
Model Transformations from Requirements to Web System
Design

Nora Koch
Ludwig-Maximilians-Universität

Oettingenstr. 67
80538 München, Germany

kochn@pst.ifi.lmu.de

Gefei Zhang
Ludwig-Maximilians-Universität

Oettingenstr. 67
80538 München, Germany

zhangg@pst.ifi.lmu.de

María José Escalona
University of Seville

Av. Reina Mercedes, S/N
41015 Sevilla, Spain

mjescalona@us.es

ABSTRACT
Requirements models are used to specify system functionalities
from the customer viewpoint and are the starting point of software
development. However, most Web engineering approaches do not
provide a systematic method to build design models from
requirements specification. We propose an approach using model
transformations to close this gap. Our transformation rules are
defined in the QVT language – a forthcoming OMG standard,
which makes automatic model generation possible. This way
design is kept consistent with the customer requirements.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Methodologies. D.2.2
[Design Tools and Techniques]: Computer-aided software
engineering (CASE). D.2.11 [Software Architectures]: Domain-
specific architectures.

General Terms
Design.

Keywords
Web Engineering, Requirements Engineering, Model-Driven
Development, Metamodeling, Model Transformations, UML,
QVT.

1. INTRODUCTION
The focus of software development is changing from code writing
to the specification of models and model transformations. In the
beginning, models were designed for a better understanding of the
systems to build and improve developer’s communication. Then
modeling techniques emerged that make the process of code
writing easier, and even allow partial code generation. Currently
we are moving towards model-driven processes, whose goal is the
development of software at a higher level of abstraction based on
models and model transformations.
In principle, model-driven development (MDD) starts at the
computation independent level (CIM) with a business model of

the requirements on the system. Then this model is transformed
into platform independent design models (PIMs), which are used
to generate platform specific models (PSMs) and, finally, code. In
practice, however, most MDD approaches concentrate on
transformations from PIM to PSMs and PSM to code. On the
other hand, the relevance of business models is well known in the
development of successful Web software systems [12]. Empirical
studies demonstrate that efforts invested in a detailed business
modeling to capture the customer requirements on the system to
built considerably reduce drawbacks in later phases of the
development [20].
We focus on an early step of model-driven development:
transformations from requirement models to design models. The
input for our transformations may be any requirements model of a
Web system under construction defined as an instance of the Web
requirements metamodel [6]. We use models specified with
Navigation Development Technique (NDT, [5]) and UML-based
Web Engineering (UWE, [10]) to illustrate our approach. The
targets of our transformations are the models that describe the
concerns of Web systems – content, navigation and presentation.
Transformations rules are defined as mappings from the Web
requirements metamodel to the UWE metamodel. These rules are
specified in the forthcoming standard Query View Transformation
Language (QVT, [17]). The automatic execution of the rules
would be straightforward with appropriate tool support. Such
tools are still under development.
The remainder of this paper is structured as follows: Section 2
gives an overview of the role of MDD in the Web domain.
Section 3 presents the Web requirements and the UML-based
Web engineering metamodels that are the source and target for
the transformation rules defined in Section 4. Section 5 provides
an overview of related work. Finally, in Section 6 some
conclusions and future work are outlined.

2. MODEL-DRIVEN DEVELOPMENT IN
WEB ENGINEERING
Model Driven Development (MDD) is becoming a widely
accepted approach in different domains of Software Engineering.
The basic idea of MDD is to separate the platform independent
design and the platform specific implementation of applications,
delaying as much as possible the construction of models related to
specific technologies. Web Engineering is a concrete domain
where MDD may be helpful [11], particularly in addressing the
problems of ever-emerging platforms and changing technologies.
The Model Driven Architecture (MDA, [15]) of the OMG offers

Copyright is held by the author/owner(s).
ICWE'06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

suitable principles to define model-driven approaches using
standard notations. Following [14], Figure 1 shows a possible
adaptation of MDA principles to the Web development visualized
as a stereotyped UML activity diagram. Models are depicted as
objects, and transformations are represented with stereotyped
activities (special circular icon).

