
 

 

Chapter 7 

UML-BASED WEB ENGINEERING 
An Approach Based on Standards 

Nora Koch
1, 2

, Alexander Knapp
1
, Gefei Zhang

1
, Hubert Baumeister

3 

1Institut für Informatik, Ludwig-Maximilians-Universität München, Germany, 

{kochn, knapp, zhangg }@pst.ifi.lmu.de 

2F.A.S.T. GmbH, Germany, koch@fast.de 

3Informatik og Matematisk Modellering, Danmarks Tekniske Universitet, Lyngby, Den-

mark, hub@imm.dtu.dk 

 

1.1 OVERVIEW 

UML-based Web Engineering (UWE, www.pst.ifi.lmu.de/projek 

te/uwe) came up by the end of the nineties (Baumeister et al., 1999; 

Wirsing et al., 1999) with the idea to find a standard way for building analy-

sis and design models of Web systems based on the then current methods 

OOHDM (Schwabe and Rossi, 1995), RMM (Isakowitz et al., 1995), and 

WSDM (de Troyer and Leune, 1998). The aim, which is still pursued, was to 

use a common language or at least to define metamodel-based mappings 

among the existing approaches (Koch and Kraus, 2003; Escalona and Koch, 

2006). 

At that time the Unified Modeling Language (UML) which evolved from 

the integration of the three different modeling approaches of Booch, OOSE 

and OMT seemed to be a promising approach for system modeling. Since 

the early integration efforts, the UML became the “lingua franca” of (object-

oriented) software engineering (Object Management Group, 2005). A prom-

inent feature of UML is that it provides a set of aids for the definition of do-

main-specific modeling languages (DSL)  so called extension mechanisms. 

Moreover the newly defined DSLs remain UML-compliant, which allows 

the use of all UML features supplemented, e.g., with Web specific exten-

sions. 

mailto:koch@fast.de
mailto:hub@imm.dtu.dk
http://www.pst.ifi.lmu.de/projek%20te/uwe
http://www.pst.ifi.lmu.de/projek%20te/uwe


2 Chapter 7 

 

 

Both the acceptance of the UML as a standard in the development of 

software systems and the flexibility provided by the extension mechanisms 

are the reasons for the choice of the Unified Modeling Language instead of 

the use of proprietary modeling techniques. The idea followed by UWE to 

adhere to standards is not limited to UML. UWE uses also XMI as model 

exchange format (in the hope of future tool interoperability enabled by a tru-

ly portable XMI), MOF for metamodeling, the model-driven principles given 

by OMG’s Model-Driven Architecture (MDA) approach, the transformation 

language QVT, and XML. 

UWE is continuously adapting, on the one hand, to new features of Web 

systems, such as more transaction-based, personalized, context-dependent, 

and asynchronous applications. On the other hand, UWE evolves to incorpo-

rate the state of the art of software engineering techniques, such as aspect-

oriented modeling, integration of model checking using Hugo/RT (Knapp et 

al., 2002; www.pst.ifi.lmu.de/projekte/hugo), and new model 

transformation languages to improve design quality. 

The remainder of this chapter is structured as follows: The features dis-

tinguishing UWE’s development process, visual notation and tool support, 

are briefly outlined below. UWE’s modeling techniques are discussed step 

by step in Section 1.2 by means of a simple online movie database case 

study. The UWE extensions of the UML metamodel are outlined in Sec-

tion 1.3. UWE’s model-driven process and, in particular, the model trans-

formations integrated into the process are described in Section 1.4. The 

CASE tool ArgoUWE which supports the UWE notation and method is de-

scribed in Section 1.5. Finally, we give an outlook on future steps in the de-

velopment of UWE. 

1.1.1 Characteristics of the Process 

The development of Web systems is subject to continuous changes in us-

er and technology requirements. Models built so far in any stage of the de-

velopment process have to be easily adaptable to these changes. To cope ef-

ficiently with the required flexibility, UWE advocates a strict separation of 

concerns in the early phases of the development and implements a model-

driven development process, i.e. a process based on the construction of mod-

els and model transformations. The ultimate challenge is to support a devel-

opment process that allows fully automated generation of Web systems. 

Separation of Concerns 

Similarly to other Web engineering methods, the UWE process is driven 

by the separate modeling of concerns describing a Web system. Models are 

built at the different stages of requirements engineering, analysis, design, 

http://www.pst.ifi.lmu.de/projekte/hugo


07. UML-Based Web Engineering 3 

 

 

and implementation of the development process, and are used to represent 

different views of the same Web application corresponding to the different 

concerns (content, navigation structure, and presentation). The content mod-

el is used to specify the concepts that are relevant to the application domain 

and the relationships between these concepts. The hypertext or navigation 

structure is modeled separately from the content, although it is derived from 

the content model. The navigation model represents the navigation paths of 

the Web system being modeled. Presentation specification takes into account 

representation and user-machine communication tasks. 

UWE proposes at least one type of UML diagram for the visualization of 

each model to represent the structural aspects of the different views. Howev-

er, in addition very often UML interaction diagrams or state machines are 

used to represent behavioral aspects of the Web system. Figure 7.1 shows 

how the scope of modeling spans these three orthogonal dimensions: devel-

opment stages, system’s views, and aspects. 

Another concern also handled separately is adaptivity. Personalized and 

context-dependent Web systems provide the user with more appropriate in-

formation, links, or pages by being aware of user or contextual features. We 

propose to view adaptivity as a cross-cutting concern and thus to use aspect-

oriented techniques to model adaptive Web systems. It can be seen as a 

fourth dimension influencing all other Web modeling dimensions: views, 

aspects, and phases. Requirements models and architecture models focusing 

on specific Web aspects complete the specification of the Web system. Sepa-

ration of concerns offers advantages in the maintenance and re-engineering 

of a Web system as well as for the generation of Web systems for different 

contexts and platforms. 

Figure 7.1. Modeling aspects in UWE (Schwinger and Koch, 2006) 
Aspects

Behavior

Phases

Views

Content

Presentation

Analysis

Adaptivity

ImplementationDesign

Navigation structure

Structure



4 Chapter 7 

 

 

Development Driven by Models 

The model-driven development (MDD) approach not only advocates the 

use of models (as those described above) for the development of software, 

but also emphasizes the need of transformations in all phases of the devel-

opment, from requirements specification to designs and from design models 

to implementations. Transformations between models provide a chain that 

enables the automated implementation of a system in successive steps from 

the different models. 

The development of Web systems is a field which lends itself to applying 

MDD due to the Web-specific separation of concerns and continuous chang-

es in technologies in the Web domain. 

Metamodel-based methods such as OO-H (Gómez et al., 2001) and UWE 

constitute a good basis for the implementation of a model-driven process for 

the development of Web systems. They included semi-automated model-

based transformations even before MDD concepts became well-known. For 

the first guidelines for a systematic and stepwise construction of models for 

UWE we refer to Hennicker and Koch, 2001 and Koch, 2001. 

UWE emphasizes the relevance of requirements engineering starting with 

modeling activities in this early development phase (Escalona and Koch, 

2006). Therefore the UWE metamodel includes a set of modeling primitives 

that allows for simpler and more specific specification of the requirements of 

Web systems. 

1.1.2 Characteristics of the Notation 

A picture is worth a thousand words. Visual models are naturally used 

not only for documentation purposes but also as the crucial chain link in the 

software development process. The trend is the production of domain-

specific visual models. Conversely, the importance of the selection of the 

modeling language is not self-evident. 

From our point of view, a modeling language has to: 

1. provide powerful primitives to construct expressive, yet intuitive models; 

2. offer wide CASE tool support; 

3. facilitate extension; 

4. provide a formal or at least a semi-formal semantics; 

5. be easy to learn. 

