
independently from the platform (PIM) are presented.
Once the system is modeled at this level of abstraction,
transformation rules have to be applied in order to
obtain the platform specific model (PSM). In this
respect, two different approaches for the specific
model are discussed, and benefits and shortcoming
will be analyzed depending on whether the aspects’
weaving is performed at design or implementation
level.

1. Introduction

Web Services have become the new way to

implement and compose applications through the Web,
and they have had a great impact in the current way of
developing applications.

Once Web Service technology seems to be highly
consolidated, it is time to tackle how they can be
modelled in order to be able to generate the necessary
code automatically. Although it is influential to both
evolution and maintenance in Web Services, the
market has not proposed a suitable answer to this
matter for the time being.

Furthermore, in spite of the importance of extra-
functional properties’ implementation, and interaction
logic encapsulation in compositions in the area of Web
Services, a unique and valid proposal has not yet been

suggested. We have already proposed the
encapsulation of both extra-functional properties and
the composition interaction logic by using aspect-
oriented programming (AOP) [1] as a suitable way to
implement these aspects of Web Service development
[2][3][4], but these issues must also be addressed in a
more abstract level.

 For this reason, we propose to model Web Services
and their composition in a well modularized way,
maintaining the logic decomposition of units by using
a new profile to model aspects and another one to
model Web Services altogether, independently of the
platform. In addition, once we have the independent
model, it has to be transformed into a platform specific
one. Due to the presence of aspects, we find two
different alternatives for the target specific model:
firstly, to perform the weaving at transformation, so
that no aspects remain in the specific model; secondly,
to maintain the aspects in the specific model, keeping
them abstract or translating them into a specific aspect-
oriented language. Therefore, the main contributions of
this paper are the definition of a PIM model for Web
Services, in which aspect-oriented techniques have
also been applied, and the analysis of two different
approaches to the specific model depending on
whether the aspects’ weaving is performed at design or
implementation level.

The rest of the paper will be arranged as follows: a
case study PIM is presented in Section 2 to identify the
various operations offered by the services and the way
in which they are connected, highlighting how the
aspects appear to deal with extra-functional properties
and compositions’ interaction logic. Section 3 specifies
both the way to model Web Services and the one to
model aspects and then moves on to outline the PIM
appearance once it has been decided to include the

50

aforementioned aspects. Section 4 presents two
alternatives for the aspect weaving, and the influence
of the decision in later stages will be examined. To
finish with, we discuss our proposal and future work in
Section 5.

2. The Case Study

The case study is not detailed in depth in this paper

as a common example was proposed for all the
position papers submitted to this workshop. With the
sole purpose of clarifying the main operations in the
different services and the relations among them, a very
general PIM is presented in Figure 1. To avoid
confusion, points which had no relevance to our
proposal have been omitted from the diagram. .

Consider now that we want to add extra-functional
properties to the case study. The tangling resulting
from the added properties causes difficulties when
designing the model in a conventional way. The same
problem is encountered when trying to model the
compositions’ interaction logic in an independent unit.

Both issues have been studied and solved at
programming level, as mentioned in the introduction,
but not at design level. In this sense, our proposal aims
at solving this inadequacy.

Therefore, various aspects can be included in our
case study in order to model extra-functional
properties and compositions’ interaction logic in a
modular and structured way. The customer, the travel
agent service and the bank service need to
communicate in a secure way, as these are the three
elements which send information, such as credit card
numbers, which must travel securely over the net. This
security can be provided by the aspect Encryption. We
can also use the Logging aspect in the travel agency
service to maintain a file with all the operations
invoked. Finally we have also decided to include the
Travel_agComp aspect, which encapsulates the
composition interaction logic for the different services
required to offer the travel agent behaviour. Similarly,
the BrokerComp aspect may be included; its task
would be to encapsulate the interaction logic of the
different services required to offer the broker
behaviour.

Figure 1. Case Study PIM

51

3. The Web Service and Aspect-Based PIM

In this section we are going to introduce our proposal
in three steps: first of all, our proposal for modelling
Web Services will be explained; secondly, our
proposal for modelling aspects will be described and
finally, the complete PIM proposed for the case study,
based on previous premises, is presented.

3.1 Web Service Modelling

We can find many Web Service modelling-related

proposals, such as [9] [10] [11]. From many of them it
can be noted that most of the literature in this area tries
to find an appropriate way to model service
compositions with UML and most of them use the
WSDL structure in order to model services.

The research presented by J. Bezivin et. al [12] is
worth a special mention; in it Web Service modelling
is covered in different ways, finally using Java and
JWSDP implementations. Starting from this proposal,
first of all, we decide to model our services
representing the WSDL elements, but in order to
simplify the model for our case study we will only
show the Web ServiceIinterface, which would match
the binding element in the WSDL metamodel
representation in the said report. In this sense, we
could extend the Web Services modelled in our case
study to the rest of the elements in the WSDL
metamodel.

.
3.2 Aspects Modelling

AOSD (Aspect-Oriented Software Development)

has been widely studied in the specialised literature,
and we can find different proposals on how to model
aspects with current products. We can find various
proposals mainly oriented to a specific language, such
as AspectJ [5] [6], or more general ones [7] [8]. The
first ones show pointcuts and advices to be clearly
distinguishable, whereas the second ones are not so
oriented to AspectJ terms, but only to the points to be
intercepted and their associated behaviours.

Our goal is to obtain a model which is independent
from the platform, so we have followed the more
general proposal to make ours, where we define the
aspects in a completely independent way, as depicted
in Figure 2.

Aspect-oriented techniques describe five types of
elements to modularize crosscutting concerns: firstly,
we have to define the join point model which indicates
the points where new behaviours could be included.

Then a way to indicate the specific pointcuts needs to
be defined, to specify in which points of the
implementation we wish for the new code to be
inserted. Next, we ought to determine how we are
going to specify the new behaviour to be included in
the join point referred to. We would then encapsulate
the specified join points and their corresponding
behaviours into independent units. Finally, a method to
weave the new code with the original one has to be
applied [1].

Therefore, in Figure 2 we can see the new
stereotypes defined in order to model the five aspect-
oriented types of elements just described, which are
briefly going to be outlined:
 Due to the fact that services are black boxes, there

will be two possible types of interaction points in
Web Service applications: firstly, the point in which
a service operation is to be executed, regardless of
who made the invocation; secondly, when a service
client (which may also be another service) invokes a
specific operation in the target service. The first
ones will be referred to as executionAspects from

Figure 2. Aspect-Oriented UML Profile

52

now on in this article, as they are triggered when the
service method is about to be executed; on the other
hand, the second ones will be called callAspects
since they are triggered when a specific operation is
invoked by the client. Therefore, these two types of
point in our application´s execution conform our
join point model.

 In order to identify the pointcuts, two stereotyped
associations have been added. In executionAspects,
the association ApplyExecutionAspect binds the
action, which implements the new behaviour to be
included, to the operation whose execution is being
intercepted; this association represents the pointcut
in this type of aspect. For callAspects pointcuts, we
have added the stereotyped association
ApplyCallAspect, which binds Action to the
invocation of a service method by a client one.

 The advices are represented by the Action
stereotype which can be applied to operations and
which will have a tag Value to indicate the type of
action (Before, After or Around), that is, if the
advice behaviour is going to be injected before,
after or around the pointcut.

 The stereotype aspect contains Actions, which are
linked to a service method by the
ApplyExecutionAspect association or to a
dependence between the client and a service method
by the association ApplyCallAspect.

• Regarding weaving, two different alternatives will
be studied in Section 4.

3.3 The Aspect-Oriented Case Study PIM

In this section, aspects and Web Service modelling

are joined in the case study to illustrate our proposal.
The complete case study model, in which various
aspects have also been represented, is depicted in
Figure 7, annexed at the end of this paper. Some
details have been omitted in order to simplify model’s
presentation.

 The structure of Web Services, as we mentioned
before, limits the join point model [13] to the interface
method execution on server-side and to their calls on
client-side. The reason is that Web Services are
implemented as black boxes, where only the interface
with the offered operations is shown, thus limiting the
logical join point model to those operations. Regarding
actions associated to pointcuts, we have to indicate the
action type, before, after or around, depending on the
moment in which the action is to be executed in
relation to the pointcut.

In order to illustrate how Web Services and aspect
modelling are integrated in the case study, we have

partitioned the complete PIM model into small pieces
which allows us to explain the model definition in
detail. In this respect, we are firstly going to study the
application of an extra-functional property, which
leads to the creation of a new executionAspect; then we
will analyse the application of an extra-functional
property which leads to the appearance of both an
executionAspect and a callAspect and, finally, the
application of one aspect which encapsulates the
composition logic of one service, which, as we will
see, leads to an executionAspect ocurrence.

To start with, we can see how an extra-functional
property, which solely affects one service, is modelled.
As can be seen in Figure 3, a logging property is
applied to the travel agent service. The Figure shows
the stereotyped Aspect Logging, which contains Action
record. This action has an associated note that
specifies that it is an after action, that is, that the action
will be executed after the intercepted method
execution. Besides, the action is bound to
Travel_AgIF, the service interface, by the stereotyped
association ApplyExeuctionAspect, which means that
the action will be applied to the whole method in
Travel_AgIF class. As a result, every time any
Travel_AgIF method is executed the record action will
be triggered, after the method execution is complete.

Figure 4 shows how the Encryption property is
modelled in our case study. This property, as can be
observed in the above Figure, is applied to customer
and travel agent through the aspect stereotypes
Server_Encryption and Client_Encryption, with its
associated stereotyped action EncryptionAction. As
can be observed from the Figure, Server_Encryption is
an executionAspect, thus it is modelled in the same
manner as Logging: the action in ServerEncryption,

Figure 3. Logging Aspect Application
Modelling

53

this time an around action, is linked by the use of an
ApplyExecutionAspect association to the methods
confirm_travel and provide_payment in travelAgent.
This means that any time these methods are executed,
the ServerEncryption action will be executed around it
(This action would desencrypt the parameters received
in the invocation, then allow method execution with
the desencrypted parameters and finally would re-
encrypt the method result) The case of
Client_Encryption is different as it is a callAspec.
Figure 4 shows how the action in Client_Encryption is
bound to the dependence between Customer
confirm_travel and Travel:Agent confim_travel and
between Customer provide_payment and Travel_Agent
provide_payment. In fact, it could be reduced to the

dependences between Customer and methods
confirm_travel and provide_payment in TravelAgent.
This means that any time these two methods are
invoked by the customer, the Client_Encryption action
will be applied around (The call is intercepted, then
invocation parameters are encrypted, after that the call
goes on and, to finish with, when the result comes
back, it is desencrypted before it is reused). We can
now see how the same properties are reused in the case
study to manage security between the travel agent and
the bank. As can be observed in Figure 5, now the
Server_Encryption action is also applied to Bank
payment_request, thus any time this method is
executed, the associated action will be executed
around. Moreover, the named Figure shows that a

Figure 4. Encryption Aspect Application Modelling

Figure 5. Encryption Aspect Reusing Modelling

54

Client_Encryption aspect is also associated to any
invocation made by the Travel_Agent service to the
provide_payment method in Bank_Service. In this
case, the travel agent behaves as a client as it is the one
making the call.

Finally, as we have previously explained, not only
are extra-functional properties modelled into
individual units, but also compositions’ interaction
logic, as depicted in Figure 6, where it can be seen that
the Travel_AgComp Aspect is applied to the travel
agent service. This aspect will define the interaction
logic for composing the different services in the case
study for the Travel_ag service to offer its behaviour.
As depicted in Figure 6, the aspect actions are linked
to different methods in TravelAgent, as there will be
different actions for every method execution. Each
action refers to the execution of one of the operations
on offer: one will be associated to each method to offer
its composition interaction logic. Therefore, four
different actions can be found in Travel_AgComp.

To illustrate this idea, we can assume that the
confirm_travel operation is invoked by the customer.
The behaviour associated to the action confirm_travel
in Travel_AgComp will be the one to trigger the bank
service invocation to check the credit card provided
and, depending on the result, invoke the broker to
confirm this trip and cancel the rest, or ask the client to
reenter credit card information. By modelling this
interaction logic as an aspect action, all dependences
among the composed services will be avoided, the

action being the one which will compose them in a
decoupled way.

 Similarly, not represented in this Figure but
available in the Appendix, the broker service has the
aspect BrokerComp applied to it, where three different
actions are defined for the execution of the three
different operations on offer. Similarly to
Travel_AgComp Aspect, BrokerComp also has one
action associated to each method in order to develop
the behaviour offered by the broker service through the
composition of various services’ invocations (airline
service, car_rental service, train_rental service and
boat_rental service).

4. Weaving Alternatives

Once we have our system aspect-oriented PIM we

have to decide when we desire the weaving to be
performed. We have two alternatives, which are going
to be discussed in the next subsections: doing the
weaving in the PIM-PSM transformation, and
therefore eliminating aspects from the specific model,
or letting aspects be in the specific model in order to
undergo weaving at a later stage.

4.1 PSM Without Aspects

We may decide not to have aspects in our platform

specific model, therefore the PIM aspects weaving

Figure 6. Travel_AgComp Aspect Application Modelling

55

would be taking place in the transformation from one
model to the other.

The main advantage of this proposal is that the
obtained PSM does not need to also specify the
metamodel of an aspect-oriented platform or language,
thus resulting in a simpler model. We would just have
to specialise the model to the platform and language
used to define the services. Consequently, the specific
model would look simpler than if we still had
unweaved aspects; this allows the possibility of
reusing any process of automatic code generation
which may already have been developed for Web
Service modelling; hence, we could use any previously
implemented tool to generate code from the sequence
diagram automatically, which could not be achieved
with the second alternative shown in Section 4.2.

On the other hand, simplicity is also occasionally a
drawback, as by obtaining a simpler model traceability
problems arise, that is, we cannot recover aspects at a
later stage by separating them from the rest of the
elements. Furthermore, although we have no aspects in
the specific platform class model, on executing aspects
weaving their behaviour must somehow be reflected in
the sequence or interaction diagrams. This must be
performed in order not to lose dynamic information,
which can be sometimes difficult at this level of
abstraction.

4.2 PSM With Aspects

Once we decide to also have aspects in our

platform specific model, we find two alternatives. The
first one is to remain modelling them in a general form,
in order to define them in a specific aspect-oriented
language in a more refined PSM; the second option is
to proceed to the last step straight away.

If the aspects are in the PSM, but they have not
been linked to a specific language, we have a more
complete model which allows us to maintain our model
concerns, which crosscut the system, in a modularized
way.

In any of the cases, extra-functional properties may
be maintained in the PSM, therefore facilitating
traceability and keeping our system well modularized.
This fact provides us with the possibility of deciding if
we want to use an aspect-oriented language to
implement these properties at a future stage or not,
depending of the appropriateness of the specific case
study in the particular platform. The longer our extra-
functional properties are kept modelled in a separate

element, the easier it will be to code them in a
modularized way, also opening the possibility of
reusing them in different parts of the application.

Furthermore, the fact that there are aspects defined
in this model in general terms offers us the possibility
of using different tools for code generation, in order to
obtain the target application for different aspect-
oriented languages, thus offering great reusability and
a wide range of target applications.

Moreover, in the case of the composition
interaction logic modelling with aspects, we can
defend the same viewpoint. If we maintain the
interaction logic encapsulated in the specific model, it
will offer us the possibility of implementing a more
modularized application, in which we do not need to
couple the different services composed from the earlier
design stages. Besides, we do not have problems with
traceability as the line between the code and all design
models can be traced perfectly.

4.3 PSM Comparative Report and Discussion

We have made a comparative table of the different

elements we can find when modelling Web Services
within aspect-oriented techniques in three different
models: the model that is independent from the
platform (PIM), the one that is specific to the platform
doing the weaving of the aspects in the transformation
(PSM without Aspects) and the model specific to the
platform when the aspects have not been weaved at
transformation (PSM With Aspects). In the
comparative report we have assumed that the
transformation is done in Java and, when aspects
appear, in AspectJ language.

As we can see in the table, the stereotypes defined
for the main elements in Web Service modelling in the
platform independent model, remain in both PSM
models, just transformed into the target language,
therefore obtaining the Java Web Service Interface and
Java Web Service Implementation stereotypes.

For the aspect stereotypes, it is obvious that in the
aspectless PSM they do not appear any more, but
become behaviour which would be reflected in the
sequence or interaction system diagrams, where the
aspects would intercept the methods’ execution to
provide a new behaviour. When creating the PSM with
aspects for the AspectJ specific target, the stereotypes
are transformed into the new stereotypes defined for
AspectJ syntax, maintaining the diagram structure.

56

Table 1. Comparative Table Between PIM, PSM without aspects and PSM with Aspects

Compared Element PIM PSM WITHOUT
ASPECTS

PSM WITH ASPECTS
IN ASPECTJ

 WEB SERVICE
INTERFACE

Represented by the stereotype
<<web service interface >>

Represented by the
interface oriented to
target language and
platform, i.e.

<<java web service
interface>>

Represented by the
interface oriented to the
target language and
platform, i.e.

<<java web service
interface >>

JOIN POINT MODEL Although not represented
explicitly in the diagram, as
mentioned before, it is limited
to service method execution
and method calls from any
element in the model to a
service method.

This element would not
appear in this model

This element would not
appear in this model.

POINTCUTS Represented by the
stereotypes <<
ApplyExecutionAspect>> and
<<ApplyCallAspect>>

This element would
become part of the model
behaviour representation.
It could be represented as
the connection point
between services and
aspects

Represented by
stereotypes
<<Execution-
Pointcut>> and
<<CallPointcut>>,
where the different
methods’ execution or
invocations would be
linked to <<advices>>

POINTCUT RELATED
BEHAVIOUR

Represented by the stereotype
<<action>>

This element would
become part of the model
behaviour representation
(idem). It would specify
aspect behaviour.

Represented by the
stereotype <<advice>>,
which would be linked
to a specific pointcut
and would indicate the
new behaviour to be
injected in the
intercepted pointcut.

ASPECTS Represented by the stereotype
<<aspect>>

It would be transformed
into part of service
specification and into the
relations and interaction
logic between them.

Represented by the
stereotype <<aspect>>,
formed by <<advice>>
elements, which are
bound to the rest of the
elements by
<<ExecutionPointcut>>
and <<CallPointcut>>
dependences.

ASPECT-SERVICE
LINK

Represented by the pointcut
stereotypes
<<ApplyExecutionAspect>>
and <<ApplyCallAspect>>,
which link the action to
<<Web Service Interface>>

It would be transformed
into part of the
behaviours services
specification and into the
relations and interaction
logic between the named
services

Represented by the
pointcut[s] stereotypes
<<ExecutionPointcut>>
and <<CallPointcut>>

57

5. Discussion and Future Work

This paper has shown that we can model Web

Services and their compositions by defining new
stereotypes in UML. In this sense, we have defined the
new necessary stereotypes for aspect inclusion at this
stage of the development, in order to maintain our
models well designed and our system well
modularized.

Once demonstrated the importance of
encapsulating Web Service composition code and the
usefulness of AOP for this task, we affirm is time to
face how to model it whilst maintaining the separation
of concerns. As we have seen, our proposal permits
Web Service modelling with a standard modelling
language such as UML, by defining the necessary
stereotypes, as well as aspect ones, regardless of the
platform mode. Hence, it has been demonstrated that
aspects can be easily modelled in service-oriented
systems as extra-functional properties, and
composition interaction patterns can also be
encapsulated in aspects since modelling stage within
the same domain.

We have also proposed two alternatives for the
platform specific models, where we could choose
between performing the aspects’ weaving before or
after we create the PSM. In this respect, there is still a
lot to be done. As we have previously explained, when
the weaving has been done at transformation the PSM
is simpler than the one in which aspects remain. Once
weaving is finished the aspects are reflected in
behaviour diagrams, be it the sequence or the
interaction diagram. However, in the PSM where the
aspects’ weaving has not been done yet it is not that
simple as we have to maintain all the elements for the
aspect classes and association description, but provides
the privilege of allowing perfect traceability between
the different models, although they may have
undergone transformation. We leave this matter open
for discussion in the workshop forum, in order to
analyze the advantages and shortcoming of both
proposals more in depth.

Once agreed on the best option for weaving, we
still have to define all the process rules for automatic
transformation from platform-independent into specific
models. Transformation rules for translating from the
specific model to the target code also have to be
analysed. These are important parts of our work in the
near future.