Platform
Specific
Models
(PSM)

:``Big Picture´´

:Content
Model

Platform Independent
Design Models (PIM)

Business Models
(CIM)

:Navigation
Model

:Process
Model

:Presentation
Model

:Requirements
Models

Code

CIM to PIM
Transformation

PIM to PIM
Transformation

PIM to PSM
Transformation

PSM to Code
Transformation

:Model for
J2EE

:Model for
.NET …

Platform
Specific
Models
(PSM)

:``Big Picture´´

:Content
Model

Platform Independent
Design Models (PIM)

Business Models
(CIM)

:Navigation
Model

:Process
Model

:Presentation
Model

:Requirements
Models

Code

CIM to PIM
Transformation

PIM to PIM
Transformation

PIM to PSM
Transformation

PSM to Code
Transformation

:Model for
J2EE

:Model for
.NET …

Figure 1: Model-driven approach for Web systems

The process we propose starts with the business model (CIM)
level defining requirements models. Platform independent
analysis models (PIMs) are derived from the requirements –often
based on additional information. On the PIM level, the separate
concerns of Web applications: the content, the navigation, the
business processes, and the presentation are designed in separate
models. These models are integrated into a so-called “big picture"
which merges all the concerns together and is used in validation
of the design models [9]. Finally, the platform specific models
(PSMs) are derived from this validation model, from which
program code can be generated. The aim of such an MDD process
is automatic model transformation in each step based on rules
defined at metamodel level.
Some of the steps of this process have been realized (see [7]
[14][1][5]). In the following, we describe our method of obtaining
a first draft of the design models from the requirements.

3. METAMODELS AND UML PROFILES
We define the necessary concepts of Web requirements and the
different concerns of Web systems at metamodel level. The

metamodels are MOF [15] compliant and “profileable” [1], which
means that they can be mapped using the extension mechanisms
of the UML into a so-called UML profile.

3.1 Metamodel for Web Requirements
Escalona and Koch [6] summarize the concepts used in modeling
Web system requirements in the metamodel for Web Require-
ments Engineering (WebRE). The WebRE metamodel is depicted
in Figure 2. Instances of this metamodel are used in several Web
Engineering methods for requirements specification, although
they do not always use the same terminology and notation.
A WebUser is any user who interacts with a Web System and may
be either registered or not. The basic use case type is Navigation,
which comprises a set of browse actions that the Web user
performs to reach a target node. Browse is the action of following
a link and is represented by an instance of the metaclass Browse.
The special browse action Search models a query that the Web
user makes to the Web system. A special kind of the Navigation
use case is WebProcess, which includes user transactions like
checkout or providing credit card data.
The source and the target of browse actions are nodes. Nodes are
units of information in Web systems. A node is associated to one
or more pages, and a page may be associated to one or more
nodes (e.g. in case of asynchronous communication). The concept
of page is represented by the WebUI metaclass. Besides, a node
can show different pieces of information. Each piece of
information of a Web system is represented as an instance of the
metaclass Content.

WebRE Behavior

WebUser

isRegistered: boolean

Navigation WebProcess

WebRE Structure

Node Content

WebUI

Browse Search UserTransaction

1..*

1..*

1

+target
0..1

1

+source
0..1

*

+transactions
1..*

1..* 1..*

*

+parameters
1..*

+page 1..*
1..*

+location

+content

1..*

1..*

1..*

1..*

WebRE Behavior

WebUser

isRegistered: boolean

Navigation WebProcess

WebRE Structure

Node Content

WebUI

Browse Search UserTransaction

1..*

1..*

1

+target
0..1

1

+source
0..1

*

+transactions
1..*

1..* 1..*

*

+parameters
1..*

+page 1..*
1..*

+location

+content

1..*

1..*

1..*

1..*

Figure 2: Web requirements metamodel

3.2 UML Profile for WebRE
The WebRE metamodel is the basis for providing a specific and
intuitive notation for modeling Web requirements The notation is
defined using the standard extension mechanisms of the UML
resulting in a so-called UML profile. The elements of the profile
are defined as extensions of UML metaclasses. Since the
semantics of UML elements is not changed, WebRE is a
conservative extension of the UML. Figure 3 shows how the
WebRE elements are mapped into the UML by stereotypes. Table
1 shows the icons defined for the WebRE stereotypes [6]. Note
that we do not define a specific icon for Web User. Although not
depicted in Table 1, the profile also contains an extension of the
UML metaclass ObjectNode for Node, Content and WebUI to be
used in activity diagrams.