Although UML only fulfills the first three requirements, it seems that 

UML is currently the best approach. UML and various UML extensions are 

successfully used in many different application domains. However, there is 

no formal semantics covering the whole UML and the fifth requirement can 

only be satisfied, if we restrict ourselves to a subset of the modeling con-

structs of UML. 



07. UML-Based Web Engineering 5 

 

 

Modeling with UML 

The distinguishing feature of UWE is its UML compliance since the 

model elements of UWE are defined in terms of a UML profile and as an 

extension of the UML metamodel (Koch and Kraus, 2002; Koch and Kraus, 

2003). 

Although the UML is expressive enough to model all requirements that 

arise in modeling Web systems, it does not offer Web-domain-specific ele-

ments. To ease the modeling of special aspects of Web applications, we de-

fine in UWE special views  using UML’s extension mechanisms  graph-

ically represented by UML diagrams, such as the navigation model and the 

presentation model (Koch, 2001; Koch et al., 2001). 

UML modeling techniques comprise the construction of static and dy-

namic views of software systems by object and class diagrams, component 

and deployment diagrams, use case diagrams, state and activity diagrams, 

sequence and communication diagrams. The UML extension mechanisms 

are used to define stereotypes that we utilize for the representation of Web 

constructs, such as nodes and links. In addition, tag definitions and con-

straints written in OCL (Object Constraint Language) can be used. This way 

we obtain a UML compliant notation  a so called UML “lightweight” ex-

tension or better known as UML profile. UWE notation is defined as such a 

UML profile. 

The advantage of using UML diagrams is the common understanding of 

these diagrams. Furthermore, the notation and the semantics of the modeling 

elements of “pure” UML, i.e., those modeling elements that comprise the 

UML metamodel, are widely described in the OMG documentation (Object 

Management Group, 2005). For any software designer with UML back-

ground it is easy to understand a model based on a UML profile, such as the 

extension that UWE suggests. We observe that UML extensions “inherit” the 

problems of UML, e.g., the lack of a complete formal semantics covering all 

modeling elements. 

UWE focuses on visual modeling together with systematic design and au-

tomatic generation. The aim is to cover the entire development life cycle of 

Web systems providing techniques and notations to start with requirements 

models, moving through design models as well as including architecture and 

aspect models. All these models are visualized using UML diagrammatic 

techniques. 

Metamodeling 

Metamodeling plays a fundamental role in CASE tool construction and is 

as well the core of the model-driven process. A metamodel is a precise defi-

nition of the elements of a modeling language, their relationships and the 

well-formedness rules needed for creating syntactically correct models. 



6 Chapter 7 

 

 

Tool-supported design and model-based system generation is becoming 

essential in the development process of Web systems due to the need of rap-

id production of new Web presences and Web applications. CASE tools 

have to be built on a precisely specified metamodel of the modeling con-

structs used in the design activities, providing more flexibility if modeling 

requirements change. Metamodels are essential for the definition of model 

transformations and automatic code generation. 

The UWE metamodel is defined as a conservative extension of the UML 

metamodel (Koch and Kraus, 2003). It is the basis for the UWE notation and 

UWE tool support. Conservative means that the modeling elements of the 

UML metamodel are not modified, e.g., by adding additional features or as-

sociations to the UML modeling element Class. OCL constraints are used to 

specify additional static semantics (analogous to the well-formedness rules 

in the UML specification). By staying thereby compatible with the MOF 

interchange metamodel we can take advantage of metamodeling tools based 

on the corresponding XML interchange format (XMI). 

In addition, the UWE metamodel is “profileable” (Baresi et al., 2002), 

which means that it is possible to map the metamodel to a UML profile. A 

UML profile consists of a hierarchy of stereotypes and a set of constraints. 

Stereotypes are used for representing instances of metaclasses and are writ-

ten in guillemets, like «menu» or «anchor». The definition of a UML profile 

has the advantage that it is supported by nearly every UML CASE tool either 

automatically, by a tool plug-in or passively when the model is saved and 

then checked by an external tool. The UWE metamodel could be also used 

as basis for building a common metamodel (or ontology) of the concepts 

needed for the design in the Web domain (cf. Koch and Kraus, 2003; 

Escalona and Koch, 2006). Using for this purpose the standardized OMG 

metamodeling architecture would facilitate the construction of meta-CASE 

tools. 

1.1.3 Characteristics of the Tool Environment 

The UML compliance of UWE has an important advantage: all CASE 

tools which support the Unified Modeling Language can be used to build 

UWE models. For this purpose it is sufficient to name stereotypes after the 

names of the UWE modeling concepts. Many tools offer additional support 

with an import functionality of pre-defined UML profiles. In such a case the 

profile model elements can be used in the same way as the built-in UML 

model elements. 



07. UML-Based Web Engineering 7 

 

 

CASE Tool Support 

A wider developer support is achieved by the open source plug-in Ar-

goUWE (www.pst.ifi.lmu.de/projekte/uwe) for the open source 

CASE tool ArgoUML (www.argouml.org). In addition to providing an 

editor for the UWE notation, ArgoUWE checks the consistency of models 

and supports the systematic transformation techniques of the UWE method. 

Using the UWE profile, models designed with other UML CASE tools can 

be exchanged with ArgoUWE. The use of tools that support not only the 

modeling itself but also a model-driven approach shortens development cy-

cles and facilitates re-engineering of Web systems. 

Model Consistency Check 

ArgoUWE also checks the consistency of models according to the OCL 

constraints specified for the UWE metamodel. Consistency checking is em-

bedded into the cognitive design critics feature of ArgoUML and runs in a 

background thread. Thus, model deficiencies and inconsistencies are gath-

ered during the modeling process but the designer is not interrupted. The 

designer obtains feedback at any time by taking a look at this continuously 

updated list of design critiques, which is shown in the to-do pane of the tool. 

 

In the following, we exemplify how UWE’s model-driven process, nota-

tion, and tool support are used to develop Web applications. 

1.2 METHOD BY CASE STUDY 

We use a simple online movie database example that allows users to ex-

plore information about movies and persons related to the production of the 

movies. This example is inspired by www.imdb.org and named the “Movie 

UWE Case study” (MUC). Movies are characterized, among others, by their 

genre, the cast, memorable quotes, trailers, and a soundtrack. Persons related 

to the movie production are the director, producer, composer, and the actors. 

The user interested in watching a movie can access information on theaters 

that show the movie. Registered users  identified by an email and a pass-

word  can provide comments, rate comments, vote movies, manage “their 

movies”, and buy tickets in theaters of their preference. The MUC online 

movie database personalizes the application giving some recommendations 

about movies and providing personalized news to the user. 

The focus in the following is on the models built for the different views 

of the analysis and design phases (see Figure 7.1). Model transformations are 

described as part of the model-driven process in Section 1.4. 



8 Chapter 7 

 

 

1.2.1 Starting with Requirements Specification 

The first step towards developing a Web system is the identification of 

the requirements for such an application that are specified in UWE with a 

requirements model. Requirements can be documented at different levels of 

detail. UWE proposes two levels of granularity when modeling Web system 

requirements. First, a rough description of the functionalities is produced, 

which are modeled with UML use cases. In a second step, a more detailed 

description of the use cases is developed, e.g., by UML activity diagrams 

that depict the responsibilities and actions of the stakeholders. 

Overview of Use Cases 

Use case diagrams are built with the UML elements Actor and UseCase. 

Actors are used to model the users of the Web system. Typical users of Web 

systems are the anonymous user (called User) in the MUC case study, the 

registered user (RegisteredUser) and the Web system administrator. Use 

cases are used to visualize the functionalities that the system will provide. 

The use case diagram depicts use cases, actors, and associations among them 

showing the roles the actors play in the interaction with the system, e.g., 

triggering some use cases. 