Acknowledgments: This work has been developed

thanks to the support of CICYT under contract
TIC2002-04309-C02-01.

7. References

[1] Kiczales, G. Aspect-Oriented Programming,

ECOOP’97 Conference proceedings, Jyväskylä, Finland,
June 1997.

[2] Ortiz, G., Hernández, J., Clemente, P. J. Decoupling
Non-Functional Properties in Web Services: an Aspect-
Oriented Approach. Workshop EOOWS, ECOOP
Conference, Oslo, Norway, June 2004

[3] Ortiz G., Hernández J., Clemente, P.J.. Web Service
Orchestration and Interaction Patterns: an Aspect-Oriented
Approach, Short Papers Proceedings of the 2nd International
Conference on Service Oriented Computing (ICSOC). New
York, USA, November 2004.

[4] Ortiz G., Hernández, J. Clemente, P.J. Building and
Reusing Web Service Choreographies by Using Aspect-
Oriented Techniques. Proc. of the WorkShop on Best
Practices and Methodologies in Service-oriented
Architectures: Paving the Way to Web-services Success at
the Object-Oriented programming, Systems, Languages and
Applications Conference (OOPSLA), Vancouver, Canada,
October 2004

[5] Aldawud, O., Elrad, T., Bader, A. A UML Profile for
Aspect Oriented Modeling. OOPSLA 2001 Workshop on
Aspect Oriented Programming.

[6] Stein, D., Hanenberg, S. and Rainer, U.: A UML-
based Aspect-Oriented Design Notation for AspectJ. Proc. 1st
Int. Conf. on AOSD, Enschede, The Netherlands, 2002

 [7] Baniassad, E. Clarke, S. Theme: An Approach for
Aspect-Oriented Analysis and Design. 26th Int. Conference
on Software Engineer, Edinburgh, Scotland, UK, 2004

[8] France, R., Ray, I., Georg, G., Ghosh, S.. An Aspect-
Oriented Approach to Early Design Modeling. IEEE
Proceedings – Software, 2004

[9] Bordbar, B., Staikopoulos, A. Modelling and
Transforming the Behavioural aspects of Web Services.

[10] Grønmo, R., Solheim, I Towards Modeling Web
Service Composition in UML. 2nd International Workshop
on Web Services: Modeling, Architecture and Infrastructure,
Porto, Portugal, 2004.

[11] Thöne, S.,. Depke, R, Engels, G.. Process-Oriented,
Flexible Composition of Web Services with UML.
International Workshop on Conceptual Modeling
Approaches for e-business: A Web Service Perspective,
Tampere, Finland, 2002

[12] Bézivin, J., Hammoudi, S., Lopes, D. Jouault, F. An
Experiment in Mapping Web Services to Implementation
Platforms. N. R. I. o. Computers: 26, 2004

[13] Elrad, T., Aksit, M., Kitzales, G., Lieberherr, K.,
Ossher, H.: Discussing Aspects of AOP. Communications of
the ACM, Vol.44, No. 10, October 2001.

58

Appendix . Case Study Web Service and Aspect-Based PIM

F
ig

u
re 7. C

ase S
tu

d
y W

eb
 S

ervice an
d

 A
sp

ect-B
ased

 P
IM

.

59

Integrating Web Systems Design and Business Process Modeling

Prof. Mario A. Bochicchio, Eng. Antonella Longo
SET-Lab, Dipartimento di Ingegneria dell’Innovazione - University of Lecce - Italy

mario.bochicchio@unile.it, antonella.longo@unile.it

Abstract
 Business processes models and methodologies are

effectively adopted by business process engineer,
organization experts and bureaucrats, to describe
important aspects peculiar of many modern
organizations (banks, government, utilities and,
generally, service organizations). The expressive power
of these models is desirable to design and deliver Web
Applications and Web-enabled services for these
organizations. On the other hands, models and
methodologies for the design of Web systems, primarily
focused on software engineering and technical aspects,
may fail in capturing important business aspects of the
services to be delivered.

In the paper we propose a framework which extends
a specific methodology for modeling Web applications
with concepts of business process design, to bridge the
gap between the business process modelers and the Web
system designers.

1. Introduction

In last years the growth of digital communication
networks and of distributed systems permitted the
development of new business-to-consumer, business-to-
business and government-to-citizen relationships. The
current trend is to exploit the Web to provide services in
such an unexplored fashion, driving organizations to
rethink continuously the ways in which they do business
and the type of business they do. In this scenario, an
organization needs to be flexible enough so that it can
cope with the complexity of the new technologies and its
business systems while not disregarding all the
opportunities created by internal or external changes of
context.
Therefore, an organization should be aware about how it
operates at both business and information system levels,
and should constantly assess their reciprocal
dependencies. These dependencies are twofold:
• the design of Web systems should reflect the model of

business processes, where with a business process we
mean a sequence of activities that take one or more
inputs and create an output that gives value to a
customer. Business process modeling includes the
description of the structure and behavior of an
organizational activity, such as process activities flow,

the role of its actors, the rules actors use, the
information needs actors have;

• Web systems should enable innovation in business
processes and business models, providing the process
customer with new services. In other words, Web
technologies provide significant strategic leverage to
businesses, with a strong impact on business models
and consequently on business processes.

The first dependency requires a reasonably seamless
modeling chain from business process modeling to web
system design. The latter dependency requires Web
system architects to have a clear vision of what
technology can do for business.
The necessity to unify these areas is a hot research topic
today [21-23, 28]; it derives from the fact that existing
methodologies to design business processes are naive in
modeling Web system aspects (like information,
transactions, navigation patterns). Conversely current
frameworks to design Web applications are still basic in
treating business processes which must be supported by
Web applications.
In the paper we propose a conceptual framework, referred
to as UWA+, for describing, linking and tracing these
concepts at multiple levels of detail merging two separate
areas of concerns: business processes and Web systems.
UWA+ extends UWA (Ubiquitous Web Application)
conceptual framework [19], developed by a joint effort of
European researchers, with concepts from the
Information System research area, in order to cope with
UWA’s lack about the modeling of business processes.
The adoption of standard models and tools (in a broad
sense) from the business process research scenario
facilitates to linkage between business process models
and Web systems design – a characteristic that is crucial
in Web-development, where the systems under
development often lead to fundamental changes in
business processes and models.
This paper is structured as follows. Next section provides
the context of our approach; section 3 presents the
requirements of the new framework; section 4 presents
the main concepts of UWA+ referring to a sample
application. Finally in section 5 we discuss our
conclusions and work directions.

60

2. Background

Although business modeling has been a significant
challenge for business and IS practitioners for more than
one decade, relatively little has been written about how to
express interdependencies among business processes,
information system components and actually adopted
technologies. In net-enhanced organizations these
dependencies are even more stressed because the
introduction of a Web system has a fundamental role on
the nature of business processes and the business models
which are being supported. This section provides
background on business process modeling and Web
system modeling and on linkages between them.

2.1 Web Information System and Web applications
Modeling

More and more, information systems (IS) relies on
system architecture models. The system architecture
describes the relationship among components and the
guidelines governing their design and evolution. MDA
[28] is the main effort done in divorcing implementation
details from business functions from a software
engineering standpoint. Associations between business
concepts and systems are usually embedded in the
architecture’s development process [6].
This implies that identifying which parts of business are
supported by which parts of the system is not a
straightforward task. One major issue that enterprises face
today is ensuring IS architecture be business-driven and
adaptive to changing business needs [8]. Nonetheless
Web Information Systems (WIS) single components,
consisting of the integration of complex functionality
with rich information handling, must be designed with the
focus on users in order to maintain their experience
effective and satisfactory. To model these systems there
are a number of elements that we would like to represent.
In terms of information design, typically we wish to
model not only the information itself, but also the
relationship between the underlying content and the user-
perceived views of that content, the interactions with
those views (such as behavioral and navigational aspects),
and the ways in which the information is represented and
presented to users. This modelling tends to be much more
complex than traditional “data modelling” (e.g. E-R
models and data flows). Whilst existing modeling
languages (such as UML) can be used to represent the
functional aspects, they are not so effective to represent
these informational aspects. Although some attempts
have been made to adapt UML to support information
models (e.g. the interesting work by Conallen [7]), these
are still relatively simplistic and suffer from a notational
confusion. For example classes, normally adopted to

represents data structures and related methods, are now
proposed to represent information elements and/or other
modelling constructs, that is incorrect or inconsistent
[24].
Actually the problem to explicitly include business
processes in Web Systems design, treating them as “first
class citizens” along with navigational and informational
aspects, is emerging insistently [20, 21]. Usually these
approaches are based on the definition of business
processes which reminds the concept of database
transactions; in [25] business processes are regarded as
heavy-weighted flows of control consisting of activities
and transitions. The definition adds functional aspects to
informational and navigational design and it treats
business processes as a single user perspective’s
workflow related to a chosen interaction channel. On the
other hand business processes, as defined in
Organizations and Information Systems literature [1-6],
are a sequence of activities that take one or more inputs
and create an output that gives value to a customer. This
definition involves several user types with different
points of view, each accomplishing different activities
with specific communication style. In our experience
processes are fundamental for the design of WIS in
complex organizations, because they add contextual
information to the following design of operations and
business transactions. Hence we consider business
process design an essential portion of WIS requirement
analysis. More recently a number of approaches has been
developed to design Web applications that utilize and
adapt software modelling design, and in particular UML
[12-15]. Of particular interest in this paper, as an example
of these modeling approaches, is UWA (Ubiquitous Web
Applications) conceptual framework [19]. UWA is a
requirements-driven, user - focused approach,
incorporating a graphical notation based on UML. Whilst
these kinds of framework (like many other modern
approaches) claim to address the full development
spectrum – from the requirements to the detailed design
of websites -, we contend that their focus is primarily on
the design and development of hypermedia aspects (like
for navigational sites, which mainly allow access to huge
amount of information) of Web applications. Moreover in
the requirement elicitation step UWA’s authors describe
organization context through goal-stakeholders diagrams
and textual constraints. This approach is acceptable in the
design of small Web systems, but it is less effective for
the conceptual modeling of Web applications to be set up
in complex organizations (like banks, e-government
services, utilities, …), where more formal contemplation
of the scenario (made up of organizational structures,
processes, constraints, rules and norms) is required. Thus
models like UWA’s requirement elicitation, describing
the organization by semiformal rules and textual
constrains need to be improved.

61

2.2 Business Modeling: Processes and Goals

In current competitive global economy, the demand of
high quality, low costs and fast delivered products is
forcing organizations to become process-focused in order
to maximize the performance of their value chain and
business process engineering.
Countless research studies have underlined that in
designing a new process, one should investigate the
interaction between the “systems” that drive business
performance and condition organizational change.
Business and organizational view and systems view have
been variously integrated ([2], [3], [4]). In particular with
the advent of Business Process Reengineering (BPR) the
necessity of a systemic view has required analysts to
document, understand, manage and efficiently model
business processes. Numberless modelling languages
describe at various extents these aspects of processes (e.g.
IDEF0 highlights activities and DFD is centered on the
information flow). However, their stereotypes and their
abstract types are rather far from the one used to model
web systems. Bridging the gap between these business
and systems models is a hard task, because they use
proprietary types and lack systems modelling notations
and concepts necessary to conceptual modelling Web
systems.
On the other side UML provides a standard, non-
proprietary, general purpose modelling language,
currently used to model business processes.
There are currently two mainstream directions to extend
UML for business modeling in order to bridge the gap
with the system design. One direction is proposed and
standardized into the UML by OMG [5]. This approach
tends to preserve existing UML diagram elements,
duplicating the user view layer and the structural view
layer into the business modelling domain and broadening
the scope to the business analysis domain. This results
into an approach which is comfortable for system
analysts, but it is rarely used by business analysts. The
latter approach, Eriksson-Penker’s Business Process
Extended Modelling (BPEM) [6], is wider and more
process oriented, but twists somehow the UML pre-
ordered arrangement and diagrams to adapt them better to
the way business analysts think about processes and
business process redesign. By this extension one can
describe both statically and dynamically a variety of
process elements. BPEM also proposes a new diagram,
the assembly line diagram, which is the core tool to
bridge the business process analysis and IS design.
Through assembly line diagrams the analyst captures both
the domain of functionality and the domain of
information and connects the two through use cases in
object-oriented modeling. The relationship between
assembly line packages (describing the information
aspect) and swimlanes (describing the functional part)

shows the information necessary to each user type during
the process activities, while the reference to the assembly
line packages comprises the information flow to and from
the information system.
Even if this view is very helpful to link informational
resources to the user type through the swimlanes, in
general this functional approach, appropriate for some
traditional information systems, is not valid] in Web
system design because
• Informational resources are modeled through classes,

which are a construct normally associated with
functional elements and usually used in the system
detailed design. They show little emphasis on the
model of information structure, which is very complex
in WIS design as in all hypermedia applications.

• Web systems handle richer information than traditional
data systems, with additional informational
navigational issues to the traditional business process
workflow;

• Assembly lines link process activities to their required
informational resources, not showing any semantic
association among the informational resources. This
last feature provides the “infrastructure” for potential
content navigation;

• By its nature and purpose conceptual modeling of
hypermedia applications is different from business
process modeling and, in particular, navigational
aspects cannot be straight derived from business
process models, without considering the user
experience and other communication aspects ;

• Business informational resources are at higher level of
abstraction than information objects composing
software systems and a straight match to software
components or classes is too coarse.

• The relationship between business goals and business
processes are expressed in a semiformal language with
no reference to systemic properties [17], like process
performances or properties concerning the impact of
Web technologies on business goals and processes.

An interesting attempt to exceed this lack is PIM (Process
Information Model), a further extension of Erikkson-
Penker’s BPEM, developed at the Business Engineering
of Politecnico of Milan. The systemic aspect [17] is
modeled through Key Performance Indicators (KPI) a
concept used in management landmark, the Balanced
Scorecard [1]. In this model, generally used in BPR
projects, business goals are quantified, planned and
controlled through Business Process KPIs, which measure
both internal performances and the performance of
customers from different standpoints - quality levels,
service level, efficiency and cost. Therefore, the analyst
selects the appropriate KPIs to describe the performance
of the process being modeled, and uses these KPIs to
benchmark the actual performance and/or the

62

performance expected by management and/or the best
practice.
In net-enhanced organizations, where the link between
business goals, business models and Web systems models
is even more crucial than in the past, KPIs are
fundamental to satisfy the user expectations, to monitor
business performances and to trace requirements and
changes from goals to Web systems and viceversa.

3. Integrating Web Systems Design and
Business Process Design: Requirements

The background, depicted in the previous section, shows
that existing methodologies to design business processes
are naive in modeling Web application aspects (like
information, transactions, navigation patterns etc.).
Conversely current frameworks to design Web
applications are still basic in treating business processes
and goals. A conceptual framework integrating these
views is not just the union of two tasks performed in
isolation. It sums up the complexity of the two activities
with the additional task of designing their coupling. As
such, extending conceptual modeling of web applications
cannot simply pile up existing techniques of hypermedia
design (borrowed from the hypermedia/web
communities) with methods and notations of “traditional”
business process modeling (borrowed from the
information systems or organization communities). The
crucial point is to integrate and extend models, design
methodologies and techniques to meet the new design
challenge. Given stakeholders goals, defined in order to
exploit the potential of Web technologies, the integration
aims at providing a formal way of design processes and
Web information systems and the relationships between
them.
Although the new framework is based on a clear
separation of concerns (business processes designers and
Web systems designers), necessary to handle the
complexity of the Web System design, the dependencies
and relationships between the different views are evident.
The research literature and the previous discussion has
shown that a conceptual framework aiming at bridging
the gap between the two perspectives requires the
following properties:
Req. 1. Ability to design business processes “per se”

(i.e. not just as artifacts to design the corresponding
Web sites, like dynamic diagrams in UML). Business
processes are essential to describe several key aspects
of a given business context: they are useful to define
the key performance indicators (KPI), to optimize the
workflow, to solve possible conflicts etc. Therefore,
they are not just design artifact to better define some
navigation step or some page details of the Web site
supporting that process. Business processes have the

responsibility to support all the key aspects of the
organization's business model. These crucial business
functions can be implemented either through Web
interfaces to existing legacy applications, or through
new Web-based systems. Therefore the new
framework, must enable the representation of these
functions and the related design artifacts. Examples
include the modelling of business workflows,
information and order tracking, transaction processing
etc.

Req. 2. Traceability between the business process
model and the WIS model. The traceability problem
can be expressed as an extension of the same issue in
software engineering. Paraphrasing Palmer’s assertion
[16] the traceability between processes and WIS gives
essential assistance in understanding the relationships
existing within and across Web system requirements
and design, and within and across the business
process modeling. Therefore, for example, all
transactions and operations on Web pages should be
mapped to the corresponding business process (or
subprocess, or activity); the relationships between
workflows and navigation structures should be
captured and the correspondence between business
processes models and Web information models should
be established. By definition, net-enhanced
organizations are constantly evolving, so that the
traceability requirement is essential to continuously
evolving the model, adapting it (and the related Web
System) to the changing context, without restarting a
whole new design/implementation cycle. The
requirement is that the framework must support the
modelling of both information and functional
architecture and, more important, their integration in a
cohesive and consistent manner. Once understood and
documented, the business process model needs to be
effectively mapped and integrated into a Web
Systems design, enabling the implementation and
delivering of the system functionality. To support this
requirement, the framework must provide the ability
to identify the linkage between the business model
and the technical aspects, and between the model
elements in the business model and the model
elements in the technical architecture. This
interconnection needs to be represented at various
abstraction levels.

Req. 3. Skill hiding. Business-related development and
modelling artifacts are usually created and used by
developers from both IT and business backgrounds.
As a result, the modelling of business domain
concepts must be designed considering a wide range
of users; in this way the modelling artifacts can be
easily understood, communicated and modified within
and across development teams and business units. It
can be very helpful to customize the modelling

63

artifacts from different perspectives, so that concepts
and methods are used by people with different
background. Paraphrasing the well–know
“information hiding” concept, the new framework
must enable teams with homogeneous skills (i.e.
process designers, Web system designers) to
encapsulate their work, with an interface that only
provides access to concepts and diagrams useful to the
other teams. The requirement aims at allowing Web
system engineers and business analysts to work
together in a common environment, each preserving
the specific focus on either processes or Web system
design respectively. In this way the communication
gap between business process and Web systems
designers is bridged. The skill hiding requirement is
also important because in a continuously changing
scenario, like that of Web Information Systems, both
process modelers and Web application designers need
to manage the “in-progress” aspects, and to
continuously review the design, each from his/her
own perspective.

Req. 4. A user centered rationale. The common trend
in Web Systems approaches is “user-centered”.
Instead, business designers usually define their
methodologies, and handle the supporting Web
Information Systems design, according to a “process-
based” approach. Actually the definition of Web
Information System is at higher level of abstraction
than Web application and the characterization of the
first as business driven doesn’t exclude the latter to be
user centered. Moreover the definition of the process
focuses on the characterization of its customer.
Hence, to support this requirement, the methodology
must be based on a user centered rationale.

Req. 5. A unique modelling language. Several modern
Web design methodologies adhere to the semantics
and notation provided by UML. The scenario is less
uniform in business process modelling, even if the use
of UML is already increasing. UML is also the
standard modelling language in both research and
industry environments and it is already applied to
different domains through its extensibility
mechanism. In this perspective, the new framework
must be based on UML, assuming that business
process aspects and Web system aspects must be
supported with the proper notation and tools.

4. UWA+

In order to clarify the enhancement of UWA+, the
following section provides a summary of UWA
framework.

4.1 UWA framework in a nutshell

UWA framework (the right hand side of Figure 1 without
the integration design) organizes the web application
design process into four activities:
• Requirements Elicitation: defining stakeholders of the

application (anyone who has interest in the application
and not just application users), their goal and their
requirements.

• Hypermedia and Operation Design: this activity is
accomplished by W2000 methodology; it is composed
by the Information Design (structuring contents of the
application and their organization in terms of access
structures), the Navigation Design (defining navigation
paths in the contents of the application in order to
provide effective navigation), the Publishing Design
(defining how the application will be organized into
pages) and

• Transaction Design: defining user activities, system
transactions and how operations are involved in them.