WebRE Profile

«metaclass»
Actor

«stereotype»
WebUser

«metaclass»
Classifier

«metaclass»
UseCase

«sterotype»
NavigationUC

«stereotype»
WebProcessUC

«metaclass»
Action

«stereotype»
Browse

«stereotype»
Search

«stereotype»
UserTransaction

«stereotype»
Content

«stereotype»
Node

«stereotype»
WebUI

WebRE Profile

«metaclass»
Actor

«stereotype»
WebUser

«metaclass»
Classifier

«metaclass»
UseCase

«sterotype»
NavigationUC

«stereotype»
WebProcessUC

«metaclass»
Action

«stereotype»
Browse

«stereotype»
Search

«stereotype»
UserTransaction

«stereotype»
Content

«stereotype»
Node

«stereotype»
WebUI

Figure 3: Stereotypes of the WebRE profile

Metaclass Stereotype Icon

UseCase «navigation»
UseCase «Web process»

Action «browse» ⇒

Action «search» ?
Action «user transaction» ⇔
Classifier «node»
Classifier «content» O
Classifier «webUI»

Table 1: Icons for WebRE stereotypes

User

RegisteredUser

Search album

View album

Register

Login

Download
album

Recharge

«extend»

«extend»

User

RegisteredUser

Search album

View album

Register

Login

Download
album

Recharge

«extend»

«extend»

Figure 4: UML use case diagram for the music portal

As an example1, consider a music portal that provides albums to
download. While the standing data such as singer, publisher, etc.
is public to everyone, download is reserved for registered users
and is only enabled as long as the user has enough credit on his
prepaid account. Figure 4 gives a use case diagram of the music
portal. The use cases can be refined with additional details.
Figure 5 shows an activity diagram that refines the use case
Download album with more detail.

Check credit

Download
album

Recharge

:Account

:Account
[updated]

[else]
[enough]

:Album

⇔

⇔

Check credit

Download
album

Recharge

:Account

:Account
[updated]

[else]
[enough]

:Album

⇔

⇔

Figure 5: UWE activity diagram for the Download album use
case

An NDT pattern representing this use case is given in Table 2.
From the detailed description it can be concluded that

• This is a WebProcess use case;

• The user must be logged in and thus registered to
perform it;

1 This example is inspired by http://www.mp3.com

• The target of this action is a node, whose content
includes an album and an account.

Note that the object nodes in the activity diagram are marked with
the icons of the corresponding stereotyped classifier of the profile.
For more details of mapping between WebRE metaclasses and
use case description see [6].

FR-02 Download album

Description The system actions when the user selects the link “download
album”

Preconditions This use case is only enabled when the use case “RF-
03.View album” was executed

Actors AC-01. RegisteredUser

Step Action

1 The user selects to download the album

2 The system checks his/her credit

Normal
sequence

3 The system downloads the album

Step Action Exceptions

3 If there is not enough credit, the system
leads the user to the “RF-04.Recharge”

Comments This use case has two activities of type UserTransaction

Table 2: NDT pattern for use case Download album of the
music portal example

Although both methods NDT and UWE use the same modeling
concepts, they use a completely different representation for these

concepts. The metamodel instead offers an abstract common base
for both approaches.

3.3 Metamodel for the Design Phase
After the requirements of a Web application are laid down with
requirements models, its design is performed in platform
independent models, where the content, the navigation structure,
the business processes and the presentation are defined on an
abstract level without considering technical details of
implementations. The concepts required for modeling are defined
in the UWE metamodel [10]. This metamodel includes a package
for each of these concerns and is defined as a conservative
extension of the UML metamodel [16]. See Figure 6 for the
package navigation. The metamodel is complemented with well-
formedness rules formulated in the Object Constraint Language
(OCL). Thus, this metamodel is an instance of the MOF
metamodel.
The content of a Web system is modeled in a content model built
with UML class diagrams and “pure” UML modeling elements. In
the navigation model, navigable nodes are represented by
instances of subclasses of Node, which is derived from the UML
metaclass Class. Direct links between navigation nodes are
modeled by instances of NavigationLink, a subclass of the UML
metaclass Association. There are several kinds of nodes defined:
navigation classes represents the navegable information units of
the Web application; menus model the common starting point of
alternative links leaving a node; access primitives are used to
represent special constructs in Web navigation: indexes, queries
and guided tours.