In addition to the UML features, UWE distinguishes between three types 

of use cases: navigation, process and personalized use cases. Navigation use 

cases are used to model typical user behavior when interacting with a Web 

application, such as browsing through the Web application content or search-

ing information by keywords. The use case model of Figure 7.2 for example 

includes the «navigation» ( ) use cases ViewMovie, Search and GoToExter-

nalSite. Process use cases are used to describe business tasks that end users 

will perform with the system; they are modeled in the same way as it is done 

for traditional software. These business tasks normally imply transactional 

actions on the underlying data base. We use “pure” UML notation for their 

graphical representation. Typical examples for business use cases are Regis-

ter, CommentMovie, and BuyTicket. A third group of use cases are those that 

imply personalization of a Web system, such as ViewRecommendations and 

ViewLatestNews. They are denoted by a stereotype «personalized» ( ). Per-

sonalization is triggered by user behavior. 

All UML elements for modeling use case diagrams are available, such as 

system boundary box, package, generalization relationship, stereotyped de-

pendencies «extend» and «include» among use cases.  Figure 7.2 illustrates 

the use case diagram for the MUC case study restricted to the functional re-

quirements from the User and RegisteredUser viewpoint. 



07. UML-Based Web Engineering 9 

 

 

Detailed View of Use Cases 

The level of detail and formality of requirements specifications depends 

on project risks and complexity of the Web application to be built. But very 

often a specification based only on use cases is not enough (Vilain et al., 

2000). Analysts use different kinds of refinement techniques to obtain a 

more detailed specification of the functional requirements, such as work-

flows, formatted specifications, or prototypes. These representations usually 

include actors, pre- and post-conditions, a workflow description, exceptions 

and error situations, information sources, sample results, and references to 

other documents. In particular, for the development of Web systems the in-

formational, navigational, and process goals have to be gathered and speci-

fied. Informational goals indicate content requirements. Navigational goals 

point towards the kind of access to content, and process goals specify the 

ability of the user to perform some tasks within the Web system (Pressman, 

2005). 

Figure 7.2. UWE use case model for MUC 



10 Chapter 7 

 

 

Following the principle of using UML whenever possible for the specifi-

cation, we refine requirements with UML activity diagrams. For each non-

trivial business use case we build at least one activity diagram for the main 

stream of tasks to be performed in order to provide the functionality indicat-

ed by the corresponding use case. Optionally, additional diagrams can be 

depicted for exceptions and variants. Activity diagrams include activities, 

shareholders responsible for these activities (optional) and control flow ele-

ments. They can be enriched with object flows showing relevant objects for 

input or output of those activities. 

Figure 7.3 illustrates the activity diagram for the use case BuyTicket of our 

MUC case study. The UWE profile includes a set of stereotypes adding Web 

specific semantics to UML activity and object nodes. For example, a distinc-

tion is made between the objects that define content, nodes of the applica-

tion, and presentation elements. Visualization is improved by the use of the 

corresponding icons:  for «content»,  for «node», and  for Web user 

interface («WebUI»). Stereotypes of activities are used to distinguish possi-

ble actions of the user in the Web environment: browse, search, and transac-

tional activities that comprise changes in at least one database. To this cate-

gory of stereotypes belong:  for «browse»,  for «query», and  for 

transactional actions. 

1.2.2 Defining the Content 

Analysis models provide the basis for the design models, in particular the 

content model of a Web system. The aim of the content model is to provide a 

Figure 7.3. MUC case study: UWE activity diagram detailing the buy-ticket use case 



07. UML-Based Web Engineering 11 

 

 

visual specification of the domain relevant information for the Web system 

that mainly comprises the content of the Web application. However, very 

often it includes also entities of the domain required for customized Web 

applications. These entities constitute the so-called user profile or user mod-

el. 

Customization not only deals with adaptation to the properties of users or 

user groups, but also with adaptation to features of the environment. A so 

called context profile or context model is built in such a case. The objects 

occurring in the detailed view of the use cases provide natural candidates of 

domain entities for the content and user model. 

The separation of content and user model (or context model) has proven 

its value in practice. Both are graphically represented as UML class dia-

grams. The content model of MUC is depicted in Figure 7.4; the user model 

is shown in Figure 7.5. The entities representing content and respectively 

user or context properties are modeled by classes, i.e. instances of the UML 

metaclass Class. Relationships between content and user properties are 

modeled by UML associations. In particular, movies are modeled by a class 

Movie with a set of properties, such as title and genre forming the attributes 

Figure 7.4. MUC case study: content model 



12 Chapter 7 

 

 

of the class Movie, or as classes associated to Movie like Trailer and Exter-

nalReview. Stakeholders of the film production, e.g. a movie’s producer, 

composer, and cast, are modeled as roles of associations to class Person. 

Note that Performance and Ticket were inferred from the activity diagram in 

Figure 7.3. 

The user model contains the user data (see again Figure 7.3) needed for 

the login of the user and the comments and rating of the movies. All these 

data are provided by the users themselves during registration or use of the 

Web application. In addition, the system collects information on users by 

observing their behavior. The collected data is used for adaptation and is 

modeled as a cross-cutting aspect and woven into the user model and other 

parts of the system (see Section 1.2.6 on aspect-oriented modeling of adap-

tivity). 

There is no need for the definition of additional elements as there is no 

distinction to modeling of non-Web applications. We use “pure” UML nota-

tion and semantics. All the features provided by the UML specification for 

constructing class diagrams can be used, in particular, packages and enumer-

ations (e.g. Genre in Figure 7.4) and relationships like generalizations, com-

positions, or association classes (e.g. Cast in Figure 7.4). 

1.2.3 Laying Down the Navigation Structure 

Based on the requirement analysis and the content modeling, the naviga-

tion structure of a Web application is modeled. Navigation classes (visual-

ized as ) represent navigable nodes of the hypertext structure; navigation 

links show direct links between navigation classes. Alternative navigation 

paths are handled by «menu» ( ). Access primitives are used to reach multi-

ple instances of a navigation class («index» , or «guided tour» ), or to 

select items («query» ). In Web applications that contain business logic the 

business processes must be integrated into the navigation structure. The en-

try and exit points of the business processes are modeled by process classes 

Figure 7.5. MUC case study: User model 



07. UML-Based Web Engineering 13 

 

 

( ) in the navigation model, the linkage between each other and to the navi-

gation classes is modeled by process links. Each process class is associated 

with a use case which models a business process. Navigation structures are 

laid down in stereotyped UML class diagrams with navigation and process 

classes, menus, and access primitives extending the UML metaclass Class, 

and navigation and process links extending the UML metaclass Association. 

Initial Navigation Structure 

UWE provides methodological guidelines for developing an initial sketch 

of the navigation structure from the content model of a Web application (see 

also Koch and Kraus, 2002; Knapp et al., 2003): Content classes deemed to 

be relevant for navigation are selected from the content model and these 

classes as well as their associations are put into a navigation model as navi-

gation classes and navigation links, respectively. Navigation links represent 

possible steps to be followed by the user, and thus these links have to be di-

rected; if navigation back and forth between two navigation classes is de-

sired, an association is split into two. Menus are added to every navigation 

class that has more than one outgoing association. Finally, access primitives 

(index, guided tours and queries) allow for selecting a single information 

entity, as represented by a navigation class. An index, a guided tour or a que-

ry should be added between two navigation classes whenever the multiplici-

ty of the end target of their linking association is greater than one. The prop-

Figure 7.6. MUC case study: Navigation from Movie (fragment) 



14 Chapter 7 

 

 

erties of the content class corresponding to the navigation class over which 

the index or the query runs are added as navigation attributes to the naviga-

tion class. 

The result of applying these steps of the UWE method to the content 

model of the MUC case study in Figure  is shown in Figure . 

