
Softw Syst Model
DOI 10.1007/s10270-010-0155-y

THEME SECTION

Non-functional properties in the model-driven development
of service-oriented systems

Stephen Gilmore · László Gönczy · Nora Koch ·
Philip Mayer · Mirco Tribastone · Dániel Varró

Received: 16 January 2009 / Revised: 5 December 2009 / Accepted: 15 February 2010
© Springer-Verlag 2010

Abstract Systems based on the service-oriented architec-
ture (SOA) principles have become an important cornerstone
of the development of enterprise-scale software applica-
tions. They are characterized by separating functions into
distinct software units, called services, which can be pub-
lished, requested and dynamically combined in the pro-
duction of business applications. Service-oriented systems
(SOSs) promise high flexibility, improved maintainability,
and simple re-use of functionality. Achieving these proper-
ties requires an understanding not only of the individual arti-
facts of the system but also their integration. In this context,
non-functional aspects play an important role and should be

Communicated by Marko Boškovic, Bernhard Schätz, Claus Pahl, and
Dragan Gasevic.

S. Gilmore · M. Tribastone
University of Edinburgh, Edinburgh, UK
e-mail: stg@staffmail.ed.ac.uk

M. Tribastone
e-mail: mtribast@staffmail.ed.ac.uk

L. Gönczy · D. Varró
Budapest University of Technology and Economics,
Budapest, Hungary
e-mail: gonczy@mit.bme.hu

D. Varró
e-mail: varro@mit.bme.hu

N. Koch · P. Mayer
Ludwig-Maximilians-Universität München,
Munich, Germany

P. Mayer
e-mail: mayer@pst.ifi.lmu.de

N. Koch (B)
Cirquent GmbH, Munich, Germany
e-mail: kochn@pst.ifi.lmu.de

analyzed and modeled as early as possible in the development
cycle. In this paper, we discuss modeling of non-functional
aspects of service-oriented systems, and the use of these
models for analysis and deployment. Our contribution in this
paper is threefold. First, we show how services and service
compositions may be modeled in UML by using a profile
for SOA (UML4SOA) and how non-functional properties of
service-oriented systems can be represented using the non-
functional extension of UML4SOA (UML4SOA-NFP) and
the MARTE profile. This enables modeling of performance,
security and reliable messaging. Second, we discuss formal
analysis of models which respect this design, in particular we
consider performance estimates and reliability analysis using
the stochastically timed process algebra PEPA as the under-
lying analytical engine. Last but not least, our models are the
source for the application of deployment mechanisms which
comprise model-to-model and model-to-text transformations
implemented in the framework VIATRA. All techniques pre-
sented in this work are illustrated by a running example from
an eUniversity case study.

Keywords Non-functional properties · Service-oriented
software · SOA · Modeling · Model-driven engineering

1 Introduction

Service-oriented computing (SOC) focuses on the devel-
opment and integration of distributed, interoperable sys-
tems based on a set of autonomous, platform-independent
units called services. Service-orientation aims at a loose
coupling of these services by means of orchestration of
services, i.e. combining and re-using the services in the pro-
duction of business applications. These characteristics have
now pushed service-oriented systems towards widespread

123

S. Gilmore et al.

success, demonstrated by the fact that many large companies
have invested a lot of effort and resources in promoting ser-
vice delivery on a variety of computing platforms, mostly in
the form of Web services. Very soon there will be a pleth-
ora of new services for e-government, e-business, and e-sci-
ence, and other areas within the rapidly evolving Information
Society, leading to a pressing demand for effective techniques
and automated methods for engineering service-oriented sys-
tems.

A range of domain-specific languages and standards are
already available for engineering service-oriented architec-
tures (SOAs), such as WSDL, BPEL, WCDL, WS-Policy,
and WS-Security. These deal with the various artifacts of
SOA systems, such as service descriptions, orchestrations,
policies, and non-functional properties at specification level.
However, more systematic and model-based approaches for
the development of service-oriented systems (SOSs) are still
in their infancy. Most of the proposed modeling languages
focus on the structural aspects of services [2,15,20,22,28].
Some represent low-level service constructs, e.g. BPEL [28]
and only a few translate the models into platform-indepen-
dent models (PIMs) or platform-specific models (PSMs) (e.g.
[2,28]).

Achieving the properties of service-oriented systems men-
tioned above requires instead (1) an understanding of the
individual artifacts of the system, their specification and their
integration—in other words, a complete picture of the sys-
tem represented at a high level of abstraction, (2) techniques
for the early estimation and evaluation of quality of service,
and (3) mechanisms for the automated generation of appli-
cations. Model-driven development (MDD) methods are the
most appropriate approaches to support both specification
(i.e. 1) and generation (i.e. 3) of SOA software, and to ease
model-based quantitative and qualitative analysis (i.e. 2).

In this paper, we present an MDD-based approach to mod-
eling, analysis, and deployment of service-oriented systems,
and focus on how to deal with non-functional properties such
as performance, security and reliable messaging. This MDD
process consists of a chain of model transformations which
start with the models of the application and produce plat-
form-independent models (so-called PIMs in the MDA ter-
minology) and generate platform-specific models (PSMs in
MDA) by PIM2PSM mappings. Some of the non-functional
aspects can be directly implemented by using WS-standards
(e.g., reliable messaging, security, logging, etc.) while others
are effected by the underlying system architecture (e.g. per-
formance). Therefore we target the first group by automated
deployment mechanisms based on standards while the latter
is the subject of quantitative analysis.

The approach is based on a profile for modeling services
in UML, called UML4SOA [29,30], which we extend to
include very generic non-functional specifications which are
bound “per contract” to the services in the structural model

(we call this extension UML4SOA-NFP). For modeling the
quantitative behavior of service-oriented systems, we opted
for using the specifications offered by the OMG MARTE
(Modeling and Analysis of Real-time and Embedded sys-
tems) profile [40]. A UML profile is a light-weight exten-
sion of the UML frequently used to define a domain-specific
modeling language, which is performed using the exten-
sion mechanisms the UML itself offers, i.e. stereotypes,
tagged values and constraints. MARTE deals with con-
cerns of model-based analysis across the spectrum from
specification to detailed design of real-time and embedded
systems. MARTE facilitates the annotation of models with
information required to perform specific analysis. Specifi-
cally, MARTE focuses on performance and schedulability
analysis. The models built using the UML4SOA and MAR-
TE profile are used on the one hand as source for a set of
model-to-model and model-to-code transformations ending
up with the deployment of the service-oriented system. On
the other hand, they allow for software evaluation at design
time providing e.g. a performance analysis in an early phase
of the software development. Our model-driven approach and
the analysis techniques are fully tool-supported.

The paper is structured as follows: In Sect. 2 we present
the characteristics of the development process of service-ori-
ented software; we use a scenario of a distributed eUniversity
course management system to illustrate the challenges in the
development of this kind of software. This scenario is also
used as the running example in the remaining sections. Sec-
tion 3 describes the UML4SOA modeling approach focusing
on the functional aspects. Section 4 presents the extension of
UML4SOA for covering non-functional aspects of service-
oriented systems (UML4SOA-NFP). The extension com-
prises model elements for specifying non-functional prop-
erties in structural and behavioral UML diagrams. Section 5
shows how software analysis methods can evaluate the mod-
els built with the profiles presented in the previous sections
to realize a performance analysis. Section 6 completes the
development process presenting model-driven deployment
mechanisms. We compare our approach to related work in
Sect. 7. Some conclusions and the next steps in our research
on the model-driven development approach for SOAs are
presented in Sect. 8. Figure 1 gives an overview of the main
contributions of this paper for the model-driven development
of service-oriented systems and shows the role of the non-
functional aspects in our approach.

2 Challenges in the development of service-oriented
systems

A Service-Oriented Architecture separates functions into
distinct software units called services which users can com-
bine and reuse in the production of business applications.
Service descriptions are published by service providers and

123

Non-functional properties in the model-driven development of SOSs

UML models
core, structure

(SoaML)
Sec.3.1.

UML models
non-functional, structure

(UML4SOA-NFP)
Sec.4.2.

UML models
core, behavior
(UML4SOA)

Sec.3.2.

UML models
non-functional, behavior

(UML4SOA-NFP/MARTE)
Sec.4.3.

Evaluation of non-functional properties
Sec.5.

Automated service deployment by model transformations
Sec.6.