Node Link

isAutomatic: boolean

NavigationLinkNavigationClass

isRoot: boolean

AccessPrimitive Navigation
Attribute

Index Query Guided
Tour

Menu

ProcessClass ProcessLink

+source
1

+outLinks

*
+target +inLinks

*

*

{subsets inLinks}1..*

{subsets target}

*
{subsets ownedAttributes}

1

1

{ordered}

+accessedAttributes
*

0..1
*

1..*

{subsets target} *

{subsets inLinks}

1..*

Node Link

isAutomatic: boolean

NavigationLinkNavigationClass

isRoot: boolean

AccessPrimitive Navigation
Attribute

Index Query Guided
Tour

Menu

ProcessClass ProcessLink

+source
1

+outLinks

*
+target +inLinks

*

*

{subsets inLinks}1..*

{subsets target}

*
{subsets ownedAttributes}

1

1

{ordered}

+accessedAttributes
*

0..1
*

1..*

{subsets target} *

{subsets inLinks}

1..*

Figure 6: UWE metamodel: Navigation package

The attributes of access primitives are used in indexes to represent
how the target instances should be indexed and to specify the
search criteria in queries. The business processes of Web systems
are visualized in process models. Processes are integrated into the
navigation model by process classes that represent the process
entry points, and process links that represent the navigation paths
leading from and to them. For more details, see [10].

3.4 UWE Profile
The elements of the UWE metamodel are mapped to a UML
profile using stereotyped classes. Table 3 shows the mapping
rules and the icons defined for the non-abstract classes of the
navigation model and the process model. For navigation attribute,
navigation link and process link there are no icons defined.

Metaclass Stereotype Icon

GuidedTour «guided tour»
Index «index»

Menu «menu»
NavigationAttribute «navigation attribute»

NavigationClass «navigation class»
NavigationLink «navigation link»

ProcessClass «process class»

ProcessLink «process link»

Query «query»
Table 3: Elements of the UWE profile

Figure 7 shows the navigation diagram for the music portal
example. From the MainMenu the user can register, search for an
album to download, or recharge his prepaid account. The
dependency relationships show that the user must first login
before he can perform the processes Recharge and
DownloadAlbum.

4. WebRE TRANSFORMATION PROCESS
Based on the two metamodels given in Section 3, we define our
approach of deriving draft design models of a Web system from
their requirements. The approach is based on metamodel
mappings, i.e. transformations rules are defined to map UWE
metamodel elements from the WebRE metamodel elements. The
transformation implements the MDA model transformation
pattern of Bézivin [2] as shown in Figure 8. Both metamodels are
specified using the MOF language, which is also an OMG
standard [16].
Figure 8 shows how a UWE navigation model is derived from a
WebRE model by means of the metamodel-based transformations.
Note that the navigation model generated is a first draft as its
completion may require additional information, partially
depending on the developer’s decisions. For more details on
further enhancements of the generated navigation model see [10].

SearchAlbumRecharge

AlbumAlbum

MainMenuMainMenu

RegisterRegister

LoginLogin
DownloadAlbumDownloadAlbum

HomeHome

Figure 7: UWE navigation model for the music portal

example

MOF

UWE
Metamodel

WebRE
Metamodel

QVT Rules

WebRE Model UWE Navigation
Model

Transformation

«instantiate» «instantiate»

«instantiate» «instantiate»«instantiate»

+source +target

«use» «use»

MOF

UWE
Metamodel

WebRE
Metamodel

QVT Rules

WebRE Model UWE Navigation
Model

Transformation

«instantiate» «instantiate»

«instantiate» «instantiate»«instantiate»

+source +target

«use» «use»

Figure 8: WebRE model transformation pattern

Transformation rules are defined in the QVT language [17],
which is a forthcoming OMG standard and based on the MOF
metamodel. In QVT a transformation is defined as a list of
relations. A relation defines a mapping from the source domain
(checkonly) onto the target domain (enforce). New elements are
created in the target domain, if necessary, in order to hold the
relation. The QVT language comprises a textual and a graphical
notation for simple transformations. Both notations can be used to
declaratively define transformations without specifying how a
transformation is actually executed. For more complex
transformations the additional use of OCL 2.0 expressions is
recommended. QVT itself has a MOF metamodel fitting in the
central concept of MDA, which stresses that transformations
themselves are models.
In the following subsections we present some transformation
rules, which are analyzed in detail and applied to our music portal
example.