From the home page Home the user can, by means of a query Search-

Movie, search for movies of his interest by criteria like movie name, actors, 

or directors etc. Soundtrack is directly reachable through MovieMenu as 

there may be at most one soundtrack for each movie whereas there may be 

several directors which have to be selected from DirectorsIndex. As an ex-

ample for a bidirectional linkage between navigation classes, the actors of a 

movie can be selected from CastIndex reaching a Person, where conversely 

all movies which this person has contributed to can be chosen from. The 

navigation structure has been refined by adding a home node ( ) as the ini-

tial node of the MUC Web application, as well as a main menu. 

The UWE profile notation for menus and access primitives provides a 

compact representation of patterns frequently used in the Web domain. Fig-

ure 7.7 (right) shows the shorthand notation for indexes. Using “pure” UML 

for modeling an index would instead, require an additional model element: 

an index item as depicted in Figure 7.7 (left). The result would be an over-

loaded model if it contains many of such indexes. 

Adding Business Processes 

In a next step, the navigation structure can now be extended by process 

classes which represent the entry and exit points to business processes. 

These process classes are derived from the non-navigational use cases. In 

Figure 1, the business processes Register (linked to the use case Register) 

and Login (linked to the use case Login) have been added. The integration of 

these classes in the navigation model requires an additional menu (Main-

Menu) which provides links to Register, Login and SearchMovies. A user 

may only manage his movies, if he has logged in previously. Finally, a user 

can buy tickets for a selected movie and a selected performance by navi-

gating to BuyTicket. 

Figure 7.7. “Pure” UML (left) and shorthand notation (right) for index 



07. UML-Based Web Engineering 15 

 

 

A single navigation structure diagram for a whole Web application would 

inevitably lead to cognitive overload. Different views to the navigation struc-

ture should be produced from the content model focusing on different as-

pects of the application, like navigation to particular content or integration of 

related business processes. 

1.2.4 Refining the Processes 

Each process class included in the navigation model is refined into a pro-

cess model consisting of a process flow model and optionally of a process 

structure model. The control and data flow is modeled in the process flow 

model in the form of an UML activity diagram. It is the result of a refine-

ment process that starts from the workflow in the requirements model. 

Figure 2 illustrates the result of the refinement process applied to Figure . 

This process mainly consists in the integration of the main stream of the ac-

tions with alternatives, such as Enter new credit card info in case of invalid 

card numbers or exception handling (not included in this example). Control 

elements are added with the purpose of providing the business logic. Activi-

ties and objects can be added to the activity diagram. A process structure 

model has the form of a class diagram and describes the relationship be-

tween a process class and other classes whose instances are used to support 

the business process. 

1.2.5 Sketching the Presentation 

Figure 1. MUC case study: Integration of business processes into navigation (fragment) 



16 Chapter 7 

 

 

The presentation model provides an abstract view on the user interface 

(UI) of a Web application. It is based on the navigation model and abstracts 

from concrete aspects of the UI, like the use of colors, fonts, and where the 

UI elements are placed on the Web page; instead, the presentation model 

describes the basic structure of the user interface, i.e., which UI elements 

(e.g. text, images, anchors, forms) are used to present the navigation nodes. 

The advantage of the presentation model is that it is independent of the actu-

al techniques used to implement the Web site, thus allowing the stakeholders 

to discuss the appropriateness of the presentation before actually implement-

ing it. 

The basic elements of a presentation model are the presentation classes 

which are directly based on nodes from the navigation model, i.e. navigation 

classes, menus, access primitives, and process classes. A presentation class 

( ) is composed of UI elements, like text («text» ), anchor («anchor» ), 

button («button» ), image («image» ), form («form» ), and anchored 

collection («anchored collection» ). Figure 3 shows an example of a 

presentation class for the navigation class Movie. Note that to ease the identi-

fication of which navigation node is presented by a presentation class, the 

presentation class uses by default the same name as the corresponding navi-

gation node. Each attribute of a navigation class is presented with an appro-

Figure 3. MUC case study: Presentation class Movie 
Figure 2. MUC case study: UWE process flow model for the buy-ticket process 



07. UML-Based Web Engineering 17 

 

 

priate UI element. For example, a text element is used for the title attribute 

and an image element is used for the photo attribute. The relationship be-

tween presentation classes and UI elements is that of composition. For 

presentation models, composition is pictured by drawing the component, i.e. 

the UI element, inside the composite, i.e. the presentation class; note, how-

ever, that this notation is not supported by all CASE tools. 

Usually, the information of several navigation nodes is presented on one 

Web page, which is modeled by pages («page») in UWE. Pages can contain, 

among others, presentation classes and presentation groups («presentation 

group»). A presentation group can itself contain presentation groups and 

presentation classes. An excerpt of the presentation model of the movie page 

is shown in Figure 4. It contains a presentation class for the main menu, 

which in turn contains a link (represented by the anchor UI element) to 

home, a presentation class for the SearchMovie query, and button UI ele-

ments to start the login and registration processes. The SearchMovie query 

also provides an example of the form UI element to enter the movie name to 

search for. The presentation class for MovieMenu contains links to the 

presentation classes of the corresponding indexes – based on the navigation 

model in Figure  – providing additional information on the movie. The 

presentation classes of these indexes plus the presentation classes for movie 

are assembled in a presentation group. The use of the stereotypes «default» 

and «alternative» for the associations from Movie, ProducersIndex, etc. to 

MovieMenu indicates that the elements of the presentation groups are alter-

natives, i.e., only one of them is shown depending on which link was fol-

Figure 4. MUC case study: The presentation model of the movie page 



18 Chapter 7 

 

 

lowed from the movie menu, with the presentation class Movie being shown 

by default. For example, when the user follows the producers link in the 

MovieMenu, the ProducersIndex is shown, containing the list of the produc-

ers of that film. 

1.2.6 Aspect-Oriented Modeling of Adaptivity 

Adaptivity is an increasingly important feature of Web applications. 

Adaptive Web applications provide more appropriate pages to the user by 

being aware of user or context properties. An example of adaptivity are rec-

ommendations based on user behavior, like movie of favorite actors in our 

MUC case study. In general, adaptivity is orthogonal to the three views: con-

tent, navigation structure, and presentation (see Figure). In order to model 

adaptive features of Web applications non-invasively, we use techniques of 

Aspect-Oriented Modeling (AOM, cf. Filman et al., 2004) in UWE. 

We introduce a new model element named aspect. An aspect is com-

posed of a pointcut part and an advice part. It is a (graphical) statement ex-

pressing that additionally to the features specified in the principal model, 

each model element selected by the pointcut also has the features specified 

by the advice. In other words, a complete description, including both general 

system functionality and additional, cross-cutting features of the quantified 

model elements, is given by the composition of the principal model and the 

aspect. The process of composition is called weaving. 

UWE defines several kinds of aspects for modeling different static and 

runtime adaptivity (Baumeister et al., 2005). In order to model the recom-

mendation feature modularly we use on the one hand a model aspect and a 

runtime aspect for keeping track of the number of visits of movies pages. On 

the other hand, another runtime aspect integrates the recommendation fea-

ture into the login process: A list of movies is presented ranked according to 

the appearing actors, which in turn are ranked according to their relevance in 

the visited movies. 

The static model aspect for extending the user model (see Figure ) by an 

operation which returns the number of visits of a registered user to a movie 

page is shown in Figure 6 (left). The pointcut is a pattern containing a spe-

cial element, the formal parameter, which is annotated by a question mark. 