Service descriptor
(WSDL)

Client stubs
(NF extension)

Server-side config
(standard NF platforms)

Performance model (PEPA)
SLA analysis (throughput...),

sensitivity analysis

re-design

Fig. 1 Overview of the approach

services are invocable by a service requester according to a
set of access policies. The service interface describes the set
of interactions supported by a service. Service-orientation
aims at a loose coupling of these services by means of the
orchestration of services, i.e. the description of an executable
pattern of invocations that must be followed in order to auto-
matically coordinate, manage and arrange the set of services.
An orchestration is in our approach also defined as a service.

The advantages offered by service-oriented software once
in production have their costs in the development phase
as complexity increases due to the additional orchestration,
compensation, publishing of services, and management of
service-level agreements which need to be addressed. There
are primarily two important software engineering mecha-
nisms which address the problem of increasing complex-
ity and offer mechanisms to ease development. On the one
hand, domain-specific languages, in particular domain-spe-
cific modeling languages (DSML), focus on the concepts
used in a domain, which are of greatest significance for the
work in a specific area. Very often a concept is a pattern-like
feature which allows the users of the languages to reduce the
complexity of code or models. On the other hand, automatic
code generation based on models—i.e. model-driven devel-
opment—eases the production and maintenance of software.
Of course, appropriate tool support is required for modeling,
transforming the models, and generating code.

Model-driven development makes models predominant
artifacts of the development and emphasizes the automa-
tion of the engineering process. Cornerstones of the MDD
approaches are modeling languages for the specification

of the applications, and model transformation languages
required for generating other models or code. Service-
oriented design is a new domain which currently lacks effec-
tive and comprehensive domain-specific modeling languages
and code generation tools.

In addition to the traditional class diagram model of
the domain and the sequence and state diagrams model-
ing the behavior of objects and components, in the case of
service-oriented software we need also to model the orches-
tration of services. Here we should consider such compli-
cations as compensation for actions in case of any failure
during the process. Non-functional properties such as secu-
rity, performance and reliable connection need to be modeled
as well. They play a more relevant role in service-oriented
computing than in traditional software. This is because ser-
vices must respect service-level agreements which establish
security policies and acceptance levels of performance. It is
intuitive then to model the non-functional properties as con-
tracts which are associated with the services, i.e. to follow
a contract-based modeling approach.

3 Modeling service-oriented systems

The UML [34] is the most well-known and mature language
for modeling software systems. However, plain UML lacks
native support for the specification of structural and behav-
ioral aspects of services. Service modeling introduces a new
set of key distinguishing concepts, for example partner ser-
vices, message passing among requester and provider of ser-
vices, long-running transactions, compensation, and events.
Without specific support for those concepts in the modeling
language, diagrams quickly get overloaded with technical
constructs, degrading their readability.

Several attempts have been made to add service function-
ality to the UML. Most notably, SoaML [36] is an upcoming
standard UML profile of the OMG for structural specification
of service-oriented architectures. Our own contribution to the
field of UML service modeling is UML4SOA [30], a pro-
file for specifying behavior of services, in particular service
orchestrations, a feature which distinguishes service-oriented
software from traditional application software. UML4SOA
is based on the structural part of SoaML, adding the dynamic
parts.

In the following sections we present our running example
and give an overview of SoaML and UML4SOA concepts
and discuss how to apply them to the case study scenario.
We describe the structure of the service-oriented system and,
finally, the service orchestration behavior. In each of these
sections, we introduce the relevant SoaML and UML4SOA
stereotypes used.

In later sections, the elements introduced here will be
extended with a package of stereotypes for dealing with non-
functional properties (Sect. 4).

123

S. Gilmore et al.

Table 1 SoaML profile (excerpt)

UML4SOA metaclass Stereotype UML metaclass Description

Participant «Participant» Class Represents some (possibly concrete) entity or component that
provides and/or consumes services

ServicePoint «ServicePoint» Port Is the offer of a service by one participant to others using well
defined terms, conditions and interfaces. It defines the
connection point through which a participant provides a
service to clients

RequestPoint «RequestPoint» Port Models the use of a service by a participant and defines the
connection point through which a participant makes requests
and uses or consumes services

ServiceInterface «ServiceInterface» Class Is the type of a «ServicePoint» or «RequestPoint», specifying
provided and required operations

MessageType «MessageType» DataType, Class Is the specification of information exchanged between service
requesters and providers

3.1 The eUniversity case study

As a running example throughout this paper, we will consider
modeling and implementing an all-electronic university (an
eUniversity), in which all courses and paperwork are han-
dled online. We will focus on the processing of a student
application for a course of studies. This example has been
taken from one of the case studies of the Sensoria project
[39,46].

In this scenario, the student uses a website to apply for a
certain course of studies. That is, the eUniversity website acts
as a client to a service providing the functionality for han-
dling a student application. This functionality is provided by
an entity called the ApplicationCreator. Implementing this
functionality requires the combination (orchestration) of a
set of different external services, e.g. student office, a ser-
vice for the upload of documents, and a service to check
the application (validation service). This validation service,
implemented by an entity called the ApplicationValidator, is
itself also a composition of other services.

In the student application scenario of our eUniversity
case study, the following non-functional requirements are
defined:

– The Client and the ApplicationCreator should commu-
nicate via a secure and reliable connection.

– The document UploadService might be under heavy
workload, therefore its throughput should be at least 10
requests/second with a 4 s average response time.

– All requests sent to the ApplicationValidator should be
acknowledged.

– As the validation service handles confidential data, all
requests should be encrypted in order to protect the pri-
vacy of the students.

– Messages sent by the ApplicationValidator must be
clearly accountable, i.e. non-repudiation of messages
must be guaranteed.

We will detail the model of the case study in the next two
subsections and come back to the above requirements in later
sections.

3.2 Modeling structural aspects

For modeling the structural aspects of our case study, we
employ the basic UML mechanisms for modeling composite
structures, enhanced with stereotypes from the SoaML pro-
file—«Participant», «ServicePoint», «RequestPoint», «Ser-
viceInterface» and «MessageType» (listed in Table 1). With
regard to the structure of our case study, we talk about ser-
vices, service interfaces, and service participants. The basic
unit for implementing service functionality is a service partic-
ipant, modeled as a class with the stereotype «Participant».
A participant may provide or request services through ports,
which are stereotyped with «RequestPoint» or «Service-
Point», respectively. Each port has a type, which is a «Servi-
ceInterface» implementing or using operations as defined in
a standard UML interface definition.

The components of the eUniversity case study which are
relevant for the student application scenario are shown in
Fig. 2. It represents the overall composition of a SOA system
modeled as a UML component diagram using SoaML model
elements. As can be seen, each of our two participants offers
or requires multiple services; for example, the Application-
Creator is invoked by the client for the creation of a new
application, but invokes several other services as well, such
as the validationService and the statusService.

The eUniversity case study scenario includes two ser-
vices which are defined as an orchestration of other ser-
vices, the ApplicationCreator and the ApplicationValida-
tor (see colored components in Fig. 2). The behavior of
each of these is modeled as an activity diagram which uses
UML4SOA extensions. The objective of the ApplicationVal-
idator is to verify whether the application follows the poli-
cies of the university. The actual implementation of the two

123

Non-functional properties in the model-driven development of SOSs

+checkRequirements(app : Application, documents : Documents, admission : AdmissionData, studentFormalData : FormalStudentData) : ValidationResult

AdmissionDecisionInterface

+registerStudent(app : Application)
+deregisterStudent(app : Application)
+getFormalStudentData(app : Application) : FormalStudentData

OfficeInterface

+initializeApplicationStatus(app : Application) : Status
+applicationStatusInvalid(st : Status)
+applicationStatusSuccess(st : Status)
+applicationStatusCancel()

StatusInterface

+initializeUploading(app : Application)
+getUploadedDocuments(app : Application) : Documents

UploadInterface

+newApplication(app : Application) : Status
+completeApplication() : Status
+cancelApplication() : Status

ClientInterface

+getAdmissionInformation(app : Application) : AdmissionData

AdmissionInterface

+startValidation(app : Application)
+completeValidation(docs : Documents) : ValidationResult
+cancelValidation()

ValidationInterface

<<ServiceInterface>>
AdmissionDecissionRequestInterface

<<ServiceInterface>>
ValidationRequestServiceInterface

<<ServiceInterface>>
ClientServiceInterface

<<ServiceInterface>>
OfficeRequestInterface

<<ServiceInterface>>
AdmissionRequestInterface

<<ServiceInterface>>
StatusRequestInterface

<<ServiceInterface>>
UploadRequestInterface

<<Participant>>
ApplicationCreator

<<ServicePoint>>creationService

<<RequestPoint>>statusService

<<RequestPoint>>
uploadService

<<RequestPoint>>
officeService

<<RequestPoint>>
validationService

<<Participant>>
ApplicationValidator

<<ServicePoint>>
validationService

<<RequestPoint>>
admissionService

<<RequestPoint>>decisionService

<<RequestPoint>>officeService

<<type>>

<<type>>

<<type>>

<<type>>

<<type>>

<<type>>

<<type>>

<<type>>

<<type>>

Fig. 2 The eUniversity student application scenario

orchestrations further refines the behavior of this scenario,
and is detailed in Sect. 3.3. The other services, including
the client service, are atomic and implemented in a standard
programming language (for example, in Java).