• Customisation design: defining customisation rules to
enable ubiquity of the application access
(anytime/anywhere/anymedia) by adapting a web
application towards a particular context which reflects
the environment the application is running in.

If Hypermedia and Operation Design activities are
“typical” of Hypermedia design, Requirements
Elicitation, Transaction Design and Customisation design
are new ones and their definition and integration with the
W2000 methodology is one of the main contributions of
UWA. Using the concepts and the corresponding
notations, a designer can write down the application
schema, i.e. a description of what the application will be
(not how it will be implemented). The application schema
should be the result of the design activity that takes into
consideration the overall application requirements (both
typical business requirements and requirements about
integration with legacy systems requirements).
For each design activity, schemas can be specified at two
levels of depth and precision: in-the-large, to describe
general aspects, sometimes informally, without many
details, and in-the-small, to describe the several aspects in
fine details.

4.2 Extending UWA with Business Processes

The requirements depicted in the previous sections are
included in the framework briefly presented in this
section. UWA+ (Figure 1) extends the UWA framework
[19] with models for business process design coming
(Req. 1) from PIM methodology [17].
The choice has been guided by the characteristics of these
methodologies, which match some requirements of those
described in the previous section.

64

Figure 1: UWA+ framework

We adopted UWA framework among other "hypermedia-
based" conceptual models, because of both its strength in
user-centered modeling (Req. 4) and its UML-based
notation (Req. 5). On the other side PIM is a process–
driven methodology (Req. 4), based on UML primitives
(Req. 5). Both these approaches have been successfully
tested in real life projects, and they are, at the moment,
some of the most convincing frameworks for designing
web-applications and Business processes.
In agreement with Req. 4, UWA+ has the common
rationale in the user satisfaction/process focus, but the
conceptual component that models the process
performances, and drives a part of the requirement design
of the Web system, is based on KPIs (Key Performance
Indicators). It helps in improving the overall performance
of the process and, simultaneously, complies with the
objectives of users.
UWA+ is focused on net-enhanced organizations with a
systemic approach, so it assumes goals and KPIs are
defined considering the use of Web technologies. The
methodology supposes a heterogeneous teamwork of
business-process analysts and Web-application engineers
collaborating on complementary parts of the same
framework and sharing some relevant aspects (Req. 2).
The starting point of the overall approach is the definition
of strategic goals and KPIs, applicable to the process and
to the customer to be achieved by the support of the Web

system. In UWA+ we distinguish between procedural and
communication goals, which correspond to organization’s
critical success factors. Procedural goals describe time
dependencies and logical steps, in a process-driven
fashion, while communication goals define the user
experience and the content aims.
In order to integrate the two perspectives, a process
engineer must provide the Web system designer with
models describing the organization where the application
is going to be set up, namely the organizational chart,
business process models (showing the process flow, input
and output, actors, constraints), models of resources and
structured constraints drawn during the organizational
analysis. Special diagrams, like swimlanes and assembly
lines [6], are very effective to define the scenario and are
a useful input to the requirement elicitation of the Web
system. Conversely these models are used to trace
potential changes of the Web system requirements back
to the business process perspective. The conceptual
modelling of the Web system follows the main steps of
UWA, with some integration described in the following.
The elicitation of the Web system requirements starts
from the identification of stakeholders, goals, i.e.,
objectives that the application must satisfy in the
stakeholder desires, and scenarios. Through the goal-
stakeholder diagram goals are linked to the corresponding
stakeholders, who are also responsible of their

Hyperbase Design

Hypermedia Information Diagram

Hyperbase Design

Hypermedia Information Diagram

Requirements Elicitation

Requirement Diagrams

Hypermedia and Operation Design

Transaction Design

Operation diagrams, Execution Diagrams

Transaction Design

Operation diagrams, Execution Diagrams

C
u

stom
ization

D
esig

n

C
ustom

ization
rules, C

ustom
ization

D
iagram

s

C
u

stom
ization

D
esig

n

C
ustom

ization
rules, C

ustom
ization

D
iagram

s

Navigation Design

Hypermedia Navigation Diagram

Navigation Design

Hypermedia Navigation Diagram

Navigation Design

Hypermedia Navigation Diagram

Navigation Design

Hypermedia Navigation Diagram

Publishing Design

Hypermedia Publishing Diagram

Publishing Design

Hypermedia Publishing Diagram

Publishing Design

Hypermedia Publishing Diagram

Publishing Design

Hypermedia Publishing Diagram

Operation Design

User Op Diagram, System Op Diagram

Operation Design

User Op Diagram, System Op Diagram

Operation Design

User Op Diagram, System Op Diagram

Operation Design

User Op Diagram, System Op Diagram

Business Process View

Business Structure View

Organization Chart

Process Design

Process Diagram

Process Design

Process Diagram

Process Design

Process Diagram

Process Design

Process Diagram

Resource Design

Class Diagram, Event Diagram

Resource Design

Class Diagram, Event Diagram

Resource Design

Class Diagram, Event Diagram

Resource Design

Class Diagram, Event Diagram

Integration Design

SwimLanes Diagrams

Integration Design

SwimLanes Diagrams

Integration Design

SwimLanes Diagrams

Integration Design

SwimLanes Diagrams

Business Strategy Design

Goal Diagrams, KPI Specification

A
ssem

bly
D

esign

A
ssem

blyLines
D

iagram
s

A
ssem

bly
D

esign

A
ssem

blyLines
D

iagram
s

Integration Design

πDiagram

Integration Design

πDiagram

Integration Design

πDiagram

Integration Design

πDiagram

65

performances. In particular procedural goals, together
with swimlanes diagrams, elicit operation and transaction
requirements, while Contents, Structure-of-Content,
Navigation, Presentation, Customization requirements
derive from communication goals derive . KPIs, linked to
both the types of goals in the Business Strategy Design,
are inherited by corresponding requirements. This allows
traceability of goals and monitoring of performances till
the We system requirements.
Swimlanes, assembly lines diagrams and organization
chart contribute to the identification of the Web System’s
stakeholders. In particular swimlanes and assembly lines
diagrams define internal users (Personal Travel Assistant,
Broker Agent, etc), customer profiles and external
organizations dealing with the Web system, while the
Organization chart helps to identify stakeholders who are
hierarchically superior to the system’s internal users and
interested in the system for strategic and advisory
purposes. The stakeholders so located are a subset of
those a requirement engineer must take into account. The
relationships among goals, stakeholders, process structure
and system requirements enable the traceability (Req. 2)
among business strategy, business processes and Web
system architecture.
To model goals and derived sub-goals coming from the
business process analysis we use an arrow shape, whose
content is the process phase at the top and the child’s
activity at the bottom, while communication goals are
still represented by oval shapes.
Let’s use as running example the process followed by a
Travel Agency for selling travels to its customers, where
we consider the point of view of the Personal Travel
Assistant. In the macro-process we can single out two
business processes: the purchase of the travel by the
customer and the monthly payment of the external Broker
Agents. Let’s consider the first process.
Figure 2 shows a partial view of the goal/stakeholders
diagram. It represents the goals of the Customer who
wants to “Buy a travel”, which corresponds to the goal of
the Personal Travel Assistant to “Sell a travel”. The
Customer also wants to “Get Information about the
arrival city” and “Access his/her previous trips”.
From the customer’s perspective, the “Buy a travel” goal
can be specialized into a few sub-goals: “Submit a
Request” goal, “Refine/Update request”, “Choose among
travel alternatives”. Since these sub-goals derive from the
hierarchical decomposition of the process activities, their
shape is the arrow The label in the upper part of the
diagram is the process to which the activity belongs.
These subgoals are also the specialization of Personal
Travel Assistant’s “Sell a travel” goal, together with the
“Selection of the broker”, the “Aarrangement of the trip”
and the “Presentation of the different offers” to the
Customer. The “Presentation of the different offers”
subgoal can be “operationalized” into requirements: the

description of each single alternative and the sort of the
offers according to the customer’s requests.

Figure 2: Goal / Stakeholder diagram
The shape used for the requirements is a rectangle with a
label indicating its nature (in our sample they are Content
and System requirements, respectively).
It is evident that the whole set of requirements to design
the Personal Travel Assistant Web system comes both
from the specialization of the business processes into
transactions and operations and from content and
navigation features, derived from the context and from
other interviews wit the users.
Resources diagrams and assembly lines diagrams are
input of the Information design, where the main purpose
is the identification of the relevant information to be
handled by the application, and the provision of an
overall organization of the information structures,
independently from any specific intended usage.
Assembly line packages [6] are evaluated for the design
of entity types in the hyperbase in the large [19], while
Resources Diagrams [6] are an input of the hyperbase in
the small. The hyperbase model is designed at a high
level of abstraction and it is independent from the single
user perspective and the specific interaction channel. This
lets the model be persistent along the time and the
different user views.
The main enhancement of UWA+ towards business
process methodologies is the step of the Integration
Design. The aim of this step is to correlate the process
structure model and the information model, in order to
have the overview of actors, processes and information
resources involved in the design of the Web system. The
output of this phase is the production of the πDiagram
(Process Information Diagram), which bridges Business
process and Information. The diagram represents the
swimlane referring to a process phase at the top and the
hyperbase in the large diagram at the bottom part.
πDiagram shows the semantic relationships among
informational resources and between them and the related
process activities.

66

Figure 3: �Diagram

It outlines the potential informational navigation and
business process execution patterns to be implemented by
the Web system. The connections between the swimlanes
and the hyperbase comprise the information flow to and
from the information system and show the interface
between the business process and the Web information
system. As a rule of thumb the transaction design uses the
upper part of the diagram to design WIS transactions,
while the relationships between the swimlane diagram
and the hyperbase represent the operations the Web
System must deliver. πDiagram is also crucial to trace the
dependencies of processes and information resources
down to the transactions and operation design steps.
In our Travel Agency example Figure 3 shows the
�Diagram representing the business process of selling a
travel to a customer and the corresponding candidate
information entity types. The upper part of the �Diagram
shows the process and the swimlanes representing the
involved stakeholders (the Customer, the Personal Travel
Assistant of the Travel Agency, the Broker Agent -which
can be internal or external to the Travel Agency-, the
Financial Companies) and the corresponding activities.
When the Customer needs to buy a trip, he/she enters the
travel agency and describes it, sometimes establishing
constraints and conditions.
The Travel Agency’s Personal Travel Assistant receives
the requests from the Customer, checks that it is well
formed, and selects the Broker Agents that could work
with them. The Personal Travel Assistant interacts with

each Broker Agent, asking for an offer that fulfils the
Customer’s requested trip. Each Broker Agent asks the
Transportation Companies to provide an offer for the
requested service. If the offer matches the customer
requirements, the Broker Agent will pass the offer (with
the corresponding overhead in case of external Brokers)
to the Personal Travel Assistant of the Travel Agency.
The Personal Travel Assistant will then sort the list of all
suitable trips and quotations received from all the Broker
Agents, according to the Customer preferences, and
provide the sorted list to the Customer. The Customer
may either select one of the offered trips, reject them all
and quit, or refine requirements and start the process
again. If the Customer selects one of the arranged trips,
the Customer will provide the credit card details to the
Personal Travel Assistant, who will process the payment
through the corresponding Financial Company. Once the
payment is correct, the Personal Travel Assistant will
notify the corresponding Broker Agent to confirm the
booking(s). If the Personal Travel Assistant cannot
process the payment (not enough credit, invalid or
expired card, etc.), the Customer will be asked to either
re-enter his payment details, or quit. In any case, the
Personal Travel Assistant will notify those Broker Agents
whose offers have not been selected to cancel their
bookings.
The bottom part of the �Diagram shows the information
packages and the candidate semantic relationships among
them. In our sample the Customer package includes

67

general information about the Customer (name, address,
etc.) his/her preferences, his/her purchase history, the
broker agent package consists of information about
his/her specialty, his/her overhead, the Cities package
says about the airports and other travel facilities, the
Travel package expresses information about the specific
trip of a customer from the departure city to the arrival
town, offered by a Broker Agent.
For clearness of the diagram we show only a few
relationships between the swimlanes and the information
packages; the most suitable Broker Agent for a given
travel is derived from the Broker Agent descriptions
stored in the corresponding information package; once
the payment is accepted the travel information and the
customer information is stored in the corresponding
information packages.

Navigation, Publishing, Operation and Transaction
Design are similar to UWA’s framework. They gather
inputs and information from the requirement elicitation
and the information design.

UWA+ is more efficient and effective with respect to
UWA because:
• The modeling of business processes has reduced the

time of requirement elicitation to define the Web
systems requirements

• The documentation quality has been improved due to
the use of a common modeling language based on
UML

• The design documentation has been reduced and
harmonized between the business process and the Web
system designers because of the use of a common
framework

• Web system and documentation maintenance is easier
due to the traceability between the two views

As shown, in UWA+ the traceability requirement (Req. 2)
between the two views is satisfied, thanks to the formal
definition of the steps and the integration diagrams
existing between the views.
Moreover business process design and Web systems
design remain separated and are made by people with
different backgrounds, according to the “skill hiding”
requirement (Req.3).

5. Conclusion and Further Works

The framework proposed in this paper aims at solving
some of the problems haunting the relationship between
business process modeling and Web systems design.
Having a unique and standard language to describe
different aspects of business and systems is fundamental
to create a common ground for discussing both business

and the supporting Web system. The emphasis of UWA+
is on providing the basis for creating such a common
representation and simultaneously providing a way for
addressing the traceability between the different views.
The first view of the framework is about business goals
and business processes. The relations between the process
and Web system view allow the representation of how
Web information systems support business, which is one
of the main issues in today’s organizations. Web system
modeling is based on a user centered approach, which is
the cornerstone of today’s Web system architecture.
UWA+ overcomes the main shortcomings of the parent
methodologies, PIM and UWA. In fact PIM is very
effective in designing business processes, it is less
successful in the steps toward the design of the
information system. For instance, it designs information
systems from business processes models and models
informational resources as classes, using activity
diagrams to model the behavioral aspect of business
processes. This approach is information systems -
oriented, whilst the key viewpoint should be process
oriented. On the other hand in the requirement elicitation
step UWA’s authors describe organization context
through goal-stakeholders diagrams and textual
constraints. This approach is acceptable in the design of
small Web systems, but the conceptual modeling of Web
systems in complex organizations (like banks, e-
government services, utilities, …) require the
contemplation of the scenario (made up of organizational
structures, processes, constraints, rules and norms), thus
models like UWA’s requirement elicitation, describing
the organization by semiformal rules and textual
constrains are little effective. In one word the first flattens
the user communication and interaction design, the latter
needs to extend the requirement to hook up the
organization.
UWA+ framework integrates these views and manage the
complexity of the two activities with the additional task
of designing their coupling.
Future lines of work are planned to extend the framework
for better capturing the evolving needs of real
organization into evolving business models, and
corresponding development process that leads from
business to systems (of which the matching between
different layers is a starting point).

Acknowledgments

The framework presented in this paper is partially funded
by a grant of the Italian Ministry of Education and
Research (VICE project).

68

6. References

[1] Kaplan R.S., Norton D.P., Balanced Scorecard, HBS Press,
Boston, 1996
[2] IBM, Business Systems Planning, GE 20-0257-1, 1975
[3] Martin J., Information Systems Engineering, Prentice Hall,
1990
[4] Scheer A.-W., ARIS - Business Process Modelling,
Springer, 2000
[5] Object Management Group, UML Extensions for Business
Modelling, v.1.1, September 1997
[6] Eriksson H-E., Penker M., Business Modelling with UML:
Business Patterns at Work, Addison Wesley, 1999
[7] J. Conallen. Building Web Applications with UML.
Addison Wesley Object Technology Series. Addison-Wesley,
2nd edition, 2003.
[8] Sims, D., “EA Best Practices”, 2000.
http://www.eacommunity.com/articles/art28.asp
[9] P. Dolog and M. Bieliková, "Hypermedia Modelling Using
UML," presented at ISM 2002 - Information Systems
Modelling - ISM'2002, Czech Republic, 2002.
[10] L. Mandel, N. Koch, and C. Maier, "Extending UML to
Model Hypermedia and Distributed Systems," 1999
[11] B. Henderson-Sellers, A. J. H. Simons, and H. Younessi,
The OPEN Toolbok of Techniques. UK: Addison-Wesley,
1998.
[12] L. Baresi, F. Garzotto, and P. Paolini, "Extending UML
for Modeling Web Applications," presented at 34th Hawaii
International Conference on System Sciences, Hawaii, USA,
2001.
[13] J. Conallen, Building Web Applications with UML.
Reading, Mass: Addison-Wesley, 1999
[14] R. Hennicker and N. Koch, "Systematic Design of Web
Applications with UML," in Unified Modeling Language:
Systems Analysis, Design and Development Issues, K. Siau
and T. Halpin, Eds.: IDEA Group Publishing, 2001.
[15] N. Koch and A. Kraus, "The expressive Power of UML-
based Web Engineering," presented at Second International
Workshop on Web-oriented Software Technology
(IWWOST2), Malaga, Spain, 2002
[16] J. D. Palmer. Traceability. In R. H. Thayer and M.
Dorfman, editors, Software Requirements Engineering, Second
Edition, pages 412.422. IEEE Computer Society Press, 2000.
[17] R. Vidgen, D. Avison, B. Wood, T. Wood-Harper,
Developing Web Information Systems, 2002 Elsevier Science
[18] G. Rossi, H. A. Schmid, F. Lyardet: Customizing Business
Processes in Web Applications. EC-Web 2003: 359-368
[19] http://www.uwaproject.org/
[20] L. Baresi, F. Garzotto, P. Paolini, “From Web Sites to
Web Applications: News Issues for Conceptual Modeling”,
Proc. Int’l Workshop on the World Wide Web and Conceptual
Modeling, LNCS 1921, S.W. Liddle, H.C. Mayr, B. Thalheim,
eds., Springer, 2000, pp. 89-100
[21] H. A. Schmidt, G. Rossi, “Modeling and Designing
Processes in E-Commerce Applications”, IEEE Internet
Computing, Vol. 8, Number 1, 2004, pp. 19-27
[22] W. Lam, V. Shankararaman, “An Enterprise Integration
Metholodogy”, IEEE IT Professional, March/ April 2004, pp.
40-48

[23] AA. VV. “Business processes on the Web”, Special Issue
of IEEE Internet Computing, Vol. 8, Number 1, 2004, pp. 28-
54
[24] Tongrungrojana, R. and Lowe, D., 2003, WebML+:
connecting business models to information designs, SEKE:
Fifteenth International Conference on Software Engineering
and Knowledge Engineering, (San Francisco, USA, 2003),
Knowledge Systems Institute, Skokie, IL, USA, 17-24
[25] Koch N., Kraus A., Cachero C., Meliá S.,. Modelling Web
Business Processes with OO-H and UWE. In Third
International Workshop on Web-oriented Software Technology
(IWWOST03). D. Schwabe, O. Pastor, G. Rossi, and L. Olsina,
editors, 27-50, July 2003
[26] Longo A., Bochicchio M. A., “UWA+: bridging Web
systems design and Business process modeling”, in Web
Engineering Workshop, Hypertext ‘04, Santa Cruz, August ‘04
[27] Longo A., Bochicchio M. A., “Public-Private Partnership
to manage Local Taxes: Information Models and Software
Tools”, in EGOV 2002, Aix-en-Provence, sept. 2002
[28] Booch G., Brown A., Sridhar I., Rumbaugh J. Selic B.:
“An MDA Manifesto”, MDA Journal (www.bptrends.com),
May 2004

69

Incorporating Cooperative Portlets in Web Application Development

Nathalie Moreno, Jośe Rául Romero and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Ḿalaga, Spain
{vergara,jrromero,av}@lcc.uma.es

Abstract

Portlets-based software development is gaining recog-
nition as a key technology for the construction of robust
and evolvable Web applications. Emerging portlet stan-
dards like JSR-168 or WSRP—along with commercial de-
velopment tools and portal servers—enable designers to
quickly develop, integrate and run “composite” Web por-
tals, which integrate specific platforms and partners. De-
spite this significant progress, there is a lack of guidelines
and models for addressing the development of portlet-based
Web applications from a technology-independent viewpoint.
This work tries to identify the main concerns involved in
modeling portlets, determine the major models required
to capture these concerns, and propose a way to address
their integration into Web applications, from a platform-
independent point of view. In so doing, we also introduce
mechanisms for modeling inter-portlet communication and
cooperation capabilities independently of the target portal
server product.