The pointcut selects all model elements in the base model that match the pat-

tern thereby instantiating the formal parameter. In our case the formal pa-

rameter is a class of which only the name RegisterdUser is specified. The 

pointcut therefore selects all classes (actually, there is exactly one such 

class) in the navigation model with the name RegisteredUser. The advice 

defines the change to the selected model elements. After weaving, our Regis-

teredUser class is thus extended by the operation visited, see Figure 6 (right); 



07. UML-Based Web Engineering 19 

 

 

no other elements are affected by this aspect. Model aspects are a special 

case of aspect-oriented class diagrams (AOCDs), which are also defined in a 

lightweight UML extension and therefore UML compatible, see Zhang, 

2005. Since a model aspect specifies a static modification of the base model, 

other, standardized model transformation languages such as the Atlas Trans-

formation Language (ATL, Jouault and Kurtev, 2005), QVT-P (QVT-

Partners, 2003), or QVT (QVT-Merge Group, 2004) may also be used. The 

advantage of AOCD compared with these languages is, however, that it does 

not require the modeler to have expert knowledge of the UML metamodel, 

which may make AOCD easier to use (cf. Section 1.4). 

The dynamic behavior of our MUC system is extended by two runtime 

aspects. Figure 5 shows a link traversal aspect, used to ensure that visited 

returns the correct result: the pointcut selects all links from any object – note 

that neither the name nor the type of the object to the left is specified and 

thus it matches any object – to some Movie object. The advice defines with 

an OCL constraint the result of the action fired when such a link is visited: if 

the current user is logged in, the system increases his respective record by 

one. After weaving, the behavior of the system is thus enriched by counting 

user visits to the movie pages. 

Figure 7 shows how the business process Login is extended by a flow as-

pect. The base model depicted in Figure 7 (top) defines the normal workflow 

without considering adaptivity: the user is asked to input his email address 

and password, then the system verifies the input and responds accordingly. 

The adaptive feature of generating recommendations for the user is added by 

the aspect shown in Figure 7 (bottom). The pointcut selects every (in this 

concrete example, exactly one) control flow edge from a decision point to 

Figure 6. MUC case study: Model aspect (left) and the weaving result (right) 

Figure 5. MUC case study: Link traversal aspect for counting movie visits 



20 Chapter 7 

 

 

the OK action, which is guarded by the condition valid. The advice deletes 

this edge by crossing it out and adds an action for recommendation genera-

tion and two new control flow edges to bind it into the process. 

1.3 UWE METAMODEL 

The UWE metamodel is defined as a conservative extension of the 

UML 2.0 metamodel. Conservative means that the model elements of the 

UML metamodel are not modified. Instead, all new model elements of the 

UWE metamodel are related by inheritance to at least one model element of 

the UML metamodel. We define additional features and relationships for the 

new elements. Analogous to the well-formedness rules in the UML specifi-

cation, we use OCL constraints to specify the additional static semantics of 

these new elements. The resulting UWE metamodel is profileable, which 

means that it is possible to map the metamodel to a UML profile (Koch and 

Kraus, 2003). In particular, UWE stays compatible with the MOF inter-

change metamodel and therefore with tools that are based on the correspond-

ing XML interchange format XMI. The advantage is that all standard UML 

CASE tools which support UML profiles or UML extension mechanisms 

can be used to create UWE models of Web applications. If technically possi-

ble, these CASE tools can further be extended to support the UWE method. 

Figure 7. MUC case study: Flow aspect (bottom) extending business process Login (top) 



07. UML-Based Web Engineering 21 

 

 

ArgoUWE, see Section 1.5, presents an instance of such CASE tool support 

for UWE based on the UWE metamodel. 



22 Chapter 7 

 

 

The UWE extension of the UML metamodel consists of adding two top-

level packages Core and Adaptivity to the UML, cf. Figure 9. The separation 

of concerns of Web applications is reflected by the package structure of 

Core, the cross-cutting of adaptation by the dependency of Adaptivity on 

Core (see Figure). The package Requirements comprises the UWE exten-

sions on UseCase for discerning navigational from business process and 

personalized use cases and the different markings for ActivityNode 

(«browse», «query», and «transaction») and ObjectNode («content», 

«node», and «WebUI»), see Escalona and Koch, 2006. The navigation and 

presentation packages bundle UWE’s extensions for the corresponding mod-

els. Figure 8 details a part of the metamodel for Navigation with the connec-

tion between Node and Link and their various subclasses. NavigationClass 

and ProcessClass with the related NavigationLink and ProcessLink as well 

Figure 8. UWE navigation metamodel 



07. UML-Based Web Engineering 23 

 

 

as Menu and the access primitives Index, GuidedTour and Query provide the 

Web domain specific metaclasses for building the navigation model. Pack-

ages Contents and Process are currently only used as a stub, reflecting the 

fact that UWE allows the designer to develop content and process models 

using all UML features. Finally, Adaptation contains UWE’s aspect facilities 

by representing Aspect as a UML Package with two subpackages Pointcut 

and Advice. 

In order to transfer the UWE metamodel into a UML profile we use 

UML’s extension mechanisms (see Section 1.1). Figure 10 shows how the 

metaclasses of the UWE navigation metamodel are rendered as a stereotype 

hierarchy, forming the UWE navigation profile: Node becomes a stereotype 

of Class, NavigationAttribute a stereotype of Property, and Link a stereotype 

of Association. The associations of the UWE navigation metamodel, e.g., 

connecting Link to Node cannot be represented by meta-associations (see 

Object Management Group, 2005) and have to be added either by stereotyp-

ing the UML metaclass Dependency or by using the association from the 

UML metamodel from which the association is derived. The latter approach 

is used for representing the composition between NavigationClass and Navi-

gationAttribute using the association ownedAttributes; for the association 

Figure 9. Overview of the UWE metamodel 

Figure 10. UWE navigation profile 



24 Chapter 7 

 

 

between AccessPrimitive and NavigationAttribute and the association be-

tween NavigationClass and Menu we stereotype Dependency leading, e.g., 

to the following constraint: 

context Dependency 

inv: self.stereotypes-> 

            includes("Primitive2Attribute") implies 

       (self.client.stereotypes-> 

               includes("AccessPrimitive") and 

        self.supplier.stereotypes-> 

               includes("NavigationAttribute")) 

where client and supplier denote the ends of the Dependency relationship. 

Consistency Rules 

Following the UML, we use OCL to state more precisely the static se-

mantics of UWE’s new metamodel elements as well as the dependencies of 

metamodel elements both inside a single metamodel package and between 

packages. As an example, the following constraint states that every use case 

which is neither a navigation nor a personalized use case needs a process 

class and that the converse direction holds as well (cf. Figure 11): 

 

context ProcessClass 

inv: not self.useCase.oclIsKindOf(NavigationUseCase) and 

     not self.useCase.oclIsKindOf(PersonalizedUseCase) 

 

context UseCase 

inv: (not self.oclIsKindOf(NavigationUseCase) and 

      not self.oclIsKindOf(PersonalizedUseCase)) implies 

       ProcessClass.allInstances()-> 

         exists(pn | pn.useCase = self) 

Figure 11. UWE process metamodel 



07. UML-Based Web Engineering 25 

 

 

1.4 MODEL-DRIVEN DEVELOPMENT IN UWE 

The UWE approach includes the specification of a process for the devel-

opment of Web systems in addition to the UML profile and the UWE meta-

model. The UWE process is model-driven following the MDA principles 

and using several other OMG standards, like MOF, UML, OCL, and XMI, 

and forthcoming standards, like QVT (QVT-Merge Group, 2004). The pro-

cess relies on modeling and model transformations, and its main characteris-

tic is the systematic and semi-automatic development of Web systems as 

detailed in this book in the chapter on model-driven Web engineering by 

N. Moreno et al. The aim of such an MDD process is automatic model trans-

formation which in each step is based on transformation rules. 

Focusing on model transformations the UWE process is depicted in Fig-

ure 12 as a stereotyped UML activity diagram (Meliá et al., 2005). Models 

are shown as objects, and transformations are represented with stereotyped 

activities (special circular icon). 