Overall, the scenario works as follows: A student uses the
website to apply for a certain course of studies. The web-
site (not shown) contacts the ApplicationCreator through
its creationService service port. The ApplicationCreator,
in turn, calls other entities through the uploadService, the
officeService, and the statusService ports. Last but not least,
it also contacts the ApplicationValidator through the valida-
tionService port for checking the student data and setting the
status of the application. Being implemented as an orches-
tration itself, ApplicationCreator works with other entities
itself—through the officeService (again), the admissionSer-
vice, and finally the decisionService ports to carry out the
validation task. After a review of the application by the vari-
ous services, the student is notified whether he was accepted
at the university.

Summarizing, services are defined as ports. Depending on
whether they are provided or required, the stereotypes «Ser-
vicePoint» or «RequestPoint» are used. Ports belong to «Par-
ticipant»s, which may require or provide multiple services.

3.3 Modeling behavioral aspects

More challenging than modelling the structural aspects of
SOAs is the task of modeling behaviour—in particular the

orchestration of services. To enable developers to model such
behaviour in an easy fashion, we have introduced UML4SOA
[30], which is defined as a high-level domain-specific mod-
eling language (DSML) for modeling service orchestrations
as extensions of UML activity diagrams.

An excerpt of the UML4SOA metamodel is shown in
Fig. 3, which includes the main concepts of our DSML
and the relationships among these concepts. For each
non-abstract class of this metamodel, we have defined a
stereotype with the objective of producing semantically
enriched but still readable models of service-oriented sys-
tems. Tables 2 and 3 provide a summary of the elements
of the metamodel, the stereotypes that are defined for these
metamodel elements (they comprise the profile UML4SOA),
the UML metaclasses they extend, and a brief description. For
further details on UML4SOA, including the full metamodel,
the reader is referred to [30].

UML4SOA proposes the use of UML activity diagrams
for modeling service behavior, in particular for modeling
orchestrations which coordinate other services. We assume
that business modelers are most familiar with this kind of
notation to show dynamic behavior of business workflows.

The two processes ApplicationCreator and Application-
Validator from Fig. 2 are modeled as UML4SOA orches-
trations. The first one is shown in Fig. 4. It illustrates how
the creator interacts with its partner entities through ports.
It starts with a receipt («receive») of the call newAppli-
cation through the creationService service port, receiving

123

S. Gilmore et al.

Fig. 3 Excerpt of the
UML4SOA metamodel
(includes some colored UML
metaclasses)

ServiceElement

ServiceSend&ReceiveAction

Pin

CompensateAction

ActivityEdge Action

CompensateAllAction

ServiceActivityNode

ServiceInteractionAction

Element

ServiceReceiveAction

LinkPin

ServiceReplyAction

ServiceSendAction

EventEdge

CompensationEdge

OutputPin

ReceivePinSendPin

InputPin

eventBaseElement
1

eventHandler0..*

0..*

compensatedElement 1

compensationHandler

1

0..*

partner

1

0..*

compensationTarget
1

Table 2 UML4SOA profile (1)

UML4SOA metaclass Stereotype UML metaclass Description

ServiceActivity Node «serviceActivity» Activity, Structured ActivityNode Represents a special activity for service behavior or a
grouping element for service-related actions

ServiceSendAction «send» CallOperationAction Is an action that invokes an operation of a target service
asynchronously, i.e. without waiting for a reply. The
argument values are data to be transmitted as
parameters of the operation call. There is no return
value

ServiceReceiveAction «receive» AcceptCallAction Is an action representing the receipt of an operation call
from an external partner. No answer is given to the
external partner

ServiceSend&Receive «send&receive» CallOperationAction Is a shorthand for a sequential order of send and receive
actions

ServiceReplyAction «reply» ReplyAction Is an action that accepts a return value and a value
containing return information produced by a previous
ServiceReceiveAction action

the application. After the receipt of this call, statusSer-
vice and uploadService are initialized (both times with syn-
chronous calls, i.e. using «send&receive»), and the inital
call is returned with a «reply». Completing the initalization
phase, the startValidation call is sent (using an asynchro-

nous «send») to the ApplicationValidator to request the start
of the validation. After having done so, the process waits
for another call («receive») from the client. The student will
either press the button to complete the application, or another
one to cancel it.

123

Non-functional properties in the model-driven development of SOSs

Table 3 UML4SOA profile (2)

UML4SOA metaclass Stereotype UML metaclass Description

CompensationEdge «compensation» ActivityEdge Is an edge which connects an orchestration element to be
compensated with the one specifying a compensation. It is
used to associate compensation handlers to activities and
scopes

EventEdge «event» ActivityEdge Is an edge connecting event handlers with an orchestration
element during which the event may occur. An event handler
must start with a receive, and runs in parallel and in the
context of the attached scope

CompensateAction «compensate» Action Triggers the execution of the compensation defined for a
(defined) scope or activity. Can only be used in compensation
or event handlers

CompensateAllAction «compensateAll» Action Triggers compensation of the scope attached to the handler in
which the action is invoked, and all subscopes in reverse
order of their completion. Can only be used in compensation
or event handlers

LinkPin «lnk» InputPin Holds a reference to the partner service by indicating the
corresponding service point or request point involved in the
interaction

SendPin «snd» InputPin Is used in send actions to denote the data to be sent to an
external service

ReceivePin «rcv» OutputPin Is used in receive actions to denote the data to be received from
an external service

If a cancelApplication call is received, the validation ser-
vice is instructed to cancel the validation («send&receive»),
and the status service is notified that the application has
been canceled («send»). If, on the other hand, the student
chose to complete the application, the uploaded documents
are retrieved from the uploadService with a synchronous
«send&receive» and a final validation is requested from
the ApplicationValidator, using the completeValidation call
(synchronous, «send&receive»). If the result is okay, the stu-
dent is registered at the studentOffice with registerStudent
(«send»). In any case, the initial call is replied to with a
«reply» action.

Besides the normal flow of the activity, the diagram also
shows a second structured activity node—a compensation
handler. The actions defined within CompensationHandler
are executed if the main activity has been completed
successfully, but needs to be undone. This functionality can
be triggered externally after the orchestration has been com-
pleted. If the application has been completed successfully
before, the student is removed from the list of applicants by
using a deregisterStudent call on the officeService.

Note that the activity diagram in Fig. 4 makes use of two
distinct sets of stereotypes. The first set of stereotypes is
part of the UML4SOA profile as defined above – i.e., the
«send», the «receive», the «send&receive» and the «reply»
stereotypes. The second set of stereotypes in Fig. 4 is part of
the OMG MARTE profile, for example the «PaStep» or the
«GaWorkloadEvent» stereotypes. Those are used for perfor-
mance evaluation and will be discussed in the next section.

The second activity diagram, modeling the Application-
Validator, is shown in Fig. 5. This service acts as supplier to

the creation service, starting with the receipt of the startVali-
dation call («receive») from the ApplicationCreator through
the validationService port. Afterwards, both the officeService
and the admissionService are contacted simultaneously and
synchronously («send&receive») to check admission of the
student, and to check the student data.

Subsequently, the process waits (using «receive») for the
completeValidation call from ApplicationCreator. After it is
received, all the information gathered so far is checked with
the help of the decisionService, and the result is returned via
«reply» to the ApplicationCreator.

4 Enhanced modeling with non-functional properties

The previous section has shown how the UML4SOA profile
may be used to model (functional) static and dynamic aspects
of a service-oriented system. In this section we extend the
UML4SOA modeling approach for non-functional proper-
ties. We call the extension UML4SOA-NFP. First, we discuss
non-functional aspects and standards of service-oriented sys-
tems, then we present the modeling elements for the struc-
tural and behavioral aspects and the corresponding stereo-
types. Finally, non-functional properties of the case study
introduced in Sect. 2 are modeled.