1. Introduction

A current tend in the development of distributed
Web applications is to reuse and assemble pre-produced
components—such as Web services or portlets—for reduc-
ing development costs and improving software quality. The
assembly of these third party systems for building Web
applications has been successfully applied in practice. In
fact, Web services are commonly used as the main building
blocks for generating Web applications and portals.

One of the limitations of Web services is that they fo-
cus on the servicefunctionality, but without dealing with
presentation issues. This forces the re-creation of the pre-
sentation layer in each client application that uses the Web
service. Besides, the corporative image and many of the
marketing aspects of the service are lost if presentation
is not considered, something which is very important for
some service providers (their brand name is a key factor

for their business—think for instance for Adobe, IBM, or
Coca-Cola, whose corporate image and logo are crucial for
selling their products and services). To overcome this limi-
tation,portletsprovide integration in both the business logic
and the presentation layer allowing end-users to interact di-
rectly with the service.

From an application perspective, a portlet isan individ-
ual Web-based component that typically handles requests
and generates only a dynamic fragment of the total markup
that a user sees from his or her browser[3]. The content
of a portlet is normally aggregated with the content of other
portlets to form the final portal page. That is the reason why
portlets are rarely run in an isolated way, but together with
other portlets. However, when a user navigates within one
portlet, the others usually remain unchanged ignoring what
is being rendered by it. In order to transfer data from one
portlet to another, users have to manually copy and paste
key data from sources to targets portlets. This means that
each portlet has to be searched individually for relevant in-
formation.

The need for effectively modeling, integrating, com-
municating and sharing data among cooperative portlets
has been addressed by many portal servers (Oracle, IBM,
BEA, etc). They provide proprietary extensions to indus-
try portlets standards such as theWeb Services for Remote
Portlets(WSRP) specification by OASIS [13], or the JSR-
168 development model proposed by JCP [6]. However,
these extensions are:(i) not portable to other servers,(ii)
often require the use of concrete development tools closely
tied to a particular platform technology and architectural
style (e.g., the WebSphere Portal tool only supports the
MVC design) and,(iii) implement a simplified means of
data sharing among portlets. As a consequence, there is cur-
rent a lack of guidelines and modeling concepts to address
the portlets-based portal development from a technology-
independent viewpoint.

Web Engineering proposals have traditionally aided the
industry Web software development to further improve its
productivity, quality and longevity. Although the major-
ity of those proposals provide excellent methodologies and

70

tools for the design and development of Web applications,
the study of integrating Web applications within cooperative
third party systems (such as Web services, portlets or legacy
systems) has been particularly overlooked until recently. It
is very likely to be introduced in future extensions, but cur-
rently there is current a lack of guidelines about how portlets
should be modeled, how they should be integrated in a Web
application or how inter-portlet communication capabilities
should be offered.

In this paper we try to identify the main concerns in-
volved in modeling portlets and determine the major mod-
els required to capture these concerns (see Section 2). Us-
ing the travel agency example, Section 3 proposes a strat-
egy for modeling portlets and their integration into Web
applications from a platform-independent viewpoint. In so
doing, we introduce also mechanisms for modeling inter-
portlet communication and cooperation capabilities inde-
pendently of the target portal server product. Finally, Sec-
tion 4 sketches some conclusions and outlines some further
research activities.

2. Reference Models for Portlets

Broadly speaking, the main difference between a Web
application and a portlet stems from the fact that the former
is an aggregate of pages whereas the latter is an aggregate
of fragments. Apart from that, both the Web application
design and the portlet design share many features and con-
cerns. Based on their similarities, we will make use of the
general framework presented in [11, 12] for describing Web
applications in order to identify the major required models
involved in the modeling of portlets1. Next subsections look
at framework viewpoints briefly and describe the concepts
and models that rise up during the portlet-based applica-
tions construction. How to use them for addressing portlet
specific requirements will be discussed in Section 3.

2.1 The User Interface Viewpoint

Typically, portlets are considered as user-facing appli-
cations which offer more than just content display to their
users. They also allow them to interact with the content
by means of forms, entry data fields, radio buttons, check
boxes, etc. The User interface viewpoint is directly con-
cerned with how the client interacts with the portlet and how
information is structured for providing a user-friendly inter-
face through a coherent look and feel of its visual elements.

1That framework was specifically designed to integrate third party ap-
plications and legacy systems into Web systems by separating independent
concerns into a set of views on the system, each one addressing one partic-
ular viewpoint (user interface, business logic, persistent data, distribution,
etc)

Processes

Internal
Processes

Choreography

Business Logic

Component
+

Architectural style

Distribution

Structure

Data

Information
Structure

Information
Distribution

User Interface

Conceptual Model

Navigation

Presentation

Adaptation

User

Context

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 1. Reference models for portlets

This viewpoint consists of six main models:Concep-
tual, Navigation, Presentation, User, ContextandAdapta-
tion (see Figure 1). For modeling an individual portlet we
need at least itsConceptual, Presentation, andNavigation
models at the User Interface level. In case of adaptation
requirements, the others could be needed, too. Generally,
all these models are not usually supplied from the portlet
providers; rather, they need to be built from the portlet in-
formation (which, by the way, tends to be imprecise, scarce,
and insufficient). In any case, they are required for any
model-driven development approach.

− The Conceptual model encapsulates the information
handled by the rest of the models at the User Inter-
face level. Since each user looks at the same infor-
mation and navigates through the application in a dif-
ferent way, different views of this model can be de-
fined. UserInformationUnits, AttributesandAssocia-
tions comprise the major elements of this representa-
tion.

− TheNavigation model describes the application navi-
gational requirements building the navigational struc-
ture of the final application—a portlet in this case. This
implies expressing how users can visit a collection of
related data in a non-linear way. To this end,Naviga-
tionUnits, NavigationLinks2, Eventsand AccesStruc-

2Not to be confused with UML “links”. NavigationLinks represent as-

71

tureshave been defining among other concepts for rep-
resenting the logic of this model.

− The Presentation model captures the presentational
requirements in a set ofPresentationUnits(text, im-
age, pages, sections, forms, etc.) andTransitions,
which sketch aesthetic aspects and the look&feel of
the portlet.

− TheUser model describes and manages the user char-
acteristics [5, 4] with the purpose of adapting the
content and the presentation of information to their
needs and preferences. Generally, theUser model is
expressed in terms of the following concepts:User,
UserFeature, Role, Preference, PreviousKnowledge,
HistoryandSession.

− TheContext model. Following [7], context is defined
as the reification of certain properties, describing the
environment of the application and some aspects of the
application itself which are necessary to determine the
need for customization. Context deals withDevice,
Network, LocationandTimeaspects.

− The Adaptation model is performed based on user’s
knowledge, preferences or context features to ob-
tain appropriate Web content characteristics and tar-
get markup for each device Generally, the Adaptation
Model is expressed as a set of mathematical expres-
sions or ECA rules associated with navigation and pre-
sentation concepts in adaptation models [5, 4, 9].

2.2 The Business Logic Viewpoint

This level describes the behaviour of the portlet, inde-
pendently of its user interface, and the persistent data it han-
dles. To provide detailed descriptions to perform business
processes, actions, events handling and errors management
is delivered to this viewpoint.

From our point of view, modeling the behaviour of a
portlet can be done using the following five models (see Fig-
ure 1): Structure, Internal Processes, Choreography, Dis-
tribution andArchitectural Style. Among them, the models
that comprise the description of the portlet are: thestruc-
ture, internal processes, andchoreographymodels.

− The Structure model describes the major classes or
component types representing services in the sys-
tem (BusinessProcessInformation), their attributes (At-
tributes), the signature of their operations (Signature),
and the relationships between them (Association). The
design of theStructuremodel is driven by the needs
of the processes that implement the business logic of

sociations in the Navigation model, whereas UML links are just instances
of UML associations.

the portlet, taking into account the tasks that users can
perform.

− TheInternal Processesmodel specifies the precise be-
havior of everyBusinessProcessInformationor com-
ponent as well as the set of activities that are executed
in order to achieve a business objective.

− TheChoreographymodel defines the valid sequences
of messages and interactions that the portlet may ex-
change [17]. The choreography may be externally ori-
ented, specifying the contract a component will have
with other components (PartialChoreography) or, it
may be internally oriented, specifying the flow of mes-
sages within a composition (GlobalChoreography).

− The Distribution model describes how functionality
is distributed inNodes, connected by means of point
to point connections orLinks. Nodescan be static,
dynamic or mobile. StaticNodesrepresentDevices,
Placesor Actorsof the system. Dynamic nodes model
points of computing (ComputingNode) where Activ-
ities are performed. BothStaticNodesand Comput-
ingNodesmay beMobileNodesfor relevant issues of a
mobileSystem, concerning the mobility of both phys-
ical (e.g. computing nodes) and logical entities (e.g.
software components). The global view ofNodesand
Linkscomprises aNetwork.

− TheArchitectural Style model deals with how func-
tionality is encapsulated into business components and
services. EachArchitectural Stylehas different asso-
ciated entities depending on the pattern applied which
makes the distinction between different architectural
styles. For portlets development, the MVC style is
the most used. It defines:(i) a Model that is respon-
sible for storing the state and the application logic;
(ii) Viewsthat provide the user of the application with
a presentation of the current state of the application;
and(iii) a Controller that is responsible for mapping
user interface events to calls that invoke operations on
the model. That is, the glue that ties the model to the
view and defines the interaction pattern in the portlet.

2.3 The Data Viewpoint

Although portlets cannot be considered as data-centric
applications, they require high-performance infrastructure
for data storing. Information is needed not only for portlet
consumers but also for its processes. This level describes
the information handled by the application and provides a
mechanism for managing and storing data persistently.

This viewpoint is organized around two models: theIn-
formation Structureand theLocationmodels.

72

− The Information Structure model deals with the in-
formation that has to make persistent in terms ofIn-
formationUnits, Attributes, Relationships, Constraints
andAccessOperations.

− The Location model describes the distribution and
replication of the data being modelled, since informa-
tion can be fragmented inNodesor replicated in dif-
ferentLocations.

These models are not relevant in our case, because we
are concerned on how to interact with the portlet, not how it
internally stores its persistent data.

For a more detailed description of these viewpoints and
the semantic of their associated models and concepts, the
interested reader can refer to [11].

2.4 Dependencies between Models

Although the models of the framework are ideally inde-
pendent of each other, some of them capture requirements
on the same element of design (e.g., events, properties or ac-
tions). Therefore some modifications in a model can affect
other models. We add precision to model elements and the
relationships among them by means of unambiguous OCL
constraints (preconditions, invariants and postconditions).
For example, Figure 1 shows a connection betweenPresen-
tation and Structure Businessmodels. In this way,Tran-
sitions in thePresentationmodel consists ofEventswhich
model a significant occurrence located in time and space.
TheseEventshave to be alsoEventsin the context ofIn-
ternal Processesmodels, which trigger the execution of an
associated behaviour. This can be formally expressed as an
OCL constraint.

Interdependencies determine not only the methodologi-
cal guidelines to be followed, but also something more im-
portant: they establish how the different viewpoints merge
and complement each other.

3. Designing Portlet-based Web Applications

The design of a portlet-based Web application can be ad-
dressed combining existing models of individual portlets
with additional models describing the extra-functionality
supported by our Web application. Following this strat-
egy, the design process is strongly governed by the (too
early) implementation decision of using portlets and, con-
sequently, if we want to reuse another type of component
technology or provider in the future, we are forced to rede-
fine all the Web application models from the beginning. On
the contrary, we have opted for delaying as much as pos-
sible implementation decisions, in order to obtain a set of
reusable platform-independent models.

Our proposal is aligned with the MDA framework [16,
1, 10] and particularizes general guidelines presented in
previous work [11, 12]. To be precise, the development
of portlets-based Web applications in the MDA context is
based on the following steps:

Step 1 Create the class diagrams (PIMs) describing models
for each Web application layer. In this step, we iden-
tify the global systems requirements at three levels of
abstraction:User Interface, Business LogicandData
levels. As a result of this phase, three PIMs are gener-
ated describing high-composition architectural views
of the services and components of our application.

Step 2 Mark the PIM elements with stereotypes identify-
ing the system scope and boundaries, i.e, the data and
services that will be provided by our system, and the
ones that will be externally required. At this point,
we will describe how portlets cooperate (portlet ag-
gregation[2]) with each other to produce and achieve
the global functionality that the system is required to
implement—either by sending signals or invoking op-
erations.

Step 3 Specify the target platform. We need to determine
the concrete platforms and communication mecha-
nisms between our application and the external sys-
tems identified previously.

Step 4 Generate the PSMs.

Step 5 Generate the code (e.g., the Web pages).

Integration and cooperation among portlets can be car-
ried out at two levels of abstractions: at the user interface
level and at business logic level. In following subsections
we are going to focus on these two viewpoints proposing a
strategy for addressing both issues through the travel agency
system (TAS) example (seehttp://www.lcc.uma.
es/˜av/mdwe2005/TheTASexample/ for a com-
plete description of this scenario).

3.1. Addressing the User Interface Level

At first sight, it could be considered that the role of the
main system for portlet-based Web applications is limited to
a customizable facade providing a single sign-on service for
assembled portlets. However, the unique rendering space of
a portal adds complexity to the application model when we
consider multiple portlets co-existing on a Web page.

As mentioned in the introduction, when a user navigates
within one portlet the others usually remain unchanged, ig-
noring what is being rendered by it. In order to transfer data
from one portlet to another, users have to manually copy and
paste key data from sources to targets portlets. We will try

73

to model inter-portlet data dependencies—at user interface
level—to free users from this task.

3.1.1 The Conceptual Model

To design the PIM of this viewpoint, we need to identify—
in the first place—the information that will be presented to
the user during a session . These requirements are captured
in theConceptual model. That model for the TAS example
is shown in Figure 2. However, we need to decide how
to deal with this model when we want to re-use particular
portlets such asIberia, Bancohotel or PepeCar which have
their own non-publicConceptual Models. In many cases,
these portlets will place additional constraints—as well as
specialized collaborations and data exchange—that can not
be modelled in a typical UML class diagram.

Flight

+departure_date
+departure_city

+seat_number

+arrival_date

+seat_class

+arrival_city

+seat_row

+idflight

Air_Line

+description

+name
+logo

Room

+room_type
+start_date

+end_date
+idroom

+city

...

Car

+car_reg_number

+start_date
+end_date

+car_type
+city

Car_Hire

+description

+name
+logo

Hotel

+description

+name
+logo

+city

Customer

+creditcardnumber
+creditcardtype

+idcustomer
+expiredate

+password
+name

+email

+login
+description
+idpackage
+price

+date

HolidayPackage

+description
+idbooking
+price

Booking

TravelAgency

+description
+name

books1
1..*

provides

0..*

provides0..*

request_for

0..*

provides

0..*

1..*

Figure 2. Conceptual model for the TAS

Therefore, we need to particularize and model the abil-
ity by which specific class instances (specific portlet imple-
mentations) will match the system requirements and will
communicate/share data with each other. In this regard,
UML 2.0 [15, 14] introduces a new structural diagram
calledComposite Structurediagram. AComposite Struc-
ture diagram “depicts the internal structure of a classifier,
including the interaction points of the classifier to other
parts of the system. It shows the configuration of parts
that jointly perform the behavior of the containing classi-
fier. The architecture diagram specifies a set of instances
playing parts (roles), as well as their required relationships
given in a particular context.”

Consequently, starting from Figure 2 we are going to de-
rive a Composite Structure Conceptual Model, as a set of

TravelAgency

Customer

+creditcardnumber
+creditcardtype

+idcustomer
+expiredate

+password
+name

+email

+login

+description
+idpackage
+price

+date

HolidayPackage

+description
+idbooking
+price

Booking

Hotel

Car_Hire

Air_Line

Flight

Car

Room

book
1..*

Figure 3. Composite conceptual model

parts interacting together to achieve user interface require-
ments. SinceAirline, Hotel andCarHire classes are only
used in the navigational context of theTravelAgencyclass,
we model this fact considering them as parts/properties of
the containing classTravelAgency. Likewise, theFlight,
RoomandCar classes form part of theAirline, Hotel and
CarHire data structures respectively. Thus, Figure 3 rep-
resents the fact that when an instance of theTravelAgency
is created, a set of instances corresponding to its properties
(one Airline, Hotel and CarHire instances) are created as
well—either immediately or at some later time. Each part
or property is isolated from its environment by means of
a port, which will drive the interactions with its environ-
ment3. On the other hand, connectors define channels along
which messages are sent. Thus, when a costumer makes any
request to the portal, the request is captured by theTravelA-
gencyport, which delegates it to the appropriate portlet on
the portal page.

Although this model works well at the Conceptual level,
it is incomplete because it does not reflect the internalcol-
laborationsbetween theTravelAgency, AirLine, Hotel and
Car classes. Rather, it models a travel agency system from
a global point of view. Moreover, if we want to model how a
data item is shared (or broadcasted) from one portlet to mul-
tiple target portlets in the page, we need to define a “collab-
oration”. A UML collaboration is a selective view of that
situation. It may be attached to an operation or a classifier
through aCollaborationOcurrence. Such acollaboration
can constrain the set of valid interactions that may occur
between the instances that are connected by a link. Further-
more, acollaborationspecifies the property instances that
can participate in thecollaboration.

For example, considerIberia, Bancotel and PepeCar,
three portlets on the same application screen. It would be
interesting to retrieve and use thearrival City from the row in
the summaryIberia portlet listing as an entry value for the

3As we shall see, ports will represent portlets containers at implemen-
tation level for theAirline, HotelandCarHire classes.

74

City textbox of theBancotel portlet. Then, the page would
present the list of hotel offers to the customer. In this way,
both portlets now would display related information, while
the third portlet still shows their entry panel (Figure 4 illus-
trates this collaboration).

Air_Line Hotel

Flight

+arrival_date
+arrival_city

...

Room

+start_date
+city

...

Filler

Client.city = Server.arrival_city
Client.start_date = Server.arrival_date

clientserver

Figure 4. Collaboration diagram for the TAS

As an aside, please note that although inter-portlet com-
munication can be modeled using any of the aforemen-
tioned methods (Composite Structurediagrams andcollab-
orations), one must be careful about the dependencies that
are introduced when using inter-portlet communication. In
the Iberia/Bancotel portlets example, what would happen if
the user decided to remove theIberia portlet from his page?
Would theBancotel portlet still be functional? Should we
force the user to remove theBancotel portlet as well? These
are some of the design considerations that need to be taken
in account before using inter-portlet communication.

3.1.2 The Navigation Model

At this point, theConceptualmodel is complete. Then,
the Navigationmodel is built as a refinement of theCon-
ceptual model we have just defined. TheNavigation
model specifies the navigational structures of the Travel
Agency, i.e., how users navigate through the available
information usingIndexes(¿IndexÀ HolidayPackageIn-
dex), Menus(¿MenuÀ HolidayPackageMenu, ¿MenuÀ
BookingMenu, ¿MenuÀ CustomerMenu) or Guided Tours
(¿GuidedTourÀ BookingGuidedTour). We have added con-
straints to¿NavigationLinksÀ describing which events will
trigger the navigation through the link (e.g., when a process
finishes, after clicking a¿MenuOptionÀ, etc.)

3.1.3 The Presentation Model

After that, the Presentation model further refers to
groups of pages organized around¿PresentationUnitsÀ
as: (i) ¿SinglePresentationUnitsÀ, with their attributes
marked as¿textÀ, ¿imageÀ, ¿buttonÀ, etc.; and
(ii) ¿GroupPresentationUnitsÀ that comprise UML
classes and packages stereotyped¿pageÀ, ¿sectionÀ
or ¿formÀ. Basically, we have used in our ex-
ample ¿ExternalSectionÀ to display portlet responses

and ¿pageÀ to display the main portal pages. We
have also marked as¿ExternalFormsÀ those UML
classes that invoke external services. Note that each
¿ExternalPresentationUnitsÀ has information about its
own data, structure, presentation, etc.

Since adaptation is not required in this case, the final
PIM of theUser Interfaceviewpoint is obtained by merging
these three models, and is shown in Figure 5.