Figure 12. Overview of model transformations in the UWE process 



26 Chapter 7 

 

 

The process starts with the business model, which MDA calls computa-

tional independent model (CIM), used to specify the requirements. Platform-

independent models (PIMs) are derived from these requirement models. The 

set of design models represents the different concerns of the Web applica-

tions comprising: the content, the navigation, the business processes, the 

presentation, and the adaptation of the Web system (summarized as Func-

tionalModels in Figure 12). In a next step, the different views are integrated 

into a “big picture” model of the Web systems, which can be used for valida-

tion (Knapp and Zhang, 2006) and also for generation of platform-dependent 

models (see below). A merge with architectural modeling features, either of 

the “big-picture model” or the design models directly, results in an integrat-

ed PIM covering functional and architectural aspects. Finally, the platform-

specific models (PSMs) derived from the integration model are the starting 

point for code generation. 

1.4.1 Transformations from Requirements to Functional 

Models 

The overall objective of modeling the requirements is the specification of 

the system as a CIM and to provide input for the construction of models in 

the other development phases (see Figure, Schwinger and Koch, 2006, and 

Section 1.2). In particular, specific objectives for Web systems are the speci-

fication of content requirements, the specification of the functional require-

ments in terms of navigation needs and business processes, the definition of 

interaction scenarios for different groups of Web users, and if required, the 

specification of personalization and context adaptation. The first model 

transformation step of the UWE process consists of mapping these Web sys-

tem requirements models to the UWE functional models. Transformation 

rules are defined therefore as mappings from the requirements metamodel 

package to the content, navigation, presentation, process, and adaptivity 

packages of the metamodel. How these packages depend on each other is 

shown in Figure 9. 

For example, UWE distinguishes in the requirements model between dif-

ferent types of navigation functionality: browsing, searching, and transac-

tional activities. Browse actions can be used to enforce the existence of a 

navigation path between source and target node. An action of type search 

indicates the need of a query in the navigation model in order to allow for 

user input of a term and the system responding with a resulting set matching 

this term (see Section 1.2.1). 

Figure 13 shows the Search2Query transformation rule specified in 

QVT’s graphical notation (QVT-Merge Group, 2004). Source and target of 



07. UML-Based Web Engineering 27 

 

 

the transformation is the UWE metamodel defined as checkonly and enforce, 

respectively (identified with an “c” and “e” in Figure 13). For each search 

with content p2 in the requirements model, a query in the navigation model 

is generated with an associated navigation attribute p2. For the associated 

node object in the requirements model, an index and objects of a navigation 

class, as well as corresponding links will be generated. 

For more details about the UWE metamodel for Web requirements we re-

fer the reader to Escalona and Koch, 2006. A detailed description of the 

transformation rules between CIMs and PIMs for the functional aspects of 

Web applications has been presented in Koch et al., 2006. A metamodel of 

the non-functional requirements for Web applications and mappings of non-

functional requirements to architectural model elements are subject to future 

work. 

1.4.2 Refinement of Functional Models 

The transformations for refining the functional models comprise map-

pings from content to navigation model, refinements of the navigation mod-

el, and from the navigation into the presentation model. In UWE, an initial 

navigation model is generated based on classes of the content model marked 

as navigation relevant (see Section 1.2.3). This generation step can be ren-

dered as a transformation Content2Navigation. From a single content model 

different navigation views can be obtained, e.g., for different stakeholders of 

Figure 13. Transformation rule Search2Query 



28 Chapter 7 

 

 

the Web system like anonymous user, registered user, and administrator. The 

generation of each navigation view requires a set of marks on elements of 

the content model which form a so-called marking model kept separately 

from the content model. The development process cannot be completed in an 

entirely automatic way, as the designer has to take the decision about the 

“navigation relevance” marks; the Content2Navigation transformation is ap-

plied once the marks have been set. 

Conversely, the remaining transformation steps for navigation models 

mentioned in Section 1.2.3 are turned into transformation rules that can be 

applied fully automatically. These rules include for example the insertion of 

indexes and menus. Presentation elements are generated from navigation 

elements. For example, for each link in the navigation model an appropriate 

anchor is required in the presentation model. The main difficulty is the intro-

duction of the look and feel aspects. 

All these transformations are defined as OCL constraints (by precondi-

tions and postconditions) in UWE and are implemented in Java in the CASE 

tool ArgoUWE. 

1.4.3 Creation of Validation and Integration Models 

The UWE MDD process comprises two main integration steps: the inte-

gration of all functional models and the integration of functional and non-

functional aspects; the latter integration step is related to architectural design 

decisions. 

The aim of the first step is the creation of a single model for validating 

the correctness of the different functional models and that allows seamless 

creation of PSMs. This “big picture” model is a UML state machine, repre-

senting the content, navigation structure, and the business processes of the 

Web application as a whole (presentation aspects will be added in the fu-

ture). The state machine can be checked by the tool Hugo/RT (Knapp et al., 

2002) – a UML model translator for model checking, theorem proving, and 

code generation. 

The transformation rules Functional2BigPicture are defined based on a 

metamodel graph transformation system. For the implementation of the 

graph transformation rules any (non-Web specific) tool for graph trans-

formations can be used. An example of the graph transformation of a naviga-

tion node to a state of the validation model is sketched in Figure 14. 



07. UML-Based Web Engineering 29 

 

 

The aim of the second step is the merge of the validation model elements 

with information on architectural styles. Following the WebSA approach 

(Meliá et al., 2005) we propose to merge functional design models and archi-

tecture models at the PIM level. For example, the elements of the WebSA 

models provide a layer-view and a component-view of the architecture, 

which are also specified as PIMs. Transformation rules are defined based on 

the UWE and WebSA metamodels. 

1.4.4 Generation of Models and Code for Specific Platforms 

In order to transform PIMs into PSMs additional information of the plat-

form is required. It can be provided as an additional model or it is implicitly 

contained in the transformations. For mappings from UWE design models 

(PIMs) to PSMs for Web applications we tested different model transfor-

mation languages. The query-view-transformation languages we use are 

ATL (Jouault and Kurtev, 2005), QVT-P (QVT-Partners, 2003), and QVT 

(QVT-Merge Group, 2004). For example, the following QVT-P transfor-

mation tackles the generation of J2EE elements from Java server pages of 

the integration model. 

 

relation ServerPage2J2EE { 

  domain { (IM.IntegrationModel) 

             [(ServerPage) 

                [name = nc, 

                 services = { (WebService) [name = on, 

                                            type = ot] }, 

                 views = { (View) [name = vn] }]] } 

  domain { (JM.J2EEModel) 

             [(JavaServerPage) 

                [name = nc, 

                 forms = { (Form) [name = on, 

                                   type = ot] }, 

Figure 14. Transformation rule Node2State 



30 Chapter 7 

 

 

                 beans = { (JavaClass) [name = vn] }]] } 

  when { services->forAll(s | 

            WebService2Form(s, F1set.toChoice())) 

          views->forAll(v | 

            View2Bean(v, J1set.toChoice())) } 

} 

 

The ATL code below exemplifies a transformation rule that maps the el-

ement Anchor of the UWE presentation model to a JSP element. Note that 

the transformation rule also involves elements of the navigation model (Nav-

igationLink). 

 

rule Anchor2JSP { 

  from 

    uie : UWE!Anchor 

          (not uie.presentationClass.oclIsUndefined() and 

           not uie.navigationLink.oclIsUndefined()) 

  to 

    jsp : JSP!Element 

          (name <- 'a', 

           children <- Sequence { hrefAttribute, 

                                  contentNode }), 

    hrefAttribute : JSP!Attribute 

      (name <- 'href', 

       value <- thisModule.createJSTLURLExpr 

         (uie.navigationLink.target.name,'objID')), 

    contentNode : JSP!TextNode 

                  (value <- uie.name) 

} 

1.5 CASE TOOL ARGOUWE 

We have extended the CASE tool ArgoUML into a tool for UWE-based 

Web application development, called ArgoUWE (Knapp et al., 2003, 

www.pst.ifi.lmu.de/projekte/argouwe). We decided to extend Ar-

goUML as it is a feature-rich, open-source tool and offers a plugin architec-

ture. The drawback of this decision is that the UWE metamodel can not be 

used directly since ArgoUML is based on UML 1.3/4. However, a UML 1.x 

compatible profile can easily be derived from the UWE metamodel along the 

same lines as sketched in Section 1.3. 