4.1 From Requirements to Content Model
In Web requirements models use cases are refined by activity
diagrams containing activity nodes of type Browse, Search or
UserTransaction. Actions may be related to objects that are either
required as input or produced as results. These objects are
included in activity diagrams by means of object flows. In the
special case of modeling Web systems, objects are used to model
source and target of the navigation, parameters needed for
searches or information that is modified due to transactions
performed by the user. Such parameters or transaction data are
modeled by objects of Content.
Our first transformation maps the instances of the metaclass
Content of the requirements model into classes in the UWE
content model. The target class must have the same name and the
same properties as the source content. The transformation rule
Content2Class is specified in the QVT language. We choose the
textual form of QVT as shown in Figure 9. Applying this rule to
the use case Download album of our music portal example, the
classes Account and Album are created.

transformation Content2Class (webre:WebRE, uwe:UWE) {
 top relation R1 {
 n: String;
 checkonly domain webre c:Content { name = n };
 enforce domain uwe cc: Class { name = n };
 }
 relation R2 {
 cn: String;
 checkonly domain webre p: Property { namespace=c:
 Content {}, name = cn};
 enforce domain uwe p1:Property { namespace = cc: Class{};
 name = cn}
 when {R1 (c,cc); }
 }
 }

Figure 9: Transformation rule Content2Class

4.2 From Requirements to Navigation Model
Not only the content model can be derived from the requirements,
but the information provided by the action of the requirements
models, i.e. activities of type Browse, Search and User
Transaction is also used in further transformations to generate
navigation classes or access structures of the navigation model.
Each Browse action implies the existence of a navigation class
and a link to this target in the navigation model. The rule
transformation Browse2NavClass&Link shown in Figure 10
specifies this mapping in QVT textual notation.

transformation Browse2NavClass&Link (webre: WebRE, uwe: UWE) {
 top relation R3{
 c: String;
 checkonly domain webre b:Browse {target = no:Node
 {content = c} };
 enforce domain uwe nc: NavigationClass {};
 enforce domain uwe link: Link { isAutomatic = false,
 target = nc; };
 where { R4 (c,nc); }
 }
 relation R4 {
 n: String;
 checkonly domain webre c: Content {name = n };
 enforce domain uwe nc: NavigationClass {name = n };
 }
}

Figure 10: Transformation rule Browse2NavClass&Link

Applying this rule to the use case Download album of our music
portal example the result is the following: For the browse action
based on the use case View album a navigation class Album and a
navigation link pointed to the navigation class are generated.

s :Search

no :Node

Search2Query

uwe:UW Ewebre:W ebRE

c e

name = n

c1:Content

q :Query

name = n

n2:NavigationLink

isAutomatic = false

n1:NavigationLink

isAutomatic = false

nc :NavigationClass

name = p1

name = p1

i :Index

at : NavigationAttribute

name = p2

c2:Content

name = p2

s :Search

no :Node

Search2Query

uwe:UW Ewebre:W ebRE

c e

uwe:UW Ewebre:W ebRE

c e

name = n

c1:Contentc1:Content

q :Query

name = n

n2:NavigationLink

isAutomatic = false

n1:NavigationLink

isAutomatic = false

nc :NavigationClass

name = p1

name = p1

i :Index

at : NavigationAttribute

name = p2

at : NavigationAttribute

name = p2

c2:Content

name = p2

Figure 11: Transformation rule Search2Query

Each Search action in the requirements model is transformed
into a Query, an Index, a NavigationClass and two Links relating
these three elements. The navigation class represents in the
navigation model the results of the query. The parameters of the
search are transformed to attributes of the query. The rule
transformation Search2Query is formally defined in QVT as
shown in Figure 11.
Declarative definition of the transformation rules is the basis for
the QVT operational specification, in which e.g. the need of an
index instance depending on the number of outcomes of the
query can be considered.
The music portal example includes the «navigation» use case
SearchAlbum. It is associated with a «search» action of the
same name, and objects of class Album. Using the
transformation rule Search2Query, the navigation model will be
enforced to include a Query named SearchAlbum in the
navigation model, which will point with a link to an Index of
Album. Each index item is a link to one instance album that
matches the query.
Another transformation rule that we named UserTransaction2-
Process derives UWE process elements from the requirements
model. The source of the transformation is a «user transaction»
action together with a related instance of the class Content in the
requirements model. The instance of the class Content indicates
the transactional data affected by the user transaction. The target
of the transformation is instances of classes belonging to the
UWE process package, i.e. ProcessLink and ProcessClass. This
rule is shown in Figure 12 using the graphical notation of the
QVT language.