Once the PIM of this layer is described, we need to pro-
vide some sort of support for its deployment, configuration
and execution in a particular platform, i.e., we need to gen-
erate its corresponding PSM. This last step only concerns
UML packages stereotyped¿GroupPresentationUnitsÀ,
because integrated portlets deal with their corresponding
¿ExternalGroupPresentationUnitÀ. Applying a two-fold
transformation process from model-to-model (based on,
e.g., ATL mapping rules) and model-to-code (using, e.g.,
templates that contain predefined parts of the meta-code
text), we can map the source PIM to a target PSM and to
code finally. The feasibility of these transformations and
how the Web pages are obtained from them is well docu-
mented in [8].

3.2. Addressing the Business Logic Level

The same as the User Interface Viewpoint, the Business
Logic view of the system needs to be platform-independent
and interchangeable. Portlets typically evolve over time and
are largely reused as bases for new portlets. Thus, the ability
to change a portlet model or to adapt it to a new provider
requires that each business logic model be self-contained
and extensible.

As shown in Figure 6, the PIM for this viewpoint is fo-
cused just on the system operations hiding the rest of the
details (software architecture, distribution, system bound-
aries, communication protocols, implementation platforms,
etc.). This solution is specified in terms of UML packages
and their interconnections in a platform independent way,
achieving reusability across different target platform envi-
ronments. Thus, the PIM does not contain any informa-
tion on the pieces of functionality that will be locally im-
plemented, and the ones that will be provided by external
services and applications.

Once that high-level PIM is specified, we need to iden-
tify the system scope and boundaries, and then build a
model of the system with this information. That tar-
get model (still a PIM, but with that information on
it) will be built by transforming the original PIM us-
ing marks (see Figure 7). To identify the elements in
the TAS PIM that should be transformed in a particular
way, we will use the stereotypes¿ExternalSystemÀ and
¿ExternalAssociationÀ. An ¿ExternalSystemÀ defines
any other external system interacting with the system under

75

<<ExternalGroupPresentationUnit>>

Hotel

<<ExternalForm>>

Hotel

<<inputElement>>+hotel_class

<<inputElement>>+room_type
<<inputElement>>+start_date

<<inputElement>>+end_date
<<text>>+description

<<image>>+logo
<<text>>+name

<<text>>+city Room

<<ExternalSeccion>>

<<text>>-hotel_name

<<text>>-room_type
<<text>>-start_date

<<text>>-end_date
<<text>>-hotel_id

<<text>>-idroom
<<text>>-price

<<text>>-city

<<ExternalMenu>>

HotelMenu

<<button>>+Find()

<<ExternalForm>>

Air Lines

<<inputElement>>+departure_date
<<inputElement>>+departure_city

<<inputElement>>+num_person

<<inputElement>>+arrival_date
<<inputElement>>+arrival_city

<<inputElement>>+one-way
<<listControl>>+round-trip

<<inputElement>>+class

<<text>>+description
<<image>>+logo
<<text>>+name

<<ExternalGroupPresentationUnit>>

AirLine

<<text>>-departure_date
<<text>>-departure_city

<<text>>-seat_number

<<text>>-arrival_date

<<text>>-seat_class

<<text>>-arrival_city

<<text>>-seat_row

<<text>>-idflight

<<text>>-price

<<ExternalSeccion>>

Flight

<<ExternalMenu>>

AirLineMenu

<<button>>+Find()

<<ExternalGroupPresentationUnit>>

CarHire

<<ExternalForm>>

Car_Hire

<<inputElement>>+start_date

<<inputElement>>+end_date

<<inputElement>>+car_type
<<inputElement>>+city
<<text>>+description

<<image>>+logo
<<text>>+name

<<Seccion>>

Car

<<text>>-car_reg_number

<<text>>-start_date

<<text>>-end_date

<<text>>-car_type

<<text>>-price

<<text>>-city

<<ExternalMenu>>

Car_HireMenu

<<button>>+Find()

<<GroupPresentationUnit>>

<<Menu>>

BookingMenu

<<button>>+BookPackage()

<<Page>>

Booking

<<text>>-description
<<text>>-idbooking
<<text>>-price

<<GuidedTour>>

BookingGuidedTour

TravelAgency Menu

<<Menu>>

<<SelectionElement>>SearchByFlight_Hotel_Car()
<<SelectionElement>>SearchByFlight_Hotel()

<<SelectionElement>>ListHolidayPackages()

<<SelectionElement>>SearchByFlight_Car()

<<SelectionElement>>SearchByHotel_Car()

<<SelectionElement>>SearchByFlight()

<<SelectionElement>>SearchByHotel()

<<SelectionElement>>SearchByCar()
TravelAgency

<<Page>>

<<text>>-description
<<image>>-logo
<<text>>-name

<<GroupPresentationUnit>>

TravelAgency

<<AnchorList>>

HolidayPackageIndex

<<tabbed>>+SortByBestValue()
<<tabbed>>+SortByDistance()

<<Menu>>

HolidayPackageMenu

<<button>>+ChangeSearch()
<<button>>+SelectPackage()
<<button>>+ViewDetails()

<<GroupPresentationUnit>>

HolidayPackage

<<Page>>

HolidayPackage

<<text>>-description
<<text>>-idpackage
<<text>>-price

<<text>>-date

<<Form>>

Customer

<<inputElement>>-creditcardnumber
<<inputElement>>-creditcardnumber
<<listControl>>-creditcardtype

<<inputElement>>-password

<<controlButton>>-expirydate

<<inputElement>>-name

<<inputElement>>-email

<<inputElement>>-login

...

CustomerMenu

<<Menu>>

<<button>>+NewMemberRegistration()
<<button>>+SigIn()

Customer

<<GroupPresentationUnit>>

<<ExternalNavigationLink>>

<<NavigationLink>>

<<NavigationLink>>

<<NavigationLink>>
<<NavigationLink>>

<<NavigationLink>>

<<NavigationLink>>

<<NavigationLink>>

Figure 5. The PIM of the User Interface viewpoint

76

Air_lines

+cancel_flight(reserv_inf : Reserv) : Ack_cancel

+reserve_flight(fly_sel : Fly_Inf) : Reserv
+pay_flight(pay_inf : Pay_Inf) : Ack_pay

+find_flight(inf_req : Fly_req) : Fly_list

air_lines

Travel_AG

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list
+reserve_travel(travel_sel : Travel_Inf) : Reserv
+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

Bank
+make_payment(pay_inf : Pay_Inf) : Ack_pay

bank

Car_Hire

+cancel_car(reserv_inf : Reserv) : Ack_cancel

+reserve_car(car_sel : Car_Inf) : Reserv
+find_car(car_req : Car_req) : Car_list

+pay_car(pay_inf : Pay_Inf) : Ack_pay

car_hire

Hotel

+cancel_room(reserv_inf : Reserv) : Ack_cancel

+find_room(room_req : Room_req) : Room_list
+reserve_room(room_sel : Room_inf) : Reserv
+pay_room(pay_inf : Pay_Inf) : Ack_pay

hotel

Figure 6. The TAS Structure PIM

consideration. In the same way, an¿ExternalAssociationÀ
defines an interaction between the system under deployment
and an¿ExternalSystemÀ [11].

<<InternalSystem>>

Travel_AG

+cancel_travel(reserv_inf : Reserv) : Ack_cancel

+find_travel(travel_req : Travel_req) : Travel_list
+reserve_travel(travel_sel : Travel_Inf) : Reserv
+pay_travel(pay_inf : Pay_Inf) : Ack_pay

travel_agency

<<ExternalSystem>>

Air_lines

+cancel_flight(reserv_inf : Reserv) : Ack_cancel

+reserve_flight(fly_sel : Fly_Inf) : Reserv
+pay_flight(pay_inf : Pay_Inf) : Ack_pay

+find_flight(inf_req : Fly_req) : Fly_list

air_lines

<<ExternalSystem>>

Bank
+make_payment(pay_inf : Pay_Inf) : Ack_pay

bank

<<ExternalSystem>>

Car_Hire

+cancel_car(reserv_inf : Reserv) : Ack_cancel

+reserve_car(car_sel : Car_Inf) : Reserv
+find_car(car_req : Car_req) : Car_list

+pay_car(pay_inf : Pay_Inf) : Ack_pay

car_hire

<<ExternalSystem>>

Hotel

+cancel_room(reserv_inf : Reserv) : Ack_cancel

+find_room(room_req : Room_req) : Room_list
+reserve_room(room_sel : Room_inf) : Reserv
+pay_room(pay_inf : Pay_Inf) : Ack_pay

hotel

<<ExternalAssociation>>

<<ExternalAssociation>>

<<ExternalAssociation>>

<<ExternalAssociation>>

Figure 7. The marked TAS PIM

Note that the marked PIM is, by definition, tech-
nology independent. In consequence, the prefix “Ex-
ternal” used by the stereotypes¿ExternalSystemÀ and
¿ExternalAssociationÀ in Figure 7 does not imply any im-
plementation decisions. Instead, it is only used to limit the
system scope and boundaries.

At this point, when we have the marked PIM, we still
need to transform it further into a model that contains the
information about how the system services are “compo-

nentized”, prior to decide the technology and the service
providers. This componentization will be described using
the UML 2.0 constructs and infrastructure for describing
software architectures, because what we want to build in
this phase is the software architectural description of the
system. This transformation will be guided by the follow-
ing mapping rules:

• Packages transformation. Each UML package is
mapped to a UMLComponent initialized with the
same as its corresponding UML package.

• Classes transformation. The UML class stereo-
typed as¿InternalSystemÀ or¿ExternalSystemÀ is
mapped to a UMLClass holding the same characteris-
tics as its original (name, attributes and operations).

• Associations transformation.For each UML associa-
tion stereotyped¿ExternalAssociationÀ, two compo-
nent ports will be generated, each one as Association
ends of that relationship. Ports will be associated to
the UML Component derived in the previous step. Its
behavior is defined in terms of an interface associated
with that port, which specifies the nature of the inter-
actions that may occur over that port. Thus, the port
interface’s name is given the value of the UML class
name from which it is derived and its operations corre-
spond to its UML class operations.

• Association’s ends transformation. For the end-
point of an ¿ExternalAssociationÀ stereotyped
¿InternalSystemÀ, a usage dependency from the
port to the interface is generated, showing how the
¿InternalSystemÀ provides a set of services.

For the endpoint of an¿ExternalAssociationÀ stereo-
typed¿ExternalSystemÀ, an implementation depen-
dency from the port to the interface is generated, show-
ing how the¿ExternalSystemÀ requires a set of ser-
vices.

• Finally, an assembly connector is defined from every
required Interface to its provided Interface.

Applying these mapping rules on the PIM in Figure 7,
we obtain the model shown in Figure 8. However, this
model is incomplete since it does not model how naviga-
tion events (clicks on screen links or submission of Web
forms) result in portlet actions being received by the portal.
Analogously, it does not specify how the portal forwards the
actions it captures to the appropriate portlet containers that
will handle the requests. Another important issue that we
need to model is how message-forwarding across portlets
can be carried out. Messages are either calls to operations
(which are usually dispatched to methods on the receiving

77

Travel_Ag

Travel_Ag

+cancel_travel(...) : Ack_cancel

+reserve_travel(...) : Reserv
+find_travel(...) : Travel_list

+pay_travel(...) : Ack_pay

Hotel

Hotel

+cancel_room(...) : Ack_cancel

+reserve_room(...) : Reserv
+find_room(...) : Room_list

+pay_room(...) : Ack_pay

Car_Hire

Car_Hire

+cancel_car(...) : Ack_cancel

+reserve_car(...) : Reserv
+pay_car(...) : Ack_pay

+find_car(...) : Car_list

Air_Line

Air_Line

+cancel_flight(...) : Ack_cancel

+reserve_flight(...) : Reserv
+pay_flight(...) : Ack_pay

+find_flight(...) : Fly_list

Bank

Bank

+make_payment(...) : Ack_pay

Figure 8. The TAS PIM after applying the MDA transformation

object), or sending of signals (which are buffered on the re-
ceiving object and handled by the corresponding behaviors
in the objects). TheInternal Processmodel specifies both
internal and external behavioral aspects by means of activ-
ity, interaction and sequence diagrams.

Space limitations prevent us from giving a more detailed
description of these specifications. We show an excerpt of
the activity diagram for theFindTravel process in Figure
9. Notice that some portlet-data dependencies have been
previously captured in theUser Interface PIM.

Find_Flight
flightDetails

arrivalCity

arrivalDate
Find_Hotel

arrivalCity

arrivalDate

hotelDetails

Find_Travel

Validate

flightDetails

hotelDetails

HotelTravelAgency Air_Line

Figure 9. An excerpt of the Activity Diagram
for the FindTravelprocess

At this point, we have a set of models with the infor-
mation about:(a) the system functionality, from a global
point of view; (b) how it is “componentized” into different
services;(c) which of these services are internally imple-
mented, and which ones are provided by external services;
(d) the interactions between all the system services (both
internal and external).

From there, the process of building the PSM of the sys-
tem based on the implementation technologies and plat-
forms can proceed as in our previous work [11, 12].

4. Conclusions

In this paper we have discussed the issues involved in
the integration of portlets into model-based Web applica-
tion development. In general, the majority of Web Engi-
neering proposals do not yet support the integration of third
party systems with Web applications (by means of suitable
design concepts and models), including Web Services and
portlets. Our contribution tries to shed some light on this
area, by analyzing the different kinds of concerns that need
to be addressed, and the models required to capture such
information.

There is not much work that deals with these issues. Dı́az
et al. consider in [3] a subset of the concerns involved in a
portal construction and define a set of platform-independent
models for them, namely the service model, the orchestra-
tion model and the presentation model. Although it is a very
good and expressive approach, the proposal is in the context
of building Web portals using portlets, and not for develop-
ing general Web applications. Thus, the proposed design
process is strongly governed/influenced by the (too early)
implementation decision of using portlets. In this respect,
our proposal follows an MDA approach, and hence allows
the system developer to take that decision at a later stage,
and then use the portlet models if required.

This paper also extends our previous work on integrating
Web Services into Web applications using a model-driven
approach [12]. It is important to notice the strong relation-
ship between the User Interface models and the Business
Logic models of a portlet. Such a relationship was not re-
quired in the case of Web Services, since they sit at the Busi-
ness Logic level only. However, this relationship is crucial
for integrating portlets into Web applications, because they
contain not only functionality, but also presentation—and
they are closely related.

78

As future work we plan to continue working on case
studies and applications that help validate our proposal, and
that serve as proof-of-concept of our ideas. Our goal is to
develop a complete set of Web applications using our ap-
proach which can illustrate the problems that appear when
integrating external systems into Web applications, and how
to tackle them from a model-driven approach.

References

[1] A. W. Brown. Model driven architecture: Principles and
practice.Software System Model, 3:314–327, 2004.

[2] O. D́ıaz, J. Iturrioz, and A. Irastorza. Improving Portlet ag-
gregation through deep annotation.Proceedings of the 14th
International World Wide Web Conference (WWW 2005),
May 2005. Japan.

[3] O. D́ıaz and J. Rodrı́guez. Portlets as Web Components:
an Introduction. Journal of Universal Computer Science,
10(4):454–472, Apr. 2004.http://www.jucs.org/
jucs_10_4/portlets_as_web_components" .

[4] F. Frasincar, G.-J. Houben, and R. Vdovjak. An RMM-
Based Methodology for Hypermedia Presentation Design.
Proceedings of the 5th East European Conference on Ad-
vances in Data-bases and Information Systems (ADBIS
2001), LNCS 2151:323–337, September 25-28 2001. Vil-
nius, Lithuania.

[5] C. Gnabo. Web-based Information Systems Development –
A User Centerd Engineering Approach.Web Engineering:
Managing Diversity and Complexity of Web Application De-
velopment, LNCS 2016:105–118, 2001.

[6] Java Community Process.JSR 168 Portlet Specification
Version 1.0, 2003. http://www.jcp.org/en/jsr/
detail?id=168 .

[7] G. Kappel, W. Retschitzegger, and W. Schwinger. Mod-
elling Customizable Web Applications – A Requirement’s
Perspective. Proceedings of the International Conference
on Digital Libraries: Research and Practice (ICDL), 2000.
Koyoto, Japan.

[8] A. Kleppe, J. Warmer, and W. Bast.MDA Explained.
The Model Driven Architecture: Practice and Promise.
Addison-Wesley, Apr. 2003.

[9] N. Koch. Software Engineering for Adaptive Hypermedia
Systems - Reference Model, Modelling Techniques and De-
velopment Process. PhD thesis, Fakultt der Mathematic und
Informatik, Ludwig-Maximilians-Universitt Mnchen, Dec.
2000.

[10] J. Miller and J. Mukerji.MDA Guide. Object Management
Group, Jan. 2003. OMG document ab/2003-06-01.

[11] N. Moreno and A. Vallecillo. A model-based approach for
integrating third party systems with web applications.Fifth
International Conference on Web Engineering (ICWE2005),
July 2005. Sydney, Australia.

[12] N. Moreno and A. Vallecillo. Modeling interactions be-
tween web applications and third party systems.Fifth Inter-
national Workshop on Web Oriented Software Technologies
(IWWOST2005), June 2005. Porto, Portugal.

[13] OASIS. Web Service for Remote Portlets Specification
Version 1.0, 2003. http://www.oasis-open.org/
specs/index.php#wsrpv1.0 .

[14] Object Management Group.UML 2.0 Infrastructure Spec-
ification, 2003. http://www.omg.org/cgi-bin/
doc?ptc/03-09-15.pdf .

[15] Object Management Group.UML 2.0 Superstructure Spec-
ification, 2003. http://www.omg.org/cgi-bin/
doc?ptc/03-08-02.pdf .

[16] OMG. Model Driven Architecture. A Technical Perspec-
tive. Object Management Group, Jan. 2001. OMG docu-
ment ab/2001-01-01.

[17] OMG. A UML Profile for Enterprise Distributed Object
Computing. Object Management Group, May 2002. OMG
document PTC/2002-02-05.

79

Conceptualization of Navigational Maps for Web Applications

Antonio Navarro, José Luis Sierra, Alfredo Fernández-Valmayor, Baltasar Fernández-Manjón
Dpto. Sistemas Informáticos y Programación

Universidad Complutense de Madrid
{anavarro, jlsierra, alfredo, balta}@sip.ucm.es

Abstract

The characterization of navigational maps for Web
applications helps its developers in the process of
construction of these applications and it also helps
users while performing their browsing. This paper
presents the Pipe approach for characterizing
navigational maps for Web applications at their
conceptualization stage. Although Pipe was originally
intended as a hypermedia-oriented notation it has been
successfully used for characterizing navigational maps
for Web applications. In addition, navigational maps
described in terms of the Pipe notation can be easily
mapped to UML-Conallen class diagrams at the
design stage. This paper presents the characterization
of the travel agency’s navigational map using Pipe
notation at the conceptualization stage. The paper also
demonstrates the mapping of this Pipe navigational
map to UML-Conallen class diagrams.

1. Introduction

The development of Web applications is not an easy
task. In the development process of this type of
applications, at least three model types must be
provided: conceptual, navigation and presentation
[15]. Conceptual/structural model describes the
organization of the information managed by the
application in terms of the contents that constitute its
information base and semantic relationships that exist
among them. Navigation model describes the facilities
for accessing information and for moving across the
application content. Presentational model describes the
way in which application content and navigation
commands are presented to the user [18].

Regarding navigation model, navigational maps can
be a very useful tool. These maps describe a global
view of a Web application for an audience [22]. At
present, many web sites include navigational maps to
help users during browsing. Therefore, in our opinion,
the characterization of navigational maps is a key issue

during development of Web applications. Using
navigational maps, developers can obtain a global view
of the whole application that can help them in the
development process. In addition, the presence of
navigational maps can help users of Web sites to find
the desired information much quicker.

Taking into account the development process of
Web applications and the nature of the type of
software, requires one to distinguish between two
distinct stages in their development [18]. One stage
focuses on conceptualization and prototyping, while
the other pays attention to design and development. At
conceptualization stage, the application is represented
by a set of abstract models that convey the main
components of the envisioned solution. At the design
stage, conceptual schemas are transformed into a
lower-level representation, closer to the needs of
implementation, but still independent of the actual
content of the information base.

This paper presents the Pipe notation [3] and uses it
to characterize the navigational map of the travel
agency’s case study at the conceptualization stage. The
paper also shows the mapping of the travel agency
navigational map in terms of Pipe notation to an UML-
Conallen class diagram [10] at the design stage.
Although Pipe was originally intended as a
hypermedia notation [1], its use in Web engineering
projects has demonstrated its applicability as a tool to
characterize navigational maps. In addition, due to the
abstraction level of Pipe notation, it’s possible to map
it to specific design notations.