07. UML-Based Web Engineering 31 

 

 

ArgoUML provides support for designing Web applications in the phases 

of requirements elicitation and content, navigation, business process as well 

as presentation modeling. It provides not only tailored editors for UWE dia-

grams, but also semi-automatic model transformations defined in the UWE 

development process. As these model transformations are based on the UWE 

metamodel, the tool ensures both consistency between the different models 

and integrity of the overall Web application model with respect to UWE's 

OCL constraints. ArgoUWE fully integrates the UWE metamodel (Koch and 

Kraus, 2003) and provides XMI export, and thus facilitates data transfer with 

other UML-compliant tools. Design deficiencies, such as violations of the 

OCL constraints, are reported by an extension of the cognitive design critics 

of ArgoUML and can also be checked upon request (see Section 1.5.2). 

Working with ArgoUWE is intuitive for ArgoUML users, as ArgoUWE 

makes use of the graphical interface of ArgoUML. In particular, the UML 

model elements and diagrams are structured in a tree view in the explorer 

((1) in Figure 15); the diagrams are edited in the editor pane (2); to-do items 

of the designer are listed in the to-do pane (3); tagged values, constraints, 

and documentation of the currently selected model as well as automatically 

generated code skeletons are shown in the details pane (4). 

1.5.1 Model Transformations 



32 Chapter 7 

 

 

ArgoUWE implements some of the aforementioned model transfor-

mations as semi-automatic procedures. 

– In the content model, the designer may mark classes as navigation rele-

vant. ArgoUWE can then generate an initial navigation model by creating 

for each navigation relevant class a navigation class and for each associa-

tion between navigation relevant classes a link between the correspond-

ing navigation classes. 

– In the navigation model, ArgoUWE can add indexes and menus automat-

ically. The designer may add queries and guided tours between naviga-

tion nodes manually or, alternatively, by selecting a generated index and 

changing it into a query or a guided tour. 

– From the navigation model, ArgoUWE can generate a first draft of a 

presentation model. For each navigation class and each of its attributes a 

presentation class is created. The presentation classes of attributes are as-

sociated to those of the navigation classes by composition. 

The generation of Web applications from the presentation model is out of 

scope for ArgoUWE. This is done either by hand by the Web designer or 

Figure 15. MUC case study: ArgoUWE-screenshot of a fragment of the use case model 



07. UML-Based Web Engineering 33 

 

 

semi-automatically by using frameworks for the implementation of Web ap-

plications, such as Struts (struts.apache.org). 

1.5.2 Model Consistency 

An important requirement of any CASE tool is to support the modeler to 

keep his models consistent. Upon model inconsistency, the tool may either 

interrupt the modeler and force him first to correct it before continuing mod-

eling, or simply give a warning. We implemented ArgoUWE to do the latter 

since we believe that the usability of the modeler being warned yet not inter-

rupted outweighs the drawback of the model being inconsistent for a short 

time. Moreover, the ArgoUML feature of design critics provides an excellent 

starting point for the implementation of the non-interruptive warnings for 

UWE models. 

The “cognitive design critics” of ArgoUML is one of its distinguishing 

features compared to other modeling tools (cf. Robbins, 1999). During run 

time, a thread running in the background keeps checking if the current model 

shows deficiencies. For each deficiency found, a design critique item is cre-

ated and added to the to-do pane. Design critics not only warn the user that 

his design may be improved but can also, by means of a wizard, lead to a 

better design. The design critique items range from incompleteness, such as 

unnamed model elements, to inconsistency, such as name collisions of dif-

ferent attributes or operations in a class. Furthermore, design critics also 

suggest the use of certain design patterns (Gamma et al., 1995). The issues 

of design critics can be sorted by several criteria like priority or the model 

element causing the design critique. Design critiques are only warnings and 

do not interrupt the designer. 

ArgoUWE inherits the feature of design critics from ArgoUML. In fact, 

all well-formedness constraints of UWE have been fully integrated and are 

continuously checked by ArgoUWE in the background at runtime. In Figure 

15 the highlighted design critique indicates that the use case CommentMovie 

does not show a corresponding process class yet; this critique corresponds to 

the metamodel constraints shown in Section 1.3. 

1.6 OUTLOOK 

The UML-based Web Engineering (UWE) approach is continuously 

evolving. Evolution is due to: improvement of existing features, such as per-

sonalization of Web systems; adaptation to new technologies, as asynchro-

nous client-server communication; and introduction of new software engi-

http://struts.apache.org/


34 Chapter 7 

 

 

neering techniques like aspect-orientation and model-driven principles. The 

challenge in all these cases is to provide a more intuitive and useful tool for 

the methodological development of Web systems, to increase Web systems 

quality and to reduce development time. 

– The evolution we can currently observe is driven by a set of improve-

ments that are being addressed and a set of extensions we are planning 

for UWE. The most important are: 

– Specification of the transformations (at metamodel level) of (non-

functional) requirements to architecture models. 

– Implementation of the “weaving” process for the integration of the as-

pect-oriented features in UWE models. 

– Engineering of Rich Internet Applications (RIAs), e.g. Web applications 

based on asynchronous communication like using AJAX (Garrett, 2005). 

– Tool support for transformations from CIM models to PIM models and 

for the UML 2.0 features in UWE. 

– Integration of a QVT engine (when available) in the tool environment. 

– Extension of UWE with test models. 

Our higher-level goal is the convergence of Web design/development 

methods. It is the only way to obtain a powerful domain-specific modeling 

and development language that benefits from the advantages of the different 

methods. Obviously, there is a trend towards using UML as the common 

notation language. Some methods are moving from their proprietary notation 

to a UML compliant one and introduce a UML profile; others define a MOF-

based metamodel. It is currently hard to predict how far this converging 

trend will go and whether it will eventually lead to a “Unified Web Model-

ing Language”. 

Acknowledgments 

Thanks go to Andreas Kraus for providing the ATL transformation rule 

and fruitful discussions. This work has been partially supported by the pro-

ject MAEWA “Model Driven Development of Web Applications” 

(WI841/7-1) of the Deutsche Forschungsgemeinschaft (DFG), Germany and 

the EC 6th Framework project SENSORIA “Software Engineering for Ser-

vice-Oriented Overlay Computers” (FET-IST 016004). 

REFERENCES 

Baresi, Luciano, Garzotto, Franca, Mainetti, Luca, and Paolini, Paolo (2002). Meta-modeling 

Techniques Meet Web Application Design Tools. In Kutsche, Ralf-Detlef and Weber, 

Herbert, editors, Proc. 5th Int. Conf. Fundamental Approaches to Software Engineering 

(FASE’02), volume 2306 of Lect. Notes Comp. Sci., pages 294–307. Springer, Berlin. 



07. UML-Based Web Engineering 35 

 

 

Baumeister, Hubert, Knapp, Alexander, Koch, Nora, and Zhang, Gefei (2005). Modelling 

Adaptivity with Aspects. In Lowe and Gaedke, 2005, pages 406–416. 

Baumeister, Hubert, Koch, Nora, and Mandel, Luis (1999). Towards a UML Extension for 

Hypermedia Design. In France, Robert and Rumpe, Bernhard, editors, Proc. 2nd Int. Conf. 