4.1 Non-functional aspects of services

Performance characteristics describe the timely behavior of
a service, such as response time, throughput, etc. Typically
average and maximum/minimum values of these parameters

123

S. Gilmore et al.

Fig. 4 UML4SOA activity
diagram showing the
ApplicationCreator

123

Non-functional properties in the model-driven development of SOSs

Fig. 5 UML4SOA activity
diagram showing the
ApplicationValidator

are defined in service-level agreements (SLAs). In this paper,
we present an analysis method on service level performance,
however, middleware characteristics (e.g. maximum trans-
mission time) can also be considered.

Dependability characteristics describe the behavior of the
system in the presence of faults. Availability refers to the
readiness of the service to be used while reliability of a ser-
vice prescribes the capability of maintaining service quality
(i.e., correct operation) [3].

Dependability can be defined at different levels in SOSs.
Application level dependability describes requirements on
the component behavior while middleware level depend-
ability is related to the (Web) service layer and the mes-

sage communication. The latter also hides the network level
properties which can often change and typically are out of a
service engineer’s scope. UML4SOA-NFP can model both
levels, however, the analysis and deployment methods pre-
sented here target the middleware level.

Reliable messaging in the field of traditional distributed sys-
tems is closely related to the guaranteed semantics of mes-
sage delivery. Typical delivery modes are the following:

– At least once delivery. In the case of normal operation,
every message is transferred at least once, with the possi-
bility of sending multiple instances of the same message.

123

S. Gilmore et al.

This can only be allowed in systems where this does not
have an undesired side-effect.

– At most once delivery guarantees that no message will be
sent multiple times to the receiver, but their successful
transmission is not ensured.

– Exactly once delivery is the strongest delivery semantics,
guaranteeing both the successful message delivery (usu-
ally acknowledgements are required for each message)
and the filtering of duplicate messages.

The following low-level attributes are required for the con-
figuration of reliable messaging (besides messagingSeman-
tics, which selects the messaging mode as described earlier):

– inactivityTimeout: (integer, seconds), after this period
of time if no acknowledgment message has arrived, the
connection is closed;

– exponentialBackoff: (boolean), if it is set to true, time
amounts between retransmissions follow an exponential
distribution;

– acknowledgementInterval: (integer, seconds), amount
of time which should elapse before sending an acknowl-
edgement message;

– retransmissionInterval: (integer, seconds), after this
time a request is resent by the client if no acknowledge-
ment has arrived.

Security The notion of security covers properties related to
confidentiality (no unauthorized subject can access the con-
tent of a message), integrity (the message content cannot be
altered), non-repudiation (which refers to the accountability
of the communicating parties) and privacy (the identity and
personal data of a client is not revealed to non-authorized
bodies). Concepts such as authentication (checking the iden-
tity of a client) and authorization (checking whether a client
might invoke a certain operation) are also of concern here.

In service-oriented systems, security should be guaran-
teed between service endpoints, independently from network
level properties. This can be achieved using secure web ser-
vices middleware. Message security is based on digital sig-
natures and encryption of messages; here we distinguish
the message header and body, however, further (application-
specific) separation of message parts is also possible.

The following security parameters are used as a basis for
configuration generation for secure communication middle-
ware:

– encryptBody, encryptHeader, signBody, signHeader
describe whether a security method is applied on (parts
of) messages between client and service respectively

– signAlgorithm and encryptionAlgorithm determine
the security algorithms

– authTokenType determines the type of the security
token (e.g. username or binary)

– useTimestamp allows the user to specify timestamps for
messages

Note that the executable set of security configurations is
restricted in current middleware to certain combinations of
the above parameters, therefore we propose default values in
the profile which conform to the actual deployment possibil-
ities.

4.2 Extending structural models with non-functional
properties

This section describes the UML extension for modeling non-
functional parameters related to structural models of ser-
vices. On the one hand, these models rely upon the General
Resource Model (which is part of the UML Profile for Sched-
ulability and Time [32]) and UML Profile for Modeling QoS
and Fault Tolerance Characteristics and Mechanisms [33].
However, the way UML4SOA-NFP handles these parameters
also conforms to the service management of typical business
applications using Service Level Agreements (SLA).

A metamodel for non-functional properties. Figure 6 shows
the metamodel of non-functional concepts and their relation-
ships. For each additional concept we define a UML stereo-
type.

Since in real service configurations, service properties can
vary for different classes of clients, we follow a contract-
based approach, where non-functional properties of services
are defined between two «Participant» components, namely,
the service provider and the service requester. These con-
tracts are modeled by «nfContracts».

Different non-functional aspects (performance, security,
etc.) are modelled in corresponding «nfCharacteristics»
which group different properties (e.g., response time) in
«nfDimensions» (where a «runTimeValue» is associated to
each dimension). The reason for creating separate classes
for measureable values instead of actually storing them in
attributes is to correlate real SLAs where most parameters
are typically bound to a range of allowed values. Moreover,
concepts like average values, deviation, etc. need to be mod-
eled in a uniform way.

During a negotiation process, participants create an agreed
contract of their provided and requested contract specifica-
tions.

Finally, properties of services need to be monitored at
runtime (modeled as «monitor») either by the participating
parties or by involving a separate entity.

Modeling non-functional properties in UML4SOA-NFP. On
the UML class level, each contract is modelled using a UML

123

Non-functional properties in the model-driven development of SOSs

Fig. 6 Metamodel of
non-functional extension

NFContract

NFCharcteristic

Participant

NFDimension

ServiceInterface

RunTimeValue

Monitor

monitors

1..*

*

*
-requester

1

values

1..*

*
-provider

*

monitoredContract

* *

-agreed*

-dimensions
1..*

-guaranteedCharacteristiscs
1..*

Table 4 UML4SOA-NFP profile

UML4SOA-NFP metaclass Stereotype UML metaclass Description

NFContract «nfContract» Class Represents a non-functional contract between a service
provider and a service requester

NFCharacteristic «nfCharacteristic» Class Represents a non-functional aspect such as performance,
security, reliable messaging, etc.

NFDimension «nfDimension» Class Groups non-functional properties within a non-functional
aspect (characteristics)

RunTimeValue «runTimeValue» Attribute An actual non-functional property

Monitor «monitor» Class A run-time service to monitor a contract (not used in the paper)

class with the stereotype «nfContract». Each characteristic
(tagged by «nfCharacteristic») is another UML class associ-
ated to the respective contract. Each dimension is also defined
by a UML class stereotyped as «nfDimension». The actual
runtime values of each dimension are defined as UML prop-
erties. Stereotype usage is summarized in Table 4.

The actual non-functional parameters within a contract
are set by using an object diagram instantiating these classes
(and attributes).

Modeling non-functional properties of the eUniversity. Fig-
ure 7 illustrates how the non-functional requirements pre-
sented in Sect. 2 are captured in a UML4SOA model by
defining a non-functional contract between ApplicationCre-
ator and ApplicationValidator.

The requirements of Sect. 2 are mapped to three «nfChar-
acteristics», namely Performance, Reliable Messaging and
Security (as discussed in Sect. 4.1).

– Performance aspects include two «nfDimension»
elements, namely response time and throughput.
Throughput definition consists of defining a guaran-
teed throughput and a maximal throughput, while for

response time, the contract contains an average value
and a maximum value.

– Reliable messaging parameters first contain the required
message semantics by stating whether acknowledgement
is required or duplicate messages are allowed. Timing
dimensions include the timeout for considering a mes-
sage lost and the retransmission interval.

– Security aspects are composed of dimensions encryp-
tion, digital signature, timestamp and authentication. In
our example, the latter is simplified to contain only the
authentication token type.

A concrete non-functional service configuration (on the
object level) is shown in Fig. 8. This instantiates Fig. 7,
and assigns concrete values to the run-time values of non-
functional parameters.