The paper is organized as follows. Section 2 briefly
describes Pipe notation. Section 3 provides the Pipe
characterization of the travel agency’s navigational
map. Section 4 maps Pipe characterization to UML
diagrams that use Conallen’s extension. Section 5
compares Pipe with other approaches. Finally, in
section 6 conclusions and future work plans are
presented.

80

2. Pipe notation

Pipe is a formalized graphical notation for the
characterization of hypermedia applications. A
description of the notation can be found in [2] whereas
the formalization can be found in [3]. Pipe is
conceived to be used in domains not easily
representable in terms of entities/classes and their
relations. Consequently, Pipe is focused on
characterizing: (i) the units of information as
individuals and relations among them; (ii) the user
interface of the application, and (iii) the relations
between the layer of contents and the layer of user
interface to provide navigational access to the elements
of the application.

Pipe provides three types of diagrams to
characterize the above mentioned information: (i) a
contents graph, which characterizes the information
elements of the application and their relations; (ii) a
navigational schema, which characterizes the graphical
user interface of the application; and (iii) a set of
canalization functions, which relate the contents graph
and the navigational schema. This section briefly
describes these elements.

2.1 Contents graph

The Pipe contents graph models the units of
information in the application and the way they are
related. It only considers individual units of
information, anchors, links and a relationship function
that captures all the semantic relations between the
units. The Pipe contents graph uses the following
modeling elements:

− Static contents. Units of information that exist
prior to any interaction by the user.

− Static anchors. Anchors whose destinations
are static contents.

− Static links. Relations between static anchors.
− Dynamic contents. Units of information

generated by user’s interaction [21].
− Dynamic anchors. Anchors whose

destinations are dynamic contents.
− Dynamic links. Relations between dynamic

anchors. In Pipe, dynamic links are
characterized using a generation function g
[3] specific for each application, but defined
considering a common signature. Therefore, g
function acts like the implementation of
object-oriented interfaces and is used in Pipe

to model dynamic behavior in the hypermedia
applications at a conceptual level.

Figure 1 depicts the visual elements of the contents
graph.

The Pipe graphical notation is fully formalized [3].
The formalization of the contents graph is made in
terms of the relationships function r. This function has
an extensional definition for static anchors, and an
intensional definition, in terms of the generation
function g, for dynamic anchors. In such a way,
function r acts as a black box that “hides” the real
nature of the links (static or dynamic).

2.2 Navigational schema

The Pipe navigational schema makes an important
abstraction of the graphical elements that compose a
graphical user interface (GUI) and the navigational
relations that appear among the elements of the GUI in
hypermedia applications. The Pipe navigational
schema uses the following modeling elements:

− Nexus nodes, which represent the windows
that contain the rest of elements of the GUI.

− Container nodes, which represent the panes
that are inside the windows. They contain the
contents (static or dynamic) of the contents
graph.

− Nexus activator nodes, which represent the
buttons that are inside the windows. The only
event associated to this type of buttons is the
activation of another window.

− Connections, which represent the way to
relate a container node or a nexus activator
node to its nexus node (i.e. they represent
relations of aggregation between windows
and their panes and buttons).

− Paths, which represent the navigational
relations that exist between container nodes in
the GUI. In this way if a path exists between a
container node c1 and a container node c2, it is
possible to display in c2 the destination of a
link with origin in a content that is being

 static content

static link

static anchor

or

static n-ary link

dynamic content

dynamic link

dynamic anchor

or

dynamic n-ary link

Figure 1. Visual elements
of the contents graph

81

displayed in c1. Paths are also called pipes
because they are responsible for canalizing
(interpreting) the relations (links) established
between the units of information (contents) in
the navigational schema (GUI).

− Synchro connections. Which represent time-
activated connections.

− Synchro paths. Which represent time-
activated paths established between nexus
nodes.

Figure 2 depicts the visual elements of the
navigational schema and the allowed relationships
between them.

2.3 Canalization functions

The Pipe canalization functions relate the elements
of the contents graph to the elements of the
navigational schema. In this way several user
interfaces can be used with the same units of
information and semantic relations. Likewise, the same
user interface can be used with different units of
information and/or semantic relations. There are two
canalization functions in Pipe:

− Content assignation function. This function
assigns units of information (contents) to
container nodes (panes).

− Canalization function. This function assigns
relations between units of information (links)
to paths/pipes among container nodes (panes).

Colors and visual patterns are used in Pipe to
characterize the canalization functions.

3. Conceptualization of the travel agency

The description provided for the travel agency in
the workshop’s specification is focused on the
functional behavior of the use cases in the system.
Therefore, using a UML-based approach [7][16], use
cases, activity, classes, interaction, component and
deployment diagrams can be provided.

Although this specification is not focused on the
description of the navigational map of the application,
its navigational map can be easily characterized. Next
sections describe this navigational map using the Pipe
notation.

3.1 Contents graph

Pipe notation was intended to characterize
hypermedia applications with domains not easily
characterizable in terms of class or entities and their
relationships [3]. Consequently, Pipe has focused on
the characterization of individual units of information
and their semantics relations [13]. As a result, the
modeling primitives of Pipe are appropriate to
characterize the heterogeneous relations established
among individual pages of Web applications [10] (e.g.
HTML [27] or JSP [9] pages).

Note that in the case study of the travel agency an
important number of homogeneous elements and
relations can be characterized using classes and their
relations. Due to the origins of our approach, this
information about classes and relationships cannot be
represented in Pipe. Instead, UML class diagrams can
be used to complement Pipe notation at the
conceptualization stage. The integration of UML class
diagrams and Pipe contents graph is made using the
generation function g. The description of this
integration process is out of the scope of this paper. In
this section we provide the Pipe characterization of the
contents accessed by the user during the browsing of
the application, omitting the UML characterization.
This Pipe characterization serves as the navigational
map for the application. Section 4 provides the
mapping of this Pipe characterization to UML
diagrams at the design stage. In these UML diagrams

xi t xj

synchro path
between nexus nodes

xi

cj

connection between
a nexus node and a
container node

xi

cj

synchro connection
between a nexus node
and a container node

t

xi
connection between
a nexus node and a
nexus activator nodeaj

cj ci ck

paths between
container nodes
(pipes)

ai

xj path between nexus
activator and nexus
node

nexus
node
container
node
nexus activator
node
connection
path
synchro
connection
synchro path t

t

Figure 2. Visual elements of the navigational
schema and allowed relationships between

them

82

the structure of classes and their relations could also be
provided. Figure 3 shows the contents graph of the
application that is indeed the navigational map of the
travel agency.

The navigational map of Figure 3 describes a static
index (index) which is linked to a static form that
picks up data related to the requested trip
(requestTrip). This form dynamically links [21]
with the page that shows the result of the search for the
trips in the travel agency. If the search fails
(requestKO), the user must use the index to continue
browsing the application. If the search obtains positive
results (requestOK), the user can navigate to a form
where his/her credit card data can be introduced
(creditCard). Then these data are validated and
independently of the result of the validation
(creditCardOK or creditCardKO) the user must
use the index to continue browsing the application. In
this figure, the information about anchors [3] is
omitted.

Note that in this contents graph, HTML pages are
the characterized contents. Although flights, hotels,
clients, etc. are the contents of the application from a
data-modeling point of view, the HTML pages
browsed by the user are the real contents of the
application from Pipe’s point of view. This is a
perverted interpretation of Pipe, because in Pipe, the
contents of the hypermedia applications are those
heterogeneous units of information and their relations
that are not easily representable in terms of
classes/entities and their relations (e.g. a text that links
with a sentence, and a sentence that links with the
contextual meaning of their words [2]). In other words,
because in Pipe there are no classes, individual
elements are the contents of the application. The use of
Pipe to characterize navigational maps of Web
applications forces the interpretation of HTML pages
as Pipe contents, being the real contents of the Web
application represented in terms of UML class
diagrams or entity-relationships [20] diagrams. These
diagrams can be provided at conceptualization stage in
order to complement Pipe diagrams and in order to
fully characterize the contents of the travel agency.

In any case, Pipe contents are nearer to elementary
items extracted from a data source and composed in
different manners within pages than to pages displayed

to users. Pipe notation is intended to be used at
conceptualization stage. Therefore, in Pipe the content
requestOK characterizes to the trips extracted from
the database of trips according to customer’s
constraints. If the content requestOK has to include
headers and footers with common information, a
frame-based approach (see discussion in section 3.2
and 4.2) can be the best choice in Pipe. If the content
requestOK has to include information dynamically
extracted from different databases (possibly in
different computers) the function g is the responsible
of characterizing this process. For the sake of
conciseness, the characterization of the function g is
outside of the scope of this paper. In any case, such a
characterization can be found in [3].

3.2 Navigational schema

Pipe navigational schema, characterizes the user

interface of the application. Although the specification
of the travel agency does not include the
characterization of any user interface we are going to
suppose a simple one. The application has a screen
with two vertical regions. The left region is reserved to
show the index of the application, while the right
region is reserved to show the rest of contents of the
application.

The terms screen and region are used instead of
terms such as frameset and frame because, in our
opinion, at conceptualization stage these details can be
omitted. Indeed, during design this simple and abstract
conception of the user interface could be refined,
providing that the basic interaction behavior is
preserved. For example, some designs can decide to
use frameset and frames to represent screens and
regions. Other designs can decide to aggregate the
index to every content of the application (except the
index to itself, of course), omitting the use of
frameset/frames. Figure 4 depicts the Pipe
characterization of this simple user interface.

According to this characterization, there is a
window with two panes (or a screen with two regions).
The arrow (pipe) between panes left and right
means that the “destination contents” of the links with
the origin in “displayed contents” of the left pane are
displayed in the right pane. The arrow (pipe)

 requestOK creditCardOKcreditCard requestTrip

creditCardKO

index

requestKO

Figure 3. Contents graph/navigational map of
the travel agency

left right

travel agency

Figure 4. Navigational schema/user
interface of the travel agency

83

between right pane and itself means that the
“destination contents” of the links with the origin in
“displayed contents” in right pane are displayed in
the same pane.

We are aware that windows, panes and buttons are
the basic elements of a graphical user interface.
Regarding specific widgets (e.g. group or check
boxes), Pipe does not provide explicit elements to
characterize them. If wished, some visual content
elements (e.g. group or check boxes elements) could
be defined in order to be included in the container
nodes of the user interface.

3.3 Canalization functions

Canalization functions represent the navigational
interpretation of contents and relations in terms of the
user interface of the application. Figure 5 depicts this
information.

Note that according to the colors of Figure 5, the
content index is assigned to the left pane, while the
rest of the contents are assigned to the right pane. In
addition, the link between index and requestTrip is
canalized by the pipe between left and right. The
rest of the links are canalized by the pipe between the
right and itself. Therefore, when the user selects the
anchor in the content index (that is displayed in the
left pane) that gives access to the content
requestTrip, the content requestTrip appears in
the right pane. In the same manner, if the user selects
the anchor (i.e. submit button) in the content
requestTrip, the content requestOK (or
requestKO) appears in the right pane.

3.4 Browsing semantics

Browsing semantics describes the manner in which
the information is to be visualized and presented [19].

Pipe includes a formalized browsing semantics [3]
which describes applications’ state, while the user is
browsing.

Figure 6 describes travel agency’s state, while the
user is browsing it. Figure 6 (a) depicts the initial state
where the context index is displayed in the left
pane, and the content requestTrip is displayed in the
right pane (the boldface in Figure 5 indicates that
these contents are the default contents of these panes).
Figure 6 (b) depicts the state of the application after
the user requests a trip, and the application returns
some options. Figure 6 (c) depicts the state of the
application after the user decides to fill-in the form
with the data of the credit card. Finally, Figure 6 (d)
depicts the state of the application after the system
validates the data of the credit card.

Note that the information provided in Figure 6,
besides the information provided in Figure 5, can be
used to indicate to the users the state of the application
in terms of the navigational map and the user interface
of the application.

4. Design of the travel agency

The design of the travel agency is represented in
terms of the Conallen´s extension to the UML for Web
applications [10]. The key point of Conallen´s
extension is the principle of separation of concerns.
According to this principle, there are in a Web
application client pages (e.g. HTML pages) and server
pages (e.g. JSP pages) that are represented in the UML
by stereotyped classes and are related by navigated
associations [10]. In addition, Conallen also provides a
UML characterization of the structures of frames and
framesets.

requestOK creditCardOK creditCard requestTrip

creditCardKO

index

requestKO

Figure 5. Relations between user interface
and navigational map

left right

travel agency User interface

Navigational map

left right

travel agency

index

requestTrip

(a)

left right

travel agency

index

requestOK

(b)

left right

travel agency

index

creditCard

(c)

left right

travel agency

index

creditCardOK

(d)

Figure 6. State of the application
while being browsed

84

This section provides the UML representation of
the Pipe diagrams, taking into account the Conallen’s
extension.

4.1 Navigational map

Pipe content’s graphs representing navigational
maps can be smoothly mapped onto UML Conallen’s
extension during the design stage. Figure 7 shows the
translation of the contents graph (Figure 1) for the
present travel agency case study. Note that a Model 2
(or Model View Controller) architecture [23] is chosen.

In this figure all the information, included in the
specification about the computational behavior of the
travel agency, is hidden within the class PTA (Personal
Travel Assistant). In other words, the class PTA is a
facade [5] of the application. For example, when the
class Controller receives the information of the
form requestTrip, the Controller delegates in the
class PTA and, taking into account its response, the
Controller forwards the control to the JSP pages
requestOKjsp or requestKOjsp to generate the
output for the user in terms of HTML pages
(requestOKhtml or requestKOhtml). Note that the
Struts API [26] could be used to implement this
design. In addition, an Enterprise Java Bean-like [8]
design could be used to implement the PTA facade and
the rest of classes. Also, it should be noticed that the
PTA facade gives the opportunity to model the actual
data elements of the application and to incorporate the
business logic associated with these elements. Because
the paper is focused on navigational maps, the classes
behind the facade are not provided. Although these
classes constitute a substantial part of the application,
their concrete structure and behavior is not relevant for
characterizing the navigational part of this application.

4.2 User interface and final application

As previously mentioned, a frame-based or a non-
frame based implementation of the regions could be
provided at the design stage. If a frame-based
implementation is chosen, Figure 8 describes its UML
characterization in terms of Conallen’s extension.

In this figure, and in terms of Conallen’s extension
[10], the left frame could be omitted, since it is not a
target of any link, but is included to provide a better
characterization of the user interface. If a non-framed
implementation is chosen, then all the classes (except
the class index) must include an aggregation relation
with the class index.

Finally, Figure 9 depicts the relations among the
contents and the user interface, or in other words, the
final application in terms of the notation defined in
[10]. In this figure the Pipe canalization functions are
used to assign contents to frames (e.g. content index
is assigned to the frame left) and to interpret content
links into the frame structure level (e.g. the link
between index and requestTrip is targeted by the
frame right).

5. Related work

At present, there exists an array of related work in
the domains of hypermedia and Web engineering.

Figure 7. UML-Conallen navigational map of the travel agency

PTA

index
<<client page>>

requestKOhtml
<<client page>>

requestOKhtml
<<client page>>

requestTrip
<<form>> <<link>>

requestOKjsp
<<server page>><<build>>

requestKOjsp
<<server page>><<build>>

creditCard
<<form>><<link>>

creditCardOKhtml
<<client page>>

creditCardOKjsp
<<server page>>

<<build>>

Controller
<<server page>><<submit>> <<forward>>

<<forward>>

<<submit>>

<<forward>>

credirCardKOhtml <<client page>>

creditCardKOjsp <<server page>>

<<forward>>

<<build>>

Figure 8. UML-Conallen user interface of the
travel agency

{column=2, row=1}

left
<<frame>>

travel agency
<<frameset>>

{column=1, row=1}

right
<<frame>>

85

Hypertext Design Model (HDM) [6], Object-
oriented Hypertext Design Model (OOHDM) [4] and
Relationship Management Model (RMM) [25], are
some of the most relevant design notations in the
hypermedia domain. All of them provide modeling
primitives to characterize the classes or entities of the
applications and their semantic relations. Because
HDM and RMM characterize the applications from a
data-model point of view none of them provides an
explicit characterization of the navigational map of the
application. OOHDM provides several modeling
diagrams to characterize the navigational aspects of the
application in terms of its classes and their
relationships (i.e. navigation classes and navigational
schema). In our opinion, the characterization of
navigational maps in terms of classes and their
relationships makes it harder for the users to visualize
the navigational structure of the application since it
requires the knowledge of object-oriented notations.

Object-oriented hypermedia (OO-H) [11], UML-
based Web Engineering (UWE) [16], Web Modeling
Language (WebML) [24], and Web Site Design
Method (WSDM) [17] are some of the most relevant
design notations in the Web engineering domain today.
All these notations use some or other sort of diagram
to characterize the navigational interpretation of the
structural diagrams: OO-H uses navigation access
diagrams, UWE uses navigation diagrams, WebML
uses navigation specifications and WSDM uses
navigation tracks. Because the modeling philosophy is
similar in these approaches and in OOHDM
(assimilating classes and relations), the conclusions
derived for OOHDM are also applicable to these
approaches.

Regarding Conallen’s extension to UML, the use of
stereotyped classes permits the presence of individual
elements (e.g. the client page requestTrip of Figure
8) that can be used to characterize navigational maps
for Web applications. In our opinion, Conallen's
extension is well – suited for design, because it permits
definition of the object-oriented behavior of dynamic
applications, but is not especially suited for the
conceptualization stage. Indeed, it is more complicated
to use it for conceptualization, since it ties-in more this
stage with the design stage than the Pipe does. In
addition, in our opinion, the Pipe characterization of
Figure 3 of the travel agency’s navigational map is
clearer than the navigational map that could be derived
from the UML characterization of Figure 7 because: (i)
it is not necessary the knowledge of object-oriented
notations to understand Figure 3; (ii) Figure 3 hides
architectural details included in Figure 7 (e.g. the
presence of a Model 2 architecture); and (iii) Figure 3
hides technical details regarding the presence of client
and server pages. Therefore, and as our experience has
demonstrated, Pipe notation is simpler to understand
by customers at the conceptualization stage [1][2][3].

Regarding Pipe notation scalability, in our opinion,
it is similar to the scalability of visual notations (e.g.
Conallen’s extension). If a great amount of contents
appear in the diagram, the separation in several
subdiagrams can be the best choice.

Dialog Flow Notation (DFN) [12] and State
WebCharts (SWC) [14] are focused on the
characterization of the navigation in Web applications.
DFN represents the dialog flow within an application
as a directed graph of states connected by transitions,
and SWC uses statecharts to describe the navigation

Figure 9. UML-Conallen design of the travel agency

<<forward>>

requestKOhtml
<<client page>>

requestOKhtml <<client page>>
requestOKjsp

<<server page>>

requestKOjsp
<<server page>>

creditCard
<<form>>

creditCardOKhtml
<<client page>>

creditCardOKjsp
<<server page>>

credirCardKOhtml <<client page>>

creditCardKOjsp <<server page>>

<<build>>

<<build>>

<<link>>

<<build>><<build>>

travel agency
<<frameset>>

index
<<client page>>

left
<<frame>>

{column=1, row=1}

requestTrip
<<form>> <<link>>

right
<<frame>>

{column=2, row=1}

{target=right} {target=right}
Controller

<<server page>>
<<submit>>
{target=right} <<forward>>

<<submit>>
{target=right}

<<forward>><<forward>>

PTA

86

between documents. To some extent, both approaches
characterize Conallen’s separation of concerns. DFN
uses masks and actions [12] while SWC uses static,
transients and dynamic states [14]. In Pipe the
separation among client and server pages is not
considered because the dynamic processing is hidden
behind the generation function g. In addition DFN and
SWC use the same diagram to characterize the
structural and navigational models, while in Pipe these
models are represented using contents graph and
navigational schema diagrams.

6. Conclusions and future work

The characterization of navigational maps is a key
issue during development of Web applications. Using
navigational maps, developers can obtain a global view
of the whole application that can help them during the
development process. In addition, the presence of
navigational maps can help users of Web sites to find
the desired information quicker.