Unified Modeling Language (UML’99), volume 1723 of Lect. Notes Comp. Sci., pages 

614–629. Springer, Berlin. 

de Troyer, Olga and Leune, Corneli Jan (1998). WSDM: A User Centered Design Method for 

Web Sites. Computer Networks, 30(1–7):85–94. 

Escalona, María José and Koch, Nora (2006). Metamodeling the Requirements of Web Sys-

tems. In Proc. 2nd Int. Conf. Web Information Systems and Technologies (WebIST’06), 

Setubal, Portugal. 

Filman, Robert E., Elrad, Tzilla, Clarke, Siobh´an, and Aksit, Mehmet, editors (2004). As-

pect-Oriented Software Development. Addison-Wesley, Reading, Mass., &c. 

Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John (1995). Design Patterns. 

Addison-Wesley, Boston, &c. 

Garrett, Jesse James (2005). Ajax: A New Approach to Web Applications. http://www. 

adaptivepath.com/publications/essays/archives/000385.php. 

Gómez, Jaime, Cachero, Cristina, and Pastor, Oscar (2001). Conceptual Modeling of Device-

IndependentWeb Applications. IEEE Multimedia, 8(2):26–39. 

Hennicker, Rolf and Koch, Nora (2001). Systematic Design of Web Applications with UML. 

In Siau, Keng and Halpin, Terry A., editors, Unified Modeling Language: Systems Analy-

sis, Design and Development Issues, pages 1–20. Idea Group. 

Isakowitz, Tomás, Stohr, Eduard A., and Balasubramanian, P. (1995). MM: A Methodology 

for Structuring Hypermedia Design. Comm. ACM, 38(8):34–44. 

Jouault, Frédéric and Kurtev, Ivan (2005). Transforming Models with ATL. In Bruel, Jean-

Michel, editor, Revised Sel. Papers Satellite Events at the MoDELS 2005 Conf., volume 

3844 of Lect. Notes Comp. Sci., pages 128–138. Springer, Berlin. 

Knapp, Alexander, Koch, Nora, Moser, Flavia, and Zhang, Gefei (2003). ArgoUWE: A 

CASE Tool for Web Applications. In Proc. 1st Int. Wsh. Engineering Methods to Support 

Information Systems Evolution (EMSISE’03), Genève. 14 pages. 

Knapp, Alexander, Merz, Stephan, and Rauh, Christopher (2002). Model Checking Timed 

UML State Machines and Collaborations. In Damm, Werner and Olderog, Ernst Rüdiger, 

editors, Proc. 7th Int. Symp. Formal Techniques in Real-Time and Fault Tolerant Systems, 

volume 2469 of Lect. Notes Comp. Sci., pages 395–416. Springer, Berlin. 

Knapp, Alexander and Zhang, Gefei (2006). Model Transformations for Integrating and Vali-

dating Web Application Models. In Mayr, Heinrich C. and Breu, Ruth, editors, Proc. Mo-

dellierung 2006 (MOD’06), volume P-82 of Lect. Notes Inform., pages 115–128. Gesell-

schaft für Informatik. 

Koch, Nora (2001). Software Engineering for Adaptive Hypermedia Systems: Reference 

Model, Modeling Techniques and Development Process. PhD thesis, Ludwig-Maximili-

ans-Universität München. 

Koch, Nora and Kraus, Andreas (2002). The Expressive Power of UML-based Web Engineer-

ing. In Schwabe, Daniel, Pastor, Oscar, Rossi, Gustavo, and Olsina, Luis, editors, Proc. 2nd 

Int. Wsh.Web-Oriented Software Technology (IWWOST’02), pages 105–119. CYTED. 

Koch, Nora and Kraus, Andreas (2003). Towards a Common Metamodel for the Development 

of Web Applications. In Lovelle, Juan Manuel Cueva, Rodríguez, Bernardo Martín 

González, Aguilar, Luis Joyanes, Gayo, José Emilio Labra, and del Puerto Paule Ruiz, 

María, editors, Proc. 3rd Int. Conf. Web Engineering (ICWE’03), volume 2722 of Lect. 

Notes Comp. Sci., pages 495–506. Springer, Berlin. 

http://www/


36 Chapter 7 

 

 

Koch, Nora, Kraus, Andreas, and Hennicker, Rolf (2001). The Authoring Process of the 

UML-based Web Engineering Approach. In Schwabe, Daniel, editor, Proc. 1st Int. Wsh. 

Web-Oriented Software Technology (IWWOST’01). http://www.dsic.upv.es/ 

˜west2001/iwwost01/. 

Koch, Nora, Zhang, Gefei, and Escalona, María José (2006). Model Transformations from 

Requirements to Web System Design. In Wolber, Dave, Calder, Neil, Brooks, Chris, and 

Ginige, Athula, editors, Proc. 6th Int. Conf. Web Engineering (ICWE’06), pages 281–288. 

ACM. 

Lowe, David and Gaedke, Martin, editors (2005). Proc. 5th Int. Conf. Web Engineering (IC-

WE’05), volume 3579 of Lect. Notes Comp. Sci. Springer, Berlin. 

Meliá, Santiago, Kraus, Andreas, and Koch, Nora (2005). MDA Transformations Applied 

toWeb Application Development. In Lowe and Gaedke, 2005, pages 465–471. 

Object Management Group (2005). Unified Modeling Language. www.uml.org. 

Object Management Group (2005). Unified Modeling Language: Superstructure, version 2.0. 

Specification, OMG. http://www.omg.org/cgi-bin/doc?formal/05-07-04. 

Pressman, Roger (2005). Software Engineering — A Practitioner’s Approach. McGraw-Hill, 

Boston–Singapore, 6th edition. 

QVT-Merge Group (2004). Revised Submission for MOF 2.0 Query/Views/Transformations 

RFP (ad/2002-04-10). Submission, OMG. http://www.omg.org/cgi-bin/doc?ad/ 

04-04-01.pdf. 

QVT-Partners (2003). Revised Submission for MOF 2.0 Query/Views/Transformations RFP, 

version 1.1. http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf. 

Robbins, Jason Elliot (1999). Cognitive Support Features for Software Development Tools. 

PhD thesis, University of California, Irvine. 

Schwabe, Daniel and Rossi, Gustavo (1995). The Object-Oriented Hypermedia Design Mod-

el. Comm. ACM, 38(8):45–46. 

Schwinger, Wieland and Koch, Nora (2006). Modeling Web Applications. In Kappel, Gerti, 

Pröll, Birgit, Reich, Siegfried, and Retschitzegger,Werner, editors, Web Engineering: Sys-

tematic Development of Web Applications, pages 39–64. John Wiley, Hoboken. 

Vilain, Patricia, Schwabe, Daniel, and de Souza, Clarisse Sieckenius (2000). A Diagrammatic 

Tool for Representing User Interaction in UML. In Evans, Andy, Kent, Stuart, and Selic, 

Bran, editors, Proc. 3rd Int. Conf. Unified Modeling Language (UML’00), volume 1939 of 

Lect. Notes Comp. Sci., pages 133–147. Springer, Berlin. 

Wirsing, Martin, Koch, Nora, Rossi, Gustavo, Garrido, Alejandra, Mandel, Luis, Helmerich, 

Alfred, and Olsina, Luis (1999). Hyper-UML: Specification and Modeling of Multimedia 

and Hypermedia Applications in Distributed Systems. In Proc. 2nd Wsh. German-Argen-

tinian Bilateral Programme for Scientific and Technological Cooperation, Königswinter. 

Zhang, Gefei (2005). Towards Aspect-Oriented Class Diagrams. In Proc. 12th Asia Pacific 

Software Engineering Conf. (APSEC’05), pages 763–768. IEEE. 

http://www.dsic.upv.es/
http://www.omg.org/cgi-bin/doc?ad/%2004-04-01.pdf
http://www.omg.org/cgi-bin/doc?ad/%2004-04-01.pdf
http://qvtp.org/