For instance, MsgSemanticsInstance prescribes that each
message between the two orchestrators needs an acknowl-
edgement and the system can resend each message at most
three times. Moreover, duplicate messages also need to
be filtered. On the security level, timestamps are required
to be used (TimestampInstance), while users are authen-
ticated by their username (AuthenticationInstance). Later,

123

S. Gilmore et al.

Fig. 7 Elements of the contract
between ApplicationCreation
and ApplicationValidation
services

<<nfCharacteristics>>
ReliableMessagingCharacteristics

<<nfCharacteristics>>
PerformanceCharacteristics

<<nfCharacteristics>>
SecurityCharacteristics

<<nfContract>>
CreationValidationContract

+guaranteedThroughput : Integer
+maxThroughput : Integer

<<nfDimension>>
Throughput

+timeout : Integer
+retransmissionInterval : Integer

<<nfDimension>>
Timing

+needsAck : Boolean
+filterDuplicates : Boolean
+maxNumberofRetrans : Integer

<<nfDimension>>
MsgSemantics

+encryptAlgorithm : String
+encryptBody : Boolean
+encryptSignature : Boolean
+encryptHeader : Boolean

<<nfDimension>>
Encryption

+averageRespTime : Integer
+maxRespTime : Integer

<<nfDimension>>
ResponseTime

+useTimestamp : Boolean

<<nfDimension>>
Timestamp

+signBody : Boolean
+signHeader : Boolean
+signAlgorithm : String

<<nfDimension>>
DigitalSignature

+authToken : String

<<nfDimension>>
Authentication

these reliable messaging and security specifications will be
used by deployment transformations of Sect. 6.

4.3 Extending behavior models with non-functional
properties

We make use of the MARTE profile for to annotate UML
models with non-functional properties required for perfor-
mance evaluation. In addition to being useful for documen-
tation purposes, these models will be subject to automatic
extraction of quantitative estimates.

Performance models offer insights into the dynamic
understanding of complex service-oriented systems which
are complementary to those which can be obtained through
measurement and profiling. Measurement allows us to under-
stand the system as it is today: modeling allows us to under-
stand how it could be tomorrow. Predictive performance
modeling considers alternative designs or improvements, and
evaluates these to identify the adaptation of the system which
will give the greatest improvement with respect to a given
performance goal (such as reducing response time). Mea-

surement and modeling are intimately linked because accu-
rate measurement provides the parameter data which models
need in order to make valuable predictions.

In order to build a coherent performance model for per-
formance analysis we must describe the workload placed on
the system and the cost of the individual units of execution
(activities) which make up the events of the model. Perfor-
mance evaluation may be carried out on activities stereotyped
with «GaScenario». Its cause property allows the extrac-
tion of workload specification, stereotyped with «GaWork-
loadEvent». Closed patterns are supported, which define the
workload as a population of users which interpose some
thinking time between successive, cyclic executions of the
activity. Workloads (defined by «GaWorkloadEvent») in the
following form are accepted:

pattern = closed(population=M,

extDelay=(exp(1/r),s))

which indicates a closed workload of M users which
cyclically execute the activity. An exponentially distributed

123

Non-functional properties in the model-driven development of SOSs

Fig. 8 Instance model with
non-functional properties

<<nfCharacteristics>>
performanceCharacteristicsInstance :

PerformanceCharacteristics

<<nfCharacteristics>>
reliableMessagingCharacterists :

ReliableMessagingCharacteristics

<<nfContract>>
creationValidationContractInstance2

: CreationValidationContract

<<serviceInterface>>
ApplicationValidatorServiceInstance

 : ApplicationValidationService

<<participant>>
ApplicationValidatorInstance

: ApplicationValidator

securityCharacteristicsInstance
 : SecurityCharacteristics

<<nfCharacteristics>>

<<participant>>
ApplicationCreatorInstance :

ApplicationCreator

retransmissionInterval = 10000
timeout = 60

<<nfDimension>>
timingInstance : Timing

averageRespTime = 4
maxRespTime = 8

<<nfDimension>>
responseTimeInstance :

ResponseTime

guaranteedThroughput = 10
maxThroughput = 20

<<nfDimension>>
ThroughputInstance :

Throughput

encryptAlgorithm = "default"
encryptBody = true
encryptHeader = false
encryptSignature = false

<<nfDimension>>
encryptionInstance :

Encryption

filterDuplicates = true
maxNumberofRetrans = 3
needsAck = true

<<nfDimension>>
msgSemanticsInstance :

MsgSemantics

authToken = "username"

<<nfDimension>>
authenticationInstance :

Authentication

signAlgorithm = "default"
signBody = true
signHeader = false

<<nfDimension>>
digitalSignatureInstance

 : DigitalSignature

useTimestamp = true

<<nfDimension>>
timestampInstance :

Timestamp

providerrequester

agreed

thinking time with mean duration 1/r seconds is interposed
between successive requests.

The atomic units of execution are stereotyped with «Pa-
Step». To denote the amount of time taken by a step we use its
hostDemand attribute. Meaningful applications will typically
have hostDemand = (exp(<time>), s) to indicate
an exponentially distributed delay with mean <time> sec-
onds. The execution rate of an action will be extracted from
the «PaStep» application.

The use of these stereotypes can be observed in the activity
diagrams of ApplicationCreator (Fig. 4) and ApplicationVal-
idator (Fig. 5).

5 Early estimation and evaluation of non-functional
properties

For the quantitative analysis of non-functional service attri-
butes, the timed process algebra PEPA can be employed as

the intermediate formalism derived from UML models of
services annotated with UML4SOA and MARTE. The cur-
rent section provides a brief (and high-level) overview of
how formal performance models are derived from service
models with a special focus on insights gained by analysis
specific to our case study. For a detailed presentation of the
transformation, the reader is referred to [40].

5.1 Overview of PEPA

5.1.1 Language elements

PEPA is a formal language which allows the definition of
models as a composition of interacting automata (sequential
components). Sequential components may carry out activi-
ties independently of the rest of the system, or in cooperation
(i.e., synchronization) with other automata. The operators
supported by the language are informally introduced below.
For a complete formal definition the reader is referred to [21].

123

S. Gilmore et al.

Prefix (α, r).P denotes a process which performs an
action of type α and behaves as P sub-
sequently.

Choice P + Q specifies a component which behaves
either as P or as Q. The activities
of both operands are enabled and
the choice will (stochastically) behave
as the component which first com-
pletes.

Constant A
def= P is used for recursion. Cyclic defini-

tions are central in the characterisa-
tion of the underlying continuous-time
Markov chain derived from a PEPA
model.

Cooperation P ��
L

Q is the compositional operator of PEPA.
Components P and Q synchronize
over the set of action types in set L;
other actions are performed indepen-
dently. For example, (α, r1).(β, s).P
��
{α} (α, r2).(γ, t).Q is a composition

of two processes which execute α

cooperatively. Then, they perform
action β and γ independently and
behave as P and Q, respectively.
The operator ‖ is sometimes used as
shorthand notation for a cooperation
over an empty set, i.e., ��

∅ . Inde-
pendent copies of a component are
indicated by the notation P[N] ≡
P ‖ P ‖ · · · ‖ P
︸ ︷︷ ︸

N

5.1.2 Rates of activities

An activity is associated with an exponential distribution
with mean duration 1/r time units. Generally distributed
activities can be obtained by using suitable phase-type
distributions, although these will not be discussed fur-
ther in this paper. The symbol � specifies a passive rate
which may be used to model unbounded capacity. The
duration of an activity involving passive rates is deter-
mined by the active rate of the synchronizing compo-
nents.

Cooperating components need not have a common view
of the duration of shared actions. The semantics of PEPA
specifies that the rate of a shared action is the slowest of
the individual rates of the synchronizing components, e.g.,
min(r1, r2) in the example above.

In order to carry out a quantitative analysis, PEPA
models are interpreted as continuous-time Markov chains.
In particular, in Sect. 5.5, we will give examples of anal-

ysis of the long-run behaviour of a system (steady-state
analysis).

5.2 From UML activity models to PEPA

5.2.1 Overview of system equation and workload

The transformation from service models captured using
UML4SOA and MARTE profiles gives rise to a system equa-
tion of the target PEPA model in the following form:

System
def= Workload ��

{α} A[K]
Here Workload represents the (abstract) behavior of M

independent users of an activity. An individual workload
component is modeled as a two-state automaton

Think
def= (think, r).Start

Start
def= (α,�).Think (1)

where the passive activity (α,�) captures the fact that the
action type α represents the first unit of computation per-
formed by the system, and the rate is determined by the other
synchronizing components. Thus, the overall PEPA sub-
system for an array of M independent users is:

Workload
def= Think[M]. (2)

The notation A[K] represents an array of concurrent flows
derived by a model transformation from UML activity dia-
grams of service models, which is discussed below.