ut :UserTransaction

c :Content

pl :ProcessLink

pc :ProcessClass

name = n

isAutomatic = false

name = n

uwe:UWEwebre:WebRE

c e

UserTransaction2Process

ut :UserTransaction

c :Content

pl :ProcessLink

pc :ProcessClass

name = n

isAutomatic = false

name = n

uwe:UWEwebre:WebRE

c e

uwe:UWEwebre:WebRE

c e

UserTransaction2Process

Figure 12: Transformation rule UserTransaction2Process

Finally, for all activities related to use cases that only can be
triggered by a registered user, i.e., where the attribute
isRegistered is true, there must exist a dependency relationship
in the navigation model between its corresponding process class
and the “Login” process class. Examples are the activities of
downloading an album or recharging the account in the music
portal. The rule for creating such dependency relations is given
in Figure 13.

transformation RegisteredUser2Dependency (webre: WebRE, uwe:
UWE){
 top relation R8 {
 checkonly domain webre n: Navigation
 {webUser = w: WebUser{isRegistered = true}};
 enforce domain uwe p: ProcessClass {};
 enforce domain uwe d: Dependency {
 supplier = ps: ProcessClass {name = "Login"},
 client = p};
 }
}

Figure 13: Transformation rule
RegisteredUser2Dependency

5. RELATED WORK
Model-driven development is applied successfully by several
Web engineering methods. In OO-H, WebML, OOHDMDA etc.
models are used to separate the platform independent design of
Web systems from the platform dependent implementations as
much as possible [7], [18], [13]. However, these methods do not
include support for obtaining design models from requirement
specifications.
OOWS [21] is to the authors’ knowledge the only Web
engineering method that provides automatic generation of
navigation models from requirements. Our approach is novel in
that it is underlined by a well-defined requirement metamodel,
defined as a UML profile, and that we also generate elements of
the content model from the requirements. Another feature that
distinguishes our approach is the use of the transformation
language QVT.

6. CONCLUSIONS AND FUTURE WORK
Defining transformation rules at metamodel level we achieve a
model driven development approach. We present such
transformations rules for an early phase in the development life
cycle of Web system, which is the basis for an automated
generation of design models from requirements specification.
The source modeling elements for our transformations are
instances of any requirements model of a Web system that is
built with modeling elements of the Web requirements
metamodel [6]. For this work, we use models specified with
NDT and UWE to illustrate our approach. The targets of our
transformations are the models that describe any of the concerns
of Web systems – content, navigation and presentation. We
choose the UWE models, for illustration purpose, as
transformation target. The transformation rules are specified in
the forthcoming standard Query View Transformation Language
(QVT, [17]).
The success of an MDD approach strongly depends on the tool
support. We are looking forward to tools supporting the QVT
transformation language. In the meantime we are gathering

experience with other transformation languages and techniques,
such as ATL and graph transformations.
Currently, we are analyzing the possibilities to extend the open
source CASE tools ArgoUWE2 and NDT-Tool to support the set
of transformation rules defined so far. Further, we plan to define
transformations for the automatic generation of test cases also
based on requirements specified as WebRE models.

7. ACKNOWLEDGMENTS
This research has been partially supported by the project
MAEWA “Model Driven Development of Web Applications”
(WI841/7-1) of the Deutsche Forschungsgemeinschaft (DFG),
Germany and the EC 6th Framework project SENSORIA
“Software Engineering for Service-Oriented Overlay
Computers” (IST 016004).

We thank Alexander Knapp, Andreas Kraus, Santiago Meliá and
Andreas Schroeder for their helpful comments on a draft version
of this paper.

8. REFERENCES
[1] Baresi, L., Garzotto, F., Mainetti, L., Paolini, P. Meta-

modeling Techniques Meet Web Application Design Tools.
In Proc. 5th International Conference on Fundamental
Approaches to Software Engineering (FASE 2002), 294-
307, Grenoble, France, 2002.