This paper presents a use of the Pipe notation to
characterize navigational maps for Web applications
(hypermedia or non-hypermedia). Pipe contents graph
can be used to characterize the navigational map for
Web applications at conceptualization stage, thus
omitting computational design details included in
Conallen’s extension. In addition, Pipe contents graph
permits the explicit definition of Web application’s
navigational map instead of deriving it from modeling
primitives defined in terms of classes/entities and their
relations.

Using Pipe navigational schema and canalization
functions it is possible to provide a presentational
characterization of the navigational map in terms of
screens and regions. This characterization, besides the
Pipe browsing semantics, could be used to characterize
the application’s state during its browsing.

Moreover, as demonstrated in this paper, the
generation of UML-Conallen class diagrams using
Pipe contents graph is a straightforward task. Although
the translation from Pipe to UML diagrams presented
in this paper does not include any complex detail, we
are aware that a systematic and well-defined
conversion procedure between Pipe and UML (in both
directions) has to be defined. Indeed, at present, our
main research effort is made in this direction.

Being focused on the representation of
heterogeneous units of information and their
heterogeneous relations, the Pipe notation lacks the
modeling primitives for characterizing domains that
can be easily represented in terms of classes/entities
and their relations. For this purpose, UML class

diagrams or entity-class diagrams can be used in
combination with Pipe diagrams. In this paper we have
omitted such a characterization because we have
focused on the provision of a navigational map for the
travel agency instead of characterizing its data and
their relations.

Currently, we are developing a CASE tool to
support the Pipe notation. Future work includes the
automatic translation from Pipe notation to Conallen's
extension (in both directions) to alleviate the transition
from conceptualization to the design stage. In addition,
we are working on the automatic generation of HTML
pages and object-oriented codes from Pipe diagrams.
UML-Conallen diagrams derived from Pipe diagrams
could be used to generate such pages and codes.

7. Acknowledgements

The Spanish Committee of Science and Technology
(TIC2001-1462, TIC2002-04067-C03-02 and
TIN2004-08367-C02-02) has supported this work.

8. References

[1] A. Navarro, B. Fernández-Manjón, A. Fernández-
Valmayor, and J.L Sierra, J.L. “Formal-Driven
Conceptualization and Prototyping of Hypermedia
Applications”. In proceedings of FASE 2002-ETAPS 2002
Grenoble, April, 2002, pp. 308-322.

[2] A. Navarro, B. Fernandez-Manjón, A. Fernández-
Valmayor, and J.L. Sierra, “The PlumbingXJ Approach for
Fast Prototyping of Web Applications”. Journal of Digital
Information 5, 2, special issue on Information Design Models
and Processes, 2004.

[3] A. Navarro, A. Fernández-Valmayor, B. Fernandez, and
J.L. Sierra, “Conceptualization, Prototyping and Process of
Hypermedia Applications”. International Journal of
Software Engineering and Knowledge Engineering 14, 6,
special issue on Modeling and Development of Multimedia
Systems, 2004, pp. 565-602.

[4] D. Schwabe, G. Rossi, and S.D.J. Barbosa, “Systematic
Hypermedia Application Design with OOHDM”. In
Proceedings of the Hypertext 96, Washington DC, USA,
March, 1996, pp. 116-128.

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[6] F. Garzotto, P. Paolini, D. and Schwabe, HDM. A Model-
Based Approach to Hypertext Application Design. ACM
Transactions on Information Systems, 11, 1, 1993, pp. 1-26.

87

[7] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley, 1999.

[8] Java Technology. Enterprise Java Beans Technology
http://java.sun.com/products/ejb/index.jsp

[9] Java Technology. Java Server Pages Technology.
http://java.sun.com/products/jsp/

[10] J. Conallen, “Modeling Web Application Architectures
with UML”. Communications of the ACM 42, 10, 1999, pp.
63-70.

[11] J. Gómez, C. Cachero, and O. Pastor, “Conceptual
Modeling of Device-Independent Web Applications”. IEEE
MultiMedia 8, 2, 26-39.

[12] M. Book, and V. Gruhn. “Modeling Web-Based Dialog
Flows for Automatic Dialog Control”. In Proceedings of the.
19th IEEE International Conference on Automated Software
Engineering (ASE 2004), Linz, Austria, 2004, pp. 100-109.

[13] M. Thüring, J.M. Haake, and J. Hannemann, “What's
Eliza Doing in the Chinese Room? Incoherent
Hyperdocuments - and How to Avoid Them”. In
Proceedings of the Hypertext 91, Texas, 1991, pp. 161-177.

[14] M. Winckler, M., and P. Palanque. “StateWebCharts: a
Formal Description Technique Dedicated to Navigation
Modelling of Web Applications”. In Proceedings of the
International Workshop on Design, Specification and
Verification of Interactive Systems (DSVIS'2003), Funchal,
2003.

[15] N. Koch, and A. Kraus, “Towards a Common
Metamodel for the Development of Web Applications”. In
proceedings of International Conference on Web
Engineering 2003, ICWE 2003, 2003, pp. 497-506.

[16] N. Koch, H. Baumeister, R. Hennicker, and L. Mandel,
“Extending UML to Model Navigation and Presentation in
Web Applications”. In Modeling Web Applications in the
UML Workshop, UML2000, York, England, October 2000.

[17] O.M.F De Troyer, and C.J. Leune, “WSDM: A User
Centered Design Method for Web Sites”. Computer
Networks 30, 1-7, pp. 85-94.

[18] P. Fraternali, “Tools and Approaches for Developing
Data-Intensive Web Applications: A Survey”. ACM
Computing Surveys 31, 3, 1999, pp. 227-263.

[19] P.D. Stotts and R. Furuta, “Petri-Net-Based Hypertext:
Document Structure with Browsing Semantics”. ACM
Transactions on Office Information Systems, 7, 1, 1989, pp.
3-29.

[20] P.P. Chen, “The Entity-Relationship Model - Toward a
Unified View of Data”. ACM Transactions on Database
Systems 1, 1, 1976, pp. 9-36.

[21] R.C. Bodner, M.H. and Chignell, “Dynamic hypertext:
querying and linking”. ACM Computing Surveys 31, 4es,
1999.

[22] S. Abrahão and O. Pastor. “Measuring the Functional
Size of Web applications” International Journal of Web
Engineering and Technology 1, 1, 2003, pp. 5-16.

[23] S. Brown et al. Professional JSP. 2nd Edition. Wrox
Press, 2001.

[24] S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling
Language (WebML): a modeling language for designing
Web sites”. Computer Networks 33, 1-6, 2000, pp. 137-157.

[25] T. Isakowitz, E.A. Stohr, and P. Balasubramanian,
“RMM: A Methodology for Structured Hypermedia Design”.
Communications of the ACM 38, 8, 1994, pp. 34-44.

[26] The Apache Software Foundation. Struts.
http://struts.apache.org/

[27] W3C. HTML 4.01 Specification, 1999.
http://www.w3.org/TR/html4/

88

Atomic Use Case as a Concept to Support the MDE Approach to Web
Application Development

Kinh Nguyen
Computer Science & Computer Engineering Department

La Trobe University,Australia
kinh.nguyen@latrobe.edu.au

Tharam Dillon
Faculty of Information Technology

University of Technology Sydney,Australia
tharam@it.uts.edu.au

Abstract

While use case is a popular technique for capturing require-
ments, the process of proceeding from use cases to subse-
quent modeling activities is to a large extent still unclear.
In this paper, we propose the concept of atomic use case to
formally model the functional requirements in support of the
MDE approach to web application development. In partic-
ular we demonstrate how to construct a precise model for
the business logic layer and to establish clear relationships
between business logic model to other models such as the
domain model, user interface model, navigation model, and
the business process model. We also explore how the atomic
use case concept can be incorporated into UWE (UML Web
Engineering) Methodology.

1. Introduction

In this paper, we propose the concept of atomic use
case as a fundamental concept to support the MDE (Model-
Driven Engineering) approach to web-based application de-
velopment. A web application, in particular a web infor-
mation system, can be seen as having the following major
components: (a) web-based components, (b) business logic
and data source components, (c) other components such as
web-services, portlets, agents, metadata, data mining, etc.
We will be largely concerned with the first two kinds of
components.

The concept of atomic use [7] is proposed as a solution
to what we regard as a long-standing problem of informa-
tion system, be it relational or object-oriented – namely the
problem of analyzing and modeling the behavior of infor-
mation systems.

One advantage of relational database technology, it is of-

ten claimed, is the separation of the static aspect and the dy-
namic aspect. The modeling of the static aspect (the struc-
ture of the database) has been handled in practice reason-
ably well. In contrast, the dynamic aspect (the operations
of the database system,) is handled quite poorly. In the 70s,
IFIP (The International Federation on Information Process-
ing) recognized it as a key problem and organized a num-
ber conferences, inviting researchers to propose solutions to
this problem. A number of proposals were made but none
of them were adequate to the task, especially as a practi-
cal solution. Consequently, the problem gradually slipped
into the phase of being a forgotten problem. Interest in the
problem was briefly revived in the late 80s with the emer-
gence of Z notation. Before long, it was realized that Z
notation could not deliver the expected results, and the the
problem slipped back into the state of a forgotten problem.
In the mean time, the industry handles the problem in an
informal (hence ambiguous) and ad hoc manner, which in-
curs huge hidden costs (poor understanding of functional
requirements, poor specification for programmers, etc.).

As for object-oriented information systems, first of all,
we can observe that UML without OCL would be too im-
precise to describe behavior of information systems. An
activity diagram can represent at a number of tasks and the
flows between them; but it lacks the facilities to describe
the tasks in detailed and precise terms. The same is true of
sequence diagrams, which can show the sequence of mes-
sages in a collaboration, but are not good at describing the
detailed effects of such messages. Though there are situa-
tions in which the sequence of messages alone can be very
helpful (e.g. to explain how enterprise Java beans work,
that is, how a client, through a number of stubs, can com-
municate with the beans on the server), it is not the case for
information systems. For information systems, it is the ef-
fects of the messages that really tell us what really is going

89

on. In practice, it is more often than not that after drawing
pages and pages of sequence diagrams, when it comes to
implementation, we have to ask a whole host of questions
all over again. The gap between sequence diagrams and the
implementation code is far too big in most cases. In the lan-
guage of MDE, the model does not have sufficient informa-
tion for the subsequent transformation act. To strengthen the
UML models, OCL has been introduced. Since its incep-
tion, many important features have been added, and OCL
now appears to have adequate expressive power for specify-
ing complex applications. Given that is the case for OCL,
an issue needs to be be seriously considered: how are we to
use it? For example, what would be the units of behavior
that we are going to use it for? And how are we going to
identify these units in practice?

We propose atomic use case as an answer to the problem
of precise behavior modeling. In this paper, we will intro-
duce the concept and demonstrate how we can use it to con-
struct a precise model for the business logic layer, and from
there, to establish the clear relationships between business
logic model and the user interface (of any kind). Finally,
we explore how the atomic use case concept can be incor-
porated into UWE (UML Web Engineering) Methodology
and briefly describe how we may apply this concept to the
Travel Agency case study.

2. Introductory Example

We will take an example to show what atomic use cases
are and the role they play through out the life-cycle. Be-
cause we wish to show the role this concept can play in the
whole life-cycle, we will need to choose a very simple ex-
ample.

Problem Statement Consider an application in which
we are required to maintain information about a set of em-
ployees. Each employee has a unique ID, a name, and a
phone number. The ID and name of an employee cannot be
changed. System operations, or use cases, include: (1) Add
an employee, (2) Delete an employee, (3) Change the phone
number of an employee, (4) Retrieve employees by ID, by
name, or by phone number.

2.1. Identify and Specify Atomic Use Cases

We can go through the use cases one by one, identify the
atomic use cases, and formally specify them. Through this
process, as will be shown, we end up with a complete model
that captures the full functionality of the application.

Consider the operation (use case) to “Add an Employee.”
A use case description for this operation can be as follows:

“To add a new employee, first, the user enters the id of
the new employee. The system checks to determine if the id
is new. If it isn’t, an error message will be displayed and the
operation is terminated. Otherwise, the user enters next the

Start

id

Entered
End

T1: Enter ID

id?: ID phone?:PHONE

Add New Empoyee

T2: Add the Employee

T3: Handle Exception

msg!: MSG

name? : NAME

PRE: id? is new

POST: Add employee with
id = id?, name = name?
and phone=phone?

PRE: id? is not new

POST: msg = “ERROR: id is not new!”

Figure 1. A Petri Net Representation for “Add an
Employee” Use Case.

name and the phone number.The system then creates a new
employee with the input data and saves it.”

The use case and the various path it can take can be repre-
sented by a high-level Petri net shown in Figure 1 (What we
present here is a simple version of what we call the “obliga-
tion net” [8], a high-level Petri in which each transition has
pre- and postconditions to precisely express the obligations
the system has to fulfill.)

We now make a shift in the way we view the system’s
behavior. Instead of thinking in terms of “do this then do
that” or “if this, then do that” (the procedural view), we
consider the operation as one whole unit and ask “For this
use case, in how many different ways can the system makes
its response?” (the declarative view). For the current use
case, the system can respond in two ways, corresponding to
two paths in the system obligation net.

The first path consists of transitions T1 and T2. Follow-
ing this path, the system makes a positive response: it adds
a new employee to the information base. The second path
consists of transitions T1 and T3. In this case, the system
makes a do-nothing response: it simply leaves the system in
its prior state due to the non-fulfillment of the precondition
for adding an employee. We refer to the response described
by the first path as an atomic use case, and the one described
by the second path as an exception use case. A general def-
inition can be given as follows:

Definition: An atomic use case is conceived as an in-
divisible response by the system that either (1) effects a
change of the system’s state, which takes the system from
a consistent state to a consistent state, to reflect an event
taking place in the application domain, or (2) performs a
query that is of interest to the user in its own right.

Having identified the atomic use case, and in keeping
with the “atomic” viewpoint, we can specify it informally

90

in terms of the input, output, pre- and postconditions as fol-
lows:

– Input: id?, name?, phone?
– Output: None
– Pre: id? is new
– Post: Create a new employee with id?, name?, phone?

and add the employee set
We can now seek to specify the atomic use case formally.

As expected, the specification always follows a consistent
format which consists of input, output, pre- and postcon-
ditions, though some of these elements may be absent in a
particular case. The “Add Employee” atomic use case can
be specified as follows:

AddNewEmployee

input
id? : ID
name? : NAME
phone? : PHONE

pre
id? �∈ {e : allEmployees • p.id}

post
∃ newEmployee : allEmployees′ •

newEmployee �∈ allEmployees
newEmployee.id = id?
newEmployee.name = name?
newEmployee.phone = phone?
allEmployees′ = allEmployees

∪{newEmployee}

Two points should be made from this example. First,
in order to precisely specify the use case, we need to use
some formal notation. In the above example, we have used
Object-Z [3]. We could use OCL instead. Both use the
same mathematical concepts and we can easily translate
from one into the other (except for some advanced opera-
tors of Object-Z). Object-Z is more concise and we use it
here to save space.

Second, we have assumed the existence of two classes
(only the static features are required at this stage). One is the
Employee class, which has three attributes as shown below:

Employee

id : ID
name : NAME
phone : PHONE

. . .

The other is a system class. It represents the system from
the functional view point. It maintains a set of employees

and provides method to manage that set of employees. We
will call the class EmployeeApp:

EmployeeApp

allEmployees : P Employee

∀ e1, e2 • e1 �= e2 ⇔ e1.id �= e2.id

. . .

In this example, the Employee class is actually the whole
of the domain model. In general, to formally specify the
atomic use case, we need (a) the domain model or part of
the domain model relevant to the use case, and (b) the sys-
tem class. One crucial aspect of the system class is that
through the attributes of the system object we can get to all
the domain objects of the system.

By going through the use cases one by one, and identi-
fying and formally specifying the atomic use case for each
of them, we would obtain a collection of atomic use case
specifications, which constitutes a complete functional re-
quirements model of the application.

2.2. Derive Methods for Domain and System
Classes to Obtain a Complete Business Logic
Model

Once an atomic use case is formally specified, we can
deduce the methods required of the domain classes and the
system class to support that use case.

Each atomic use case will become a method of the sys-
tem class. For the “Add a New Employee” use case, we
require the method shown below in the system class:

EmployeeApp

AddEmployee
id? : ID
name? : NAME
phone? : PHONE

id? �∈ {e : allEmployees • e.id}
∃ e : Employee •

e �∈ allEmployees
e.INIT(id?/id?, name?/name?, phone?/phone?)
allEmployees′ = allEmployee ∪ {e}

. . .

From the postcondition of that method of the system
class, it is clear that we need to be able to create new
Employee instances. Thus, we have identified a method
(constructor) required of the domain class to support the
use case. The method is expressed in Object-Z as an INIT
schema as shown below:

91

Employee

INIT
id? : ID
name? : NAME
phone? : PHONE

id = id?
name = name?
phone = phone?

. . .

By repeating this activity for all atomic use cases, we
would get a complete business logic layer model as far as
the functional requirements are concerned. In general, this
model (which strictly speaking is not a design model) con-
sists of a system class and all the domain classes relevant to
the particular application.

2.3. Implement and Test the Business Logic Model

Having derived the methods required of the system and
domain classes, we can implement or prototype them. An
implementation for the “Add New Employee” use case is
shown below. We need one method for the system class:

public void addNewEmployee(String id,
String name, String phone) throws Exception
{

// compute the precondition.
// Assume that collectIds() returns the set of
// ids of the set of employees
boolean pre =

allEmployees.collectIds().contains(id);

// if precondition is not satisfied,
// abort the operation
if (! pre)
{ throw new Exception

("The ID already exists!");
}

// otherwise, create the new employee and add
// it to the information base
Employee newEmployee =

new Employee(id, name, phone);
allEmployees.add(newEmployee);

}

and one method for the domain class Employee:

public Employee(String id, String name,
String phone)
{

this.id = id;
this.name = name;
this.phone = phone;

}

Note that we have all the details from the business logic
model we need to do that. No further discovery activities
are needed.

Testing Once the two methods above are available, we
can test them with a testing script such as the one shown
below. The variable name theSystem is to emphasize the fact
that an instance of EmployeeApp represents the complete
system in this example.

// create a system object
EmployeeApp theSystem = new EmployeeApp();

// add first employee and display the system’s
// state
theSystem.addNewEmployee("E10","Smith","1234");
System.out.println(theSystem.toString());

// add second employee and display the
// system’s state
theSystem.addNewEmployee("E20","Adams","2345");
System.out.println(theSystem.toString());

// try to add employee with an existing id
// and observe that the system’s state remains
// the same
theSystem.addNewEmployee("E10","Clarke","3456");
System.out.println(theSystem.toString());

The testing script contains several test cases (scenarios of
the current use case), which are based on the precondition
specified in the atomic use case. For each test, the state of
the system object is displayed to verify that the implemen-
tation satisfies the postcondition specified in the atomic use
case.

The tests reveal two important consequences of the im-
plementation of the atomic use case.

• First, we can perform the required operation, i.e.
adding employees.

• Second, and just as important, the system can protect
itself from invalid requests and preserves the integrity
of its state.

The ability to make appropriate responses to both valid and
invalid requests is, of course, exactly what we should be
looking for. Notice that we can achieve all of these by con-
sidering only the atomic use cases.

The Functional Core Once we proceed to implement
the rest of the operations specified in the business logic
model, the two classes that we obtain constitute an exe-
cutable component that allows us to perform all the required
operations (add and delete employees, change phone num-
bers, etc.). We call this the functional core. It is a “basic
core of the system” that is fully functional in the sense that
it can store the relevant information, update the information,
and respond to queries in support of the business activities.
For this reason, we take the functional core to be the busi-
ness logic layer of the system. That is, in our approach, we
take the business logic layer to be precisely the implemen-
tation of the identified atomic use cases.

92

Moreover, once the functional core has been fully tested,
we can build the desired graphical user interface as a sep-
arate layer on top of it. As will be shown, it is possible to
build a separate GUI layer that interacts with the functional
core only at a small number of well-defined points.

3. Further Clarification on the Concept of
Atomic Use Case

In the definition of atomic use case, given earlier, the cri-
terion that an update atomic use case must “take the system
from a consistent state to a consistent state” is significant
and is useful to identify atomic use cases. The following
simple example illustrates this point.