5.2.2 Basic transformation blocks

For space considerations, we only present a high-level over-
view of the main blocks of the transformation (Fig. 9), and
interested readers are referred to [40] for further details.

5.2.3 PEPA model of the running example

The translation algorithm can be applied to the activity dia-
grams in Figs. 4 and 5. The corresponding sub-systems of
the performance model are shown in Figs. 10 and 11, respec-
tively.

The model of ApplicationCreator, denoted by ACS::
StartCreation, consists of a single sequential component with
two choices ACS::Pick and ACS::CheckResult, correspond-
ing to the decision nodes pick and d1, respectively. The model
of ApplicationValidator, denoted by AVS::StartVal, has two
concurrent flows of execution. The second flow performs the
action checkData and synchronize with the first flow at nodes
parallelFlowStart and parallelFlowEnd. Thus, the second
flow is mapped onto the three-state sequential component
evolving through local states AVS::Fork2, AVS::CheckData,

123

Non-functional properties in the model-driven development of SOSs

Fig. 9 Overview of
UML-to-PEPA transformation

and AVS::Join2. Additional (message buffer) components
will be discussed in the sequel.

5.3 Handling interaction between orchestrators

Now we aim at capturing the interplay between the two
orchestrations as specified by the stereotype applications of
UML4SOA. For this purpose, we model the transmission of
a message between two orchestrators using message buffers.
Cooperation is modeled by exploiting the compositional-
ity of the PEPA language as the core building blocks (dis-
cussed in Sect. 5.2) are gradually extended by message buffer
components.

In other words, our aim is to extract a PEPA model in the
form:

System
def= Workload ��

L

(

ACS[K AC S] ��MB
B[SB] ��MC

C[SC] · · ·
)

��
M

(

AVS[K AV S] ��MD
D[SD] ��ME

E[SE] · · ·
)

where L contains the initial action executed in the sce-
nario and the cooperation set M has the action types
which correspond to the exchange of messages between the
two orchestrators. The core building blocks of a compo-
nent are extended with components B, C, . . . and D, E, . . .,
which model message buffers for asynchronous communi-
cation between the two orchestrators ACS and AVS. The
sizes of the message buffers, i.e., SB, SC , SD, SE , . . . are

123

S. Gilmore et al.

Fig. 10 PEPA model of ApplicationCreator

Fig. 11 PEPA model of ApplicationValidator

extracted from MARTE annotations. The cooperation sets
MB,MC ,MD,ME , . . . contain the activities which cause
an asynchronous delay to be sent.

5.3.1 Extraction of message buffers

The components for message buffers are extracted from a
Composite Structure diagram such as that in Fig. 2.

The transformation of an action node takes account of
the input and output pins as well as the UML4SOA ste-
reotype application to the node itself: «send», «receive»,
«send&receive», or «reply».

If the «lnk» pin references an element which is not
an orchestration, it is handled as an action node. That is,
although the UML4SOA profile indicates communication
with other participants the exchange is abstracted away with
an atomic activity in the performance model, because the
concrete behaviour of the link is not available. Conversely,
if «lnk» references an orchestrator Oi , then the message
exchange is modeled as a shared action between the two
activities. The set of such shared action types is called the
interface of an activity, denoted by Ii . Interfaces will be used
during the generation of the overall system equation. In the
following, we only describe the treatment of a pair of «send»
and «receive» action nodes in detail.

«send» node Let O1 be the orchestrator which has a «send»
node. The synchronizing orchestrator, O2, can be retrieved
by the reference node.lnk. According to the semantics of
UML4SOA introduced in Sect. 3.3, the matching node
of O2 must be stereotyped with either «receive» or with
«receive&send». The algorithm also requires that the refer-
ence of «rcv» in the receiving node be equal to the reference
of «snd» in the sending node. Thus a shared action type may
be constructed by inspecting node.lnk and node.snd. This
shared action will be added to I1. The rate extracted from
the application of «PaStep» indicates the local rate of the
shared activity. Notice that the translation of the action node
does not require the traversal of the cooperating orchestra-
tor’s activity. The pattern of transformation is shown in Fig. 9.

The UML4SOA profiles states that «send» indicates
asynchronous communication. In PEPA, this is captured by
associating a message buffer of finite size with each «send»
node, and each place in the buffer is modeled as a two-state
sequential component. The first state (i.e., Buff1) of the com-
ponent observes the execution of the action that precedes
the asynchronous send. Observation is modeled as a pas-
sive cooperation between a sender’s flow and a buffer place.
The second state (i.e., Buff2) models the transmission to
the remote orchestrator. The non-blocking behavior of the
sender’s flow is expressed by the fact that the flow is not
involved in the transmission of the message—it behaves as
the process which follows the «send» node after the preced-
ing activity is completed.

«receive» node A «receive» is blocking, hence the shared
action denoting the communication with the remote

123

Non-functional properties in the model-driven development of SOSs

orchestrator is performed by the receiving flow. (see bot-
tom component of Fig. 9). In this case the shared action type
is constructed by traversing the pins stereotyped with «rcv»
and «lnk».

5.3.2 Communication between orchestrators

The communication of ApplicationCreator (see bottom
part of Fig. 10) with the orchestrator ApplicationValida-
tor (Fig. 11) is handled by three message buffers, i.e.,
ACS::MBuffer1, ACS::MBuffer2, and ACS::MBuffer3. The
first state of the buffer observes the execution of one action
of the main flow, and the second state performs the transmis-
sion of the message. The shared action types are named by
using the format lnk :: snd (similarly, lnk :: rcv
is used for action nodes stereotyped with «receive»). Com-
ponents ACS::CompValSnd and ACS::CompValRcv model
the two-phase PEPA behavior of the node compVal, ste-
reotyped with «send&receive». Notice that cooperation
occurs over distinct action types AVS::appDocs (send) and
AVS::results (receive). The matching underlying sequential
components of ApplicationValidator are AVS::CompValRcv
and AVS::CompValRep, between which the independent
action checkReq is performed.

The overall system equation is

System
def= Workload ��

{rcvNewApp}

(

ACS ��
M AVS

��
{compensate} Compensator

)

(3)

where M = I(ACS) ∪ I(AVS) ∪ {compensate}, and

I(ACS) = I(AVS) = {AVS::application,

AVS::appDocs, AVS::results, AVS::cancel}.

5.4 Compensation and exception handling

Compensation and exception handling represent reactions
to adverse situations during the course of an orchestration.
From a performance standpoint, these events can be treated
similarly—the current flow of control halts and passes on to
some handler which performs a series of activities to restore
the system. The performance model introduces failure in the
orchestrations as activities competing with the business logic
activities. Failure activities are represented by a choice oper-
ator which is added to all the local states of the PEPA sub-
systems underlying the orchestrations.

When a failure occurs, the business logic flows of all the
orchestrators are reset to their initial conditions (by synchro-
nization of the flows over the failure action type) and the
control is passed on to a sequential component which mod-
els the handler, according to the behavior described in the
handling scope. The failure rate is attached as a MARTE
annotation to the edge which triggers the handler.

Fig. 12 PEPA model of Compensator

For our running example, the compensator sequential
component (Fig. 12) is triggered by the execution of the
compensate action and is defined in Fig. 12.

5.5 Performance evaluation of the case study

To gain insight into the behavior of a system a common prac-
tice is to carry out sensitivity analysis, which studies the
impact that certain parameters have on the overall perfor-
mance. In this section, the performance metric of interest
will be steady-state throughput, which gives the frequency
at which an activity is performed in the system at equilib-
rium. As with most performance studies, throughput analy-
sis is a useful approach because it summarises effectively the
dynamic behavior of the system, accounting for delays due
to fork/join synchronisation mechanisms, message passing,
and computation cost associated with each basic activity of
the system.

5.5.1 Sensitivity analysis: fixed rates, varying workload

An interesting sensitivity analysis is concerned with estab-
lishing how varying workload intensities affect system-level
non-functional parameters. For instance, in our case study a
suitable index to be measured is the throughput of the action
appSuccess in the underlying PEPA model.