[2] Bézivin, J. In Search of a Basic Principle for Model Driven
Engineering , Novática No.1, 21-24, 2004.

[3] Ceri, S. Fraternali, P., Bongio, A., Brambilla M., Comai S.,
Matera M. Designing Data-Intensive Web Applications.
Morgan Kaufman. 2003.

[4] Cengarle, M. V., Knapp A. OCL 1.4/1.5 vs. OCL 2.0
Expressions. Formal Semantics and Expressiveness.
Software and System Modeling, Vol. 3 No. 1, 9-30, 2004.

[5] Escalona, M.J., Mejías, M., Torres, J. Developing System
with NDT & NDT-Tool. In Proc. 13th International
Conference on Information System Development (ISD
2004), 149-159, Lithuania, 2004.

[6] Escalona, M.J., Koch, N. Metamodeling Requirements of
Web Systems. In Proc. International Conference on Web
Information System and Technologies (WEBIST 2006),
INSTICC, 310-317, Setúbal, Portugal. 2006.

[7] Gómez, J., Cachero, C. OO-H: Extending UML to Model
Web Interfaces. Information Modeling for Internet
Applications. Idea Group Publishing, 2002.

[8] Knapp A., Koch N., Zhang, G., Hassler, H.-M.Modeling
Business Processes in Web Applications with ArgoUWE.
In Proc. 7th International Conference on the Unified
Modeling Language (UML 2004). LNCS 3273, 69-83,
Lisbon, Portugal, 2004.

2 ArgoUWE: http://www.pst.ifi.lmu.de/porjekte/argouwe.shtml

[9] Knapp, A., Zhang, G. Model Transformations for
Integrating and Validating Web Application Models. In
Proc. Modellierung 2006 (MOD 2006), Vol. P-82, Lect.
Notes in Informatics, 115-128, Innsbruck, Austria, 2006.

[10] Koch, N., Kraus, A. The expressive Power of UML-based
Web Engineering. In Proc. 2nd International Workshop on
Web-oriented Software Technology (IWWOST 2002),
105-119, Málaga, Spain, 2002.

[11] Koch, N., Vallecillo, A., Rossi, G. (Eds.) In Proc.
Workshop on Model-Driven Web Engineering (MDWE
2005), Sydney, Australia, 2005.

[12] Lowe, D., Eklund, J. Client Needs and the Design Process
in Web Projects. Journal on Web Engineering. Vol. 1, No.
1, 23–36, 2002.

[13] Matera, M., Maurino, A., Ceri, S., Fraternali, P. Model-
Driven Design of Collaborative Web Applications.
Software--Practice and Experience. 33(8), 701-732. 2003.

[14] Meliá, S., Kraus, A., Koch, N. MDA Transformations
Applied to Web Application Development. In Proc.5th
International Conference on Web Engineering (ICWE
2005), LNCS 3579, 465-471, Sydney, Australia, 2005.

[15] OMG: MDA Guide, http://www.omg.org/docs/omg/03-06-
01.pdf. Version 1.0.1, 2003.

[16] OMG. Unified Modeling Language: Superstructure,
Version 2.0. Specification, Object Management Group.
http://www.omg.org/cgi-bin/doc?formal/05-07-04, 2005.

[17] Query QVT-Merge Group, Revised submission for MOF
2.0 Query/View/ Transformation RFP. Object Management
Group, http://www.omg.org/cgi-bin/apps/doc?ad/04-04-
01.pdf, 2004.

[18] Schmid, H.A., Donnerhak, O. OOHDMDA-An MDA
Approach for OOHDM. In Proc. 5th International
Conference on Web Engineering (ICWE 2005). LNCS
3579, 569-574, Sydney, Australia, 2005.

[19] Schwabe, D., Rossi,G. An Object Oriented Approach to
Web-Based Application Design. Theory and Practice of
Object Systems 4(4). Wiley and Sons, USA, 1998.

[20] Sommerville, I., Ransom, J. An Empirical Study of
Industrial Requirements Engineering Process Assessment
and Improvement. ACM TOSEM, Vol. 14, No. 1, 85-117,
2005.

[21] Valderas, P., Fons, J., Pelechano, V. From Web
Requirements to Navigational Design - A Transformational
Approach. In Proc. 5th International Conference on Web
Engineering (ICWE 2005). LNCS 3579, 506-511, Sydney,
Australia, 2005.