Example - Enroll Student Consider the case of en-
rolling students in subjects. Suppose subjects are classified
as core or optional, and each student must take at least 3
core subjects. Without the condition that a student must
take at least 3 core subjects, the act of enrolling a student in
a subject is an atomic use case. With that condition in place,
that act is no longer an atomic use case: it may cause the in-
formation base to be in an inconsistent state. The atomic
use case in this case must be “To enroll a student in a set of
subjects in one go”. More precisely,
– The inputs are a student id and a set of subject codes
– The outputs: NONE (it is clearer not to regard error mes-
sages as output; they are implied by the preconditions)
– The preconditions are: (1) the id must exist, (2) each unit
must exists, (3) the set contains at least three core unit
– Postcondition: Enroll the student in those subjects.

Similarly, the phrase “to reflect an event taking place
in the application domain” provides a useful criterion for
identifying atomic use case. The following example illus-
trates this point.

Example - Add Student or Staff Consider an applica-
tion which deals with students and staff in an academic in-
stitution (suppose we maintain some different information
about them). “Add a Student” and “Add a Staff” are atomic
use cases. In one of our presentations, it has been asked:
Should we take “Add a Person” as an atomic use case? The
answer is “No”. In the application domain, we may have
the event of “Having a new student” or “Having a new staff
member”, but not the event “Having a new person”. “Per-
son’ is an abstraction with some information left out of stu-
dent or staff, and the so-called event “Having a New Per-
son” cannot fully describe the situation. Furthermore, it we
consider the states of the information base, we can see this
clearer: When the information base change from state S to
state S’, then S’ may be S plus information about a new
student or a new staff, but not simply about a new person.

Finally, when the use case is a query use case it needs to
be “of interest to the user in its own right.” The following
example serves to illustrate this point.

Example - Redistribution Parts between Warehouses
In [4], Jacobson presents a rather sophisticated screen to
show how the user may interact with a system to redis-
tributes parts among various warehouses (we move items
from the ‘From’ warehouse to the ‘To’ warehouses). There
is a drop-down list to select the ‘From’ warehouse. When
a ‘From’ warehouse is selected by the user, the system re-
spond by listing the rest of the warehouses as potential ‘To’
warehouses. In making this response, the system would
need to perform a query against the information base. Now,
it is unlikely that such a query is of interest to a user by it-
self (in this example, it serves as a small step in determining
the potential ‘To’ warehouse and where in that warehouse
we should move items to). If that is the case, the query does
not amount to an atomic use case. It is simply a query that
supports the user interface.

In our approach, we would extend the functional core to
provide the user interface-support queries. The functional
core and the extended part together are called the extended
function core

4. Relationships to Use case Descriptions
Graphical User Interfaces

Use cases can be given at different grains of granuality.
Three main levels are usually distinguished, and using the
terminology of [2],they are: summary goal level (business
use cases), user goal level (system use cases), and subfuc-
tions (subfunction use cases). Use case descriptions are usu-
ally given in three general formats: the simple unstructured
format, the user-system dialog format, the flows of events
format. Given a description of a use case, regardless of its
format, we can identify the atomic use case associated with
it. As shown earlier, one way to do this is to sketch a net
like one in Figure 1 and observe how the system responds to
various paths (some lead to atomic use cases, some do not).
Very often, we can even recognize the atomic use cases di-
rectly: they normally correspond to the main flows of the
system use cases.

Identifying atomic use cases through use case descrip-
tions is not the only option. In fact, it is more practical to
do so through the graphical user interface. In the industry,
people are less likely to talk about use cases; they often talk
about user interface and how the user interacts with the user
interface. We will be talking the ‘language of the indus-
try’ when we identify the atomic use cases through the user
interface sketches (or designs) and the descriptions of how
they work.

93

Add Student/Staff

Add Cancel

Student Staff

ID:

Name:

Phone:

Figure 2. Screen to Add Student or Staff.

Example - Add Staff or Student Consider the screen
in Figure 2.

– When the user checks either the ‘Student’ or the ‘Staff’
checkbox, no query is made to the information base. The
user interface simply ’remembers’ that the user has made
that choice.

– When we enter id, the system would respond by check-
ing whether the id is new or not, and warn us if it’s not new.
This action requires the system to make a query to the un-
derlying information base. The purpose of this query is to
support the user interface.

– After the user has entered relevant information and
press button “ADD”, the system will respond by calling the
business layer to add a student or a staff member. Thus, out
of this screen we have two atomic use cases: one to add a
new staff and one to add a new student.

In general, given a screen or a series of screens, web-
based or otherwise, many events can be generated by the
user’s actions. By examining how the system responds to
each of these events, in particular how it interacts with the
information base, we can identify atomic use cases and all
the queries needed to support the operation of the user in-
terface.

5. Transforming Functional Core Model to
Business Logic Layer

The implementation of the functional core model, in
essence, requires the translation of formal expressions for
pre- and postconditions into programming code. To do that,
in most cases we only need to handle a small number of
common expressions. These expressions are are list in Fig-
ure 3, which show the equivalents in Smalltalk. Equivalent
Java code segments would be less concise, but definitely
standard patterns can easily be established.

In the language of MDE, (a) we have a formal platform
independent model of the business logic layer, and (b) we
can readily formulate transformation rules to transform the

∀ x : X • p(x) X size =
(X select: [:p| p(x)]) size

∃ x : X • p(x) (X select: [:P| p(x)])
isEmpty not

x ∈ X; x �∈ X x in: X (or X includes: x)

x �∈ X x notIn: X
(or (X includes: x) not)

X ∪ {a} X add: a

X \ {a} X remove: a

X ∪ Y X union: Y

X ∩ Y X intersect: Y

X \ Y X removeAll: Y

{x : X | p(x)} X select: [:x | p(x)]

{x : X • e(x)} X collect: [:x | e(x)]

∃ x : X • x := X detect: [:x | p(x)].
p(x) x oper
� x.oper

(Note that in:aCollection can be defined as a method in the class
Object as aCollection includes: self)

Figure 3. Equivalent Expressions between Formal
Specification and Smalltalk

model into a platform-specific component.

EJB Implementation We can implement each atomic
use case as a session bean, which may access data sources
in a distributed manner. In this case, the system class is
implemented implicitly as a collection of session beans.

However, in most cases, it is better to put all the atomic
use cases in one session bean, one method for each atomic
use case. In this case, the system class is implemented ex-
plicitly. Conceptually, such an implementation would be
much clearer and easier to understand. Practically, it would
make it easier for the client programs to locate and use the
beans on the server-side: there is only one bean that the
client should be aware of.

Note It is not unusual to break up an application into
a small number of major components. In such a case, the
“system class” is implicitly made up of these components
and each atomic use case is to be described in the context of
a particular component. Also, we must specify the interac-
tions among the components in terms of the messages they
can send to each other.

Relational Implementation It is not uncommon to im-
plement the information base as a relational database and

94

to have the business logic code written in a non-object-
oriented fashion (e.g. using JDBC instead of Hibernate,
say). Then how would we proceed from the specification
to the implementation?

In this case, we need to convert the object-oriented model
into a relational model. That is, we convert the class di-
agram into a relational schema, and each atomic use case
must be expressed as a method that acts on the relational
schema. The first task (to obtain the relational schema) is
rather straight forward and many mapping rules have been
suggested. The second task (to capture the behavior), at the
intuitive level is very straight forward. Moreover, we only
need to be concerned with a small number of expressions
(that are used to express the pre- and postconditions) pre-
sented earlier.

Alternatively, we could choose to write the behavioral
specification based on the relational model from the out-
set. In this case, standard Z notation is not quite suitable
for practical use (as witnessed by history). We have exper-
imented with an extension of Z, which we call ‘RZ’, ‘R’
for ‘relational’. It does not have (yet) a formal semantics,
though intuitively the meanings of the additional constructs
are clear. As a kind of ’formal pseudo code’, RZ works re-
ally well (quite unambiguously) in expressing the intentions
of the modeler. In addition, for the consumption of those
who do not want to use mathematical notations, we have
added a few features to SQL to form a pseudo code language
to express the atomic use cases (i.e. their pre- and post-
conditions) in a highly (but not formally) precise manner.
We are currently investigating the use of an object-oriented
specification language (such as Object-Z, OCL) for specify-
ing pre- and postconditions against a relational schema by
representing tuples of a relation as simple objects where all
the attributes are publicly accessible for manipulation. The
use of Maude [1] could be quite suitable for this task as well.

6. Atomic Use Cases and Events in Web Appli-
cations

The relationships between the atomic use cases and the
events generated by graphical user interfaces (considered
earlier) indicate how atomic use cases can be applied to the
analysis, modeling and specification of web applications.
An event generated by the user’s actions on a web-based in-
terface can be conceived as a contract (to be fulfilled in most
cases by the method that handles the event on the server
side). This contract consists of

– The input data (they normally come from the HTML
forms or cookies or the session object);

– The output (in the contract for a web event, we define
the output to be data that we need to pass to the returned
web page – see example below);

– The precondition (to specify the conditions that the in-

put data must satisfy);
– The postcondition (to specify actions such as updating

of the cookies or session object, performing query or update
action against the business logic layer, i.e. invoking atomic
use cases);

– The returned page (the page is divided into one or more
“blocks”, and for each block, we specify the input data that
it receives and displays and the events it may generate; for
each event, we specify its parameters).

The content of such a contract for a web event can be
formally specified. As an example, consider the screen for
an online bulletin board shown in Figure 4. Several events
can be generated by this screen and the specification for the
“View Messages” event, for example, is shown below (the
boolean expressions are in OCL):

Event ViewMessages
Input:

// topic? is the name of the selected topic
Request topic?: String

Output:
// set of messages to be displayed by the
// returned web page
messages!: Set(String)
// the topic needs to be passed to the
// returned web page
topic!

Pre:
// name of selected topic must exist in the
// information base
bulletinBoardFnCore.

getTopics.name ->includes(topic?)
Post:

// retrieve the messages and pass the topic
// along to the returned web page
messages! =

bulletinBoardFnCore.
getMessages(topic?).text

topic! = topic?
Returned Page:

Block 1:
Input:

message! : Set(String)
topic!: String

Next Events:
DisplayTopics(Session topic: String)

where topic = topic!

Notice that (a) In the Post section, a call is made to
the business logic layer; and (b) The returned page con-
tains the Display Topics event whose argument is the topic
received by the View Messages event by virtue of two
constraints: topic! = topic? in the Post section, and
topic = topic! in the Next Events subsection of the Re-
turned Page section.

7. Exploring the Application of Atomic Use
Cases to UWE

UWE (UML-based Web Engineering) [6] is a methodol-
ogy for web application development with ArgoUWE [5] as

95

1

2 3

4

1 selection list of topics obtained from topics!

2

3

4

event: View Messages

event: Post Message

event: Exit

Figure 4. Layout for Display Topics Event

a supporting CASE tool. One of the motivations for UWE
is to provide support for complex business processes. Let
us explore how we can apply the concept of atomic use case
to UWE.

Example The example of an e-shop given in [5]. This
example illustrates the basic steps and the basic models of
UWE. The example shows four basic UWE models: the
conceptual model, the navigation model, the (business) pro-
cess structure model, and the process flow model. Part of
the navigation model for the e-shop example is reproduced
in Figure 5. It shows the navigation nodes, process nodes,
navigation links (between navigation nodes), and process
links (between navigation nodes and process nodes). One
of the process nodes is the Checkout node, whose details
are shown in the process flow model in Figure 6.

Analysis of the Checkout Process From the atomic
use case point of view, we would perceive this Checkout
node as consisting of two “aspects” which are associated
with two different kinds of concerns: the first is about an
atomic use case and the second is about the user interface
design to support this atomic use case.

The atomic use case is the one that takes details about
an order submitted by the user (such as customer name,
address, credit card number, whether they want the items
wrapped, etc.) and accordingly updates the underlying in-
formation base of the e-shop. We can call this the “Take Or-
der” atomic use case (or “Place Order” from the customer’s
viewpoint).

With the Take Order atomic use case in mind, we can
see that the essential role of the Checkout process model

in Figure 6 (possibly apart from the “send invoice” action)
is to obtain the details needed as input for the Take Order
atomic use case. This is the second aspect we mentioned
above. Viewing it this way, a question arises: How should
we model this second aspect?

Instead of the process model in Figure 6, we could model
the second aspect by a graphical user interface. For exam-
ple, we can have a screen with two screen “blocks” that the
user can interact with simultaneously:

– One block to confirm the items in the shopping cart and
to select the wrapping options and

– One block to set the payment method.
The screen also has buttons to cancel or to place order. Such
a screen would allow us to get the information we need, but
it does not constraint us to the flow pattern described in the
Checkout process flow in Figure 6. The process flow model
is an over-specification: It is one way to get information to
support the atomic use case but it is not the only one.

Possible Modifications to the UWE Models For the
above Checkout process, it could be argued that the crucial
point is the content of the information, rather how we obtain
it. That is, the actual process in this case seems to play a
secondary role.

For that reason, we could introduce to the UWE naviga-
tion model a new type of process node (through the stereo-
type mechanism) to represent processes with characteristics
similar to those of the Checkout process above. We may call
them “Use Case Process Nodes”. A use case process node
can be modeled by

– An activity diagram with a branching fork which has
a number of alternatives: one of which leads to a “cancel”,
and each of the rest leads to an atomic use case (which rep-
resents the point where we update the information base)

– The specifications of the atomic use cases (we normally
would have them already)

– A screen (which can be taken to be a part of presen-
tation model) to indicate how the user can interact with the
system to effect the atomic use case.

The suggested specification appears to be much simpler
than what we currently have in UWE, and it avoids the prob-
lem of over-specification (which in most cases contains an
element of arbitrariness on the part of the modeler).

By introducing the Use Case Process Node and by mod-
eling it the way suggested above, we may bring about sev-
eral advantages. First, there may be many instances of such
processing nodes in an application, and it is clearer concep-
tually to single them out (to distinguish them from other
kinds of processing nodes). Second, having singled them
out, we can model them in a standard way as suggested
above, which would simplify the specifying process.

Incidentally, another advantage is brought about by the
act of modeling the atomic use cases itself. With current

96

Figure 5. Navigation Model for the e-shop. Source: Knapp et al. [5]

UML modeling tools, the atomic use cases can be speci-
fied (more or less completely) with the help of OCL, and
code (e.g. Java) can be generated out of the model. This
generated code can quickly be enhanced to be a working
prototype. This feature could be very attractive as a means
to induce the average software engineer to apply OCL for
rigorous modeling, which is an essential part of the MDE
approach.

The admission of atomic use cases into the UWE model
may open up a way to classify the typical business processes
into various kinds of different grains of granuality. Some
would be the use case process nodes described above. Some
may represent external processes, which may be modeled
by specifying the inputs and outputs. Still some may involve
interactions with the user or external sources, which would
require many of the UWE features for modeling.

8. Atomic Use Cases and the Travel Agency
Case Study

Consider the Travel Agency Case Study described in [9].
We will give a sketch as to how one may approach this case
study using atomic use cases. We will view the application
as made up of the following types of components: the Per-
sonal Agent Assistant, the Broker Agent, the Transportation

Company and the Finance Company.
The Personal Agent Assistant (or Assistant for short) is

responsible for processing requests from the customers. To
process a request, the Assistant maintains a list of Broker
Agents, a list of Financial Companies, and data about the
customer bookings and payment details. It would also need
to store the current request and the list of current offers. We
can think of the Assistant as a finite-state machine whose
actions, which take place when transitions occur (some of
which may be triggered by time constraints), would be the
following atomic use cases:

– Enter Request (to store a user’s request). Input: A re-
quest; Output: None; Pre: The request is valid; Post: Store
the request.

– Get Offers (to send messages to Broker Agents to re-
quest offers) Input: The request data; Output: A list of of-
fers; Pre: None; Post: Store the list of offers. (Note that
we cannot impose the condition that the offers match the re-
quirements of the request, though we do expect that to be
the case.)

– Present Offers (to take the offers from the previous use
case and to make the valid offers available to the user). In-
put: The set of offers (denoted by “InOffers”); Output: A
set of offers (denoted by “OutOffers”); Pre: The request id
exists; Post: OutOffers = the set of offers in InOffers that

97

Figure 6. The Checkout Process Model. Source: Knapp et al. [5]

match the request.
– Make Booking (to take a booking (or bookings) on be-

half of the user). Input: The offer identification, payment
details; Output: Booking confirmation messages; Pre: The
selected offer is one of the valid offers; Post: Validate pay-
ment details with Financial Company AND send messages
to confirm the bookings for the selected offer and cancel the
rest.

– Cancel Request (to cancel the request). Input: None;
Output: None; Pre: None; Post: Delete current request and
and cancel all offers

The Broker Agent would maintain a list of Transporta-
tion Companies. The main atomic use case it has are:

– Provide Offers (to take a request from the Assistant and
to respond with a list of offer). Input: A request; Output: A
list of offers; Pre: None; Post: The offers match the request
AND store the offers.

– Confirm Booking (to confirm the booking of an offer
which were previously temporarily booked). Input: The se-
lected offer identification; Output: confirmation messages;
Pre: The selected offer is in the current list of offers; Post:
Send message to confirm bookings for selected offer and
cancel the rest.

For the Transportation Company and the Finance Com-
pany, essentially we need to define the interface and the as-

sumptions about the contracts related to the messages.

Having identified those atomic use cases, we can pro-
ceed to specify them formally, and construct the concep-
tual model (perhaps in the process of formalizing the atomic
use cases), the navigation model, and the business process
model.

9. Conclusion

In this paper, we have introduced the concept of atomic
use case. It is a natural concept and therefore easy to grasp.
In fact, it has appeared in various guises in the systems de-
velopment literature. However, to really benefit from it, we
need to have a clear understanding of the concept. Toward
this end, we provided a definition (one that aims to assist
us in identifying the atomic use cases). We showed how
we can identify the atomic use cases and specify them, and
how we can build a complete business layer with them. Fi-
nally, we explored how we can incorporate the concept into
UWE for web application development, which could lead to
a more definite choice of granularity for the process nodes
and clearer relationships between the various models.

98

References

[1] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. Quesada. Maude: specification and
programming in rewriting logic. Theoretical Comput. Sci. ,
285:187-243, Sept. 1995.

[2] Alistaire Cockburn Writing Effective Use Cases, Addison-
Wesley, 2001.

[3] R. Duke and G. Rose (2000) Formal Object-Oriented Specifi-
cation Using Object-Z, MacMillan.

[4] Jacobson J., Ericsson M. and Jacobson P. (1992) Object-
Oriented Software Engineering: A Use Case Driven Ap-
proach, Wokingham:Addison-Wesley.

[5] Alexander Knapp, Nora Koch, Gefei Zhang, and Hanns-
Martin Hassler. Modeling Business Processes in Web Appli-
cations with ArgoUWE, In 7th International Conference on
the Unified Modeling Language (UML2004), LNCS 3273, 69-
83, Springer Verlag, October 2004.

[6] Nora Koch and Andreas Kraus. The expressive Power of
UML-based Web Engineering. In Second International Work-
shop on Web-oriented Software Technology (IWWOST02), D.
Schwabe, O. Pastor, G. Rossi, and L. Olsina, editors, CYTED,
105-119, June 2002.

[7] Kinh Nguyen, Tharam Dillon, Atomic Use Case: A Concept
for Precise Modelling of Object-Oriented Information Sys-
tems, in OOIS’03, The Ninth International Conference on
Object-Oriented Information Systems, Geneva, Switzerland,
2003

[8] Kinh Nguyen. A Semi-Formal Object-Oriented Method for
Analysis and Modelling of the Functional Requirements of
Information Systems, PhD Thesis in Computer Science, La
Trobe University, 2003.

[9] A Travel Agency System, Case Study for Workshop
on model-driven Web Engineering (MDWE 2005),
http://www.lcc.uma.es/ av/mdwe2005/TheTAEexample

99

	MDWE2005-Papers.pdf
	MDWE2005-Papers.pdf
	5-tgi-ebert-mdwe2005_FinalWOPg.pdf
	5-tgi-ebert-mdwe2005_FinalWOPg.pdf
	Introduction
	Models for the TAS example
	Content
	Navigation Structure
	Pages
	Queries and Updates
	Presentation
	Dynamics

	Integration
	Related Work
	Summary and Conclusion