The set-up for workload analysis consists in the solution
of the model for increasing population levels of users, rep-
resented by the array Think[M]. The analysis is specified by
using MARTE annotations in the UML model containing a
root activity stereotyped as «GaWorkloadEvent»:

pattern = closed(population=in:M,

extDelay=(exp(1/r),s))

where in:M indicates an input variable for the performance
model, which is bound to an integer before the model is
analyzed. The performance metric is specified by setting
the following property in the «PaStep» application of node
applicationStatusSuccess:

throughput=out:appSuccessTh

Figure 13 shows a typical result for this form of analysis.
Under low intensity, the throughput of the system increases

123

S. Gilmore et al.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Number of users

T
hr

ou
gh

pu
t o

f a
pp

S
uc

ce
ss

Fig. 13 Workload analysis studies how the user population affects per-
formance of the system. Here, the performance metric of interest is
the steady-state throughput of processing applications to e-University
courses. Non-degrading performance is observed for population sizes
less than 93

with the number of users. This is the behavior observed
for our model for M < 93. However, the system’s concur-
rency levels cannot meet higher demands as the population is
increased further. This degradation corresponds in the graph
to a flat throughput for 93 ≤ M ≤ 100.

5.5.2 Sensitivity analysis: fixed workload, varying rates

An orthogonal analysis approach may concern the sensitivity
of the system performance to a specific activity rate. Here all
the other parameters of the system, including the workload
specification, are fixed. The activity under study is varied
across a range of suitable rate values and the correspond-
ing performance measures are calculated. In our example,
the activity node checkProgramRequirements in Applica-
tionValidator may play a crucial role. This activity is inter-
posed between two nodes which represent communication
with ApplicationCreator. Therefore ApplicationCreator is
blocked during the course of the activity. Intuitively, one may
conclude that increasing the activity rate corresponds to an
increase in the system performance. Although this holds true,
the relationship is not linear thus it is interesting to determine
the range of values in which the relative gain is the highest.

Figure 14 shows the sensitivity analysis of rcheckReq in
the interval [10,200] with respect to the previously discussed
system throughput. Indeed, the graph reveals that an opti-
mal relative gain is obtained for values around 50 and fur-
ther increases—for instance, doubling the rate from 100 to
200—yield smaller and smaller improvement. Similarly to
the previous case, sensitivity analysis may be specified in
the UML model by using the following property for the

0 50 100 150 200
75

80

85

90

95

100

105

r
checkReq

T
hr

ou
gh

pu
t o

f a
pp

S
uc

ce
ss

Fig. 14 Sensitivity analysis of rcheckReq

«PaStep» application to node checkProgramRequirements:

hostDemand=(exp(1/in:r_checkReq),s)

6 Automating service deployment by model
transformations

Due to the rapid increase in the number of available services,
greater emphasis is put on their non-functional aspects as
described in Sect. 1. In order to meet such non-functional
requirements, a service needs to be designed for reliability by
making design decisions on an architectural level. However,
this often conflicts with the current tool support for service
development which has a relatively low level of function-
ality (merely creating appropriate XML descriptors, service
configuration files, etc.).

Recently, the identification of non-functional parameters
of services has been addressed by various XML-based stan-
dards related to web services. As web service communication
assumes unreliable transfer by default, some standards (such
as WS-ReliableMessaging [49] and WS-Reliability [48]) aim
at ensuring reliable message communication. Security-spe-
cific configuration parameters are described in the WS-Secu-
rity standard [45]. A brief summary of the contents of these
standards were provided in Sects. 4.1 and 4.2.

Unfortunately, the manual creation of such service con-
figuration files is typically an error-prone task during the
deployment of services as XML parsers do not protect us
against setting a syntactically correct but semantically incor-
rect value within a configuration file. Moreover, web services
standards capture different subsets of non-functional param-
eters making even closely related standards incompatible
with each other. Furthermore, unsurprisingly, each specific
middleware implements the standard slightly differently.

123

Non-functional properties in the model-driven development of SOSs

In addition to that, non-functional properties are captured at a
low implementation-level by using dedicated XML deploy-
ment descriptors. As a consequence (i) service configura-
tions cannot be designed at a high architectural level and (ii)
the portability of service configurations is problematic. As
the support of non-functional aspects in service platforms is
changing rapidly, we propose an approach compliant with the
Model-Driven Architecture (MDA) principles for the deploy-
ment of service configurations [24].

6.1 Target deployment languages and transformation flow

For this purpose, we created PIM2PSM and model-to-code
transformations to facilitate service development for reli-
able and secure middleware. These transformations currently
handle reliable message communication and security in ser-
vice-oriented systems. Our transformation suite enables the
automated generation of structural service descriptors and
deployable policy files which determine the runtime behav-
ior of services w.r.t. reliability and security requirements. Its
modular implementation allows for future extension in other
non-functional domains (e.g., logging) and other service plat-
forms (e.g., SCA) as well. Standards-compliant non-func-
tional service configurations make it necessary to synthesize
one or more XML configuration files as deployment descrip-
tors.

The actual model transformations can be realized through
several steps. Below we exemplify one possible workflow
for obtaining the models in the complex chains of model
transformations.

– PIM models: The input of the chain is a standard UML2
model developed using EMF and serialized as XMI,
which uses the UML4SOA(-NFP) Profile.

– PSM models: After the extraction of relevant model
parts, internal service models are generated within
the model transformation tool (describing core ser-
vices «SOA model», reliable messaging setup «SOA RM
model», security «SOA security», etc.). These are then
processed in order to create descriptor models (e.g.
«WSDLmodel», «RAMP model», «Sandesha model»)
which conform to industrial standards. These can be con-
sidered as PIM2PSM mappings in the MDA terminology.

– Target XML files: These descriptor models are the basis
of XML file generation. These files are directly usable as
configuration descriptors on standard platforms. Besides
the server-side configuration XMLs (namely one for reli-
able messaging and one for security aspects), WSDL files
of the services are also created. These are PSM2CODE
transformations.

– Glue code for deployment: In case of the Apache Axis
platform, deployable server-side projects are also created

by Java applications. These have to be extended with the
implementation (source files) of the services.

An overview of the core model transformation problem for
deriving server-side configuration files of the Apache plat-
form is presented with a description of transformation steps in
Fig. 15. The trace model we use creates connections between
source and target elements (objects) in the form of typed rela-
tions to ease transformation development. Moreover, such
models also can be used to trace requirements from the high-
level models to the code.

This transformation scheme is uniformly applicable to dif-
ferent «nfCharacteristics» (with minor adjustments to handle
names of elements in case of «$name»). As a further techni-
cal detail, it is worth pointing out that certain default values
can be set by the transformation itself (i.e. the source UML
model does not need to contain them as in case of «expo-
nentialBackoff »). Finally, certain configuration parameters
in the model might not be required by the underlying mid-
dleware.

6.2 Transformation implementation in VIATRA2

Transformations were implemented in the VIATRA2
framework [42] which is a modular, open source model
transformation framework built on Eclipse, which supports
the efficient design and execution of model transformations.
Transformations are defined by graph transformation rules
(i.e., declarative description of model patterns) and Abstract
State Machines, which provide an intuitive yet precise way of
capturing complex transformations. The choice of the VIA-
TRA2 framework can also be explained by the support for
generic transformations [43], which significantly reduces the
number of transformation rules.

The transformation implementation process for our
deployment transformations consists of the following con-
ceptual steps:

1. Create metamodels for source and target domain. An
example is the domain of UML as source domain and a
simple representation of services, connections and reli-
able messaging constraints as target.

2. Graph patterns describe fragments of directed, typed
graphs which represent a coherent unit of the model
(e.g., a service with a specification). “Atomic units” of
transformations will be encoded in such patterns.

3. Graph transformation provides a high-level rule and
pattern-based manipulation language to implement basic
mappings between graphs. See e.g. [14] for a detailed
definition of the semantics of graph transformations.

4. Complex transformations can be assembled using
Abstract State Machine [8] rules defined on graph

123

S. Gilmore et al.

Fig. 15 Overview of deployment transformations

patterns and transformation rules (e.g. “Create a port
in a WSDL document for all ports of a service”).

6.3 Derived deployment descriptor for the eUniversity case
study

Figure 16 shows an extract of the deployment descrip-
tor («services.xml») file of the ApplicationCreation service
derived by our model transformation. This configuration file
describes the security and reliable messaging characteristics
of the provided service. The generation of the actual XML
document is based upon the source model of Fig. 7 and the
transformation rules of Fig. 15.

This configuration file is an extract of a WS-Policy-
compliant descriptor which can be parsed by any Web service
stack implementation which adheres to WS-Policy, WS-
Security and WS-ReliableMessaging standards (although a
reference is included to Apache’s Sandesha reliable mes-

saging platform, no semantic restrictions apply to the pol-
icy). Parameters in the configuration file are related to one
Web service port. Boolean attributes which are marked in
the model as true will be mapped to policy elements while
concrete values (such as retransmission interval) will be
filled with the specified value, respectively. Some techni-
cal details have been suppressed (such as schema URI).
(ExactlyOne here refers to the policy semantics and not the
messaging mode.) Note that this target language is exten-
sible (e.g. logging can added easily) due to the nature of
WS-Policy.

Note that according to the implementation of WS-Secu-
rity standard (Rampart module), if a service is available via a
secure connection, it cannot be accessed in plain text mode,
moreover, the security settings (e.g. authentication token)
of a port must be fixed. This implies that for clients with
different security requirements, the service should be avail-
able at different URIs. Currently, the transformation creates

123

Non-functional properties in the model-driven development of SOSs

<?xml version='1.0'?>
<service name="ApplicationValidationService">

<operations>
</operations>
<wsp:Policy wsu:Id="ApplicationValidationServiceSecurityPolicy"

xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:wsp="http://schemas.xmlsoap.org/ws/
2004/09/policy">

<wsp:ExactlyOne>
<wsp:All>

<sp:Authentication
xmlns:sp="http://schemas.xmlsoap.org/ws/

2005/07/securitypolicy">
<wsp:Policy>

<wsp:authToken>
<wsp:Policy>

<sp:Username/>
</wsp:Policy>

</wsp:authToken>
</wsp:Policy>

</sp:Authentication>
<sp:Encryption ...

<wsp:Policy>
<wsp:encryptBody/>
<wsp:encryptAlgorithm>
<wsp:Policy>

<sp:Default/>
</wsp:Policy>

</wsp:encryptAlgorithm>
</wsp:Policy>

</sp:Encryption>
<sp:DigitalSignature ...

<wsp:Policy>
<wsp:signBody/>
<wsp:signAlgorithm>
<wsp:Policy>

<sp:Default/>
</wsp:Policy>

</wsp:signAlgorithm>
</wsp:Policy>

</sp:DigitalSignature>
<sp:Timestamp ..

<wsp:Policy>
<wsp:useTimestamp/>

</wsp:Policy>
</sp:Timestamp>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>
<wsp:Policy wsu:Id="ApplicationValidationServiceRMPolicy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401
-wss-wssecurity-utility-1.0.xsd"
xmlns:wsrm="http://ws.apache.org/sandesha2/policy">
<wsp:ExactlyOne>

<wsp:All>
<wsrm:filterDuplicates>true</wsrm:filterDuplicates>
<wsrm:needsAck>true</wsrm:needsAck>
<wsrm:maxNumberOfRetrans>3</wsrm:maxNumberOfRetrans>
<wsrm:retransInterval>10000</wsrm:retransInterval>
<wsrm:timeout>60</wsrm:timeout>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>
</service>

Fig. 16 Fragments of services.xml of ApplicationCreation service

a separate URI for every client–server (participant) pair with
non-functional specifications.

7 Related work

The development of service-oriented systems has recently
gained a lot of attention, and several approaches for mod-
eling, generating and analyzing these software systems
have been published or announced. However, most of these
approaches focus mainly on functional requirements of SOS
while non-functional aspects are neglected. We present the

related work grouping them into the topics of modeling, per-
formance analysis and deployment techniques.

7.1 UML modeling approaches

Several other attempts exist to define UML extensions for
service-oriented systems and some approaches also are used
for the automated transformation from UML to BPEL. Most
of them, however, do not cover all three aspects types of
model elements for structural, behavioral and non-functional
aspects of SOAs. For example the UML 2.0 profile for soft-
ware services [22] provides an extension for the specifica-
tion of services addressing only structural aspects. Similarly,
the current version of the UML profile and metamodel for
services (SoaML) [36] supports the structural concepts of
service components, service specifications, service interfaces
and contracts for services. SoaML is the result of the stan-
dardization efforts started by the OMG in 2006. The UML
extension for service-oriented architectures described by
Baresi et al. [6] focuses mainly on modeling SOAs by refining
business-oriented architectures. The refinement is based on
conceptual models of the platforms involved as architectural
styles, formalized by formal graph transformation systems.
The extension is also limited to stereotypes for the structural
specification of services.

Other modeling approaches require very detailed UML
diagrams from designers trying to force service-oriented lan-
guages (like BPEL) on top of UML in order to facilitate
automated transformation from UML to BPEL. For exam-
ple, the work of Skogan et al. [20] has a similar focus to our
approach, i.e. a model-driven approach for services based on
UML models. However, the approach lacks an appropriate
UML profile preventing building models at a high level of
abstraction; thus producing overloaded diagrams. Another
example is the very detailed UML profile [2] that introduces
stereotypes for almost all BPEL 1.0 activities—even for those
already supported in plain UML, which makes the diagrams
drawn with this profile hard to read. Some other extensions
do not cover vital parts of service orchestrations such as com-
pensation handling, e.g. the UML profile described in [28].
In a recently published article, Ermagan and Krüger [15]
extend the UML2 with components for modeling services.
Collaboration and interaction diagrams are used for model-
ing the behavior of such components. Neither compensation
nor exception handling is explicitly treated in this approach.

Approaches addressing modeling of non-functional prop-
erties of services are quite rare. Examples are the OMG
MARTE profile [35], and the extension proposed by Wada
et al. [44], but conversely to the profile we presented in this
work, none of them provides a “per contract” approach. Con-
versely to these approaches, UML4SOA(-NFP) focuses on
the improvement of the expressive power of UML by defin-
ing a small set of stereotypes for structural and behavioral

123

S. Gilmore et al.

aspects of SOAs, focusing on service-oriented features as
orchestrations and the non-functional aspects of service-ori-
ented systems as shown in this article. For a more thorough
discussion of UML4SOA, see [16].

7.2 Methods for analyzing non-functional properties

Performance evaluation of software models has gained
increased attention over the last decade (see [5] for a review of
this field). Given the centrality of the UML, many approaches
have dealt with the extraction of performance models from
activity diagrams [10,27], sequence diagrams [7] and state
machine diagrams [31]. The use of an intermediate meta-
model to facilitate these translations has been proposed in
[37,47], in which concrete application to layered queueing
networks and stochastic Petri nets have been given. A work
closely related to ours is [12], in which the performance pre-
diction of service compositions is carried out on BPEL mod-
els. A BPEL workflow is expressed as a single annotated
activity diagram, which is translated into a layered queueing
network for the analysis. The semantics of the translation
and the profiles used for the performance annotations are
very similar, however our work extends the scope of applica-
bility of performance prediction to a more general scenario in
which interdependency between orchestrations is taken into
account.

Alternatively to formal analysis models, the dependability
and robustness of services can be also investigated by using
fault injection techniques as discussed in [26]. The authors
of [25] use monitoring and testing techniques to evaluate the
dependability of web services by using statistical real-time
data. [1] aims to develop a dependable web services frame-
work, which relies on extended proxies. However, this needs
a modification at the client side in order to handle exceptions
and find new service instances. Moreover, the reconfiguration
of client side proxies uses non-standard WSDL extensions
while we concentrated on standards-compliant solutions.

7.3 Deployment mechanisms for non-functional properties

A framework for automated WSDL generation from UML
models is described in [41], using the UML extensions of
MIDAS [9]. In [19], web service descriptions are mapped to
UML models, and (after using visual modeling techniques)
a composite service can be created for which the descriptor
is automatically generated. However, none of these works
considers non-functional properties of web services.

Non-functional aspects of e-business applications are dis-
cussed among others in [4], having some description of
deployment optimization for J2EE applications, but without
discussing details of model-based deployment. Integration of
non-functional aspects in the development by model trans-
formations is also investigated in [11,38] and [23], focusing

on parts of the engineering process, although using different
underlying transformation techniques for model analysis and
deployment. An early version of the deployment transforma-
tion suite was presented in [17].

8 Conclusions and future work

Despite the advantage of coherent, separable components
with well-defined interfaces, service-oriented systems can
become as complex as any other. For this reason, model-
driven development is invaluable in the creation and mainte-
nance of service-oriented systems. High-level models allow
us to retain intellectual control of complex systems which
would otherwise defeat our attempts to understand them in
either static or dynamic terms. Making these models an inte-
gral part of the development process means that they grow
and change as the system grows and changes and they are
available to support the extension and adaptation of the sys-
tem in response to perceived need or demand.

While model-driven development has gained great accep-
tance in documenting the static structure of systems in terms
of components, packages, classes and interfaces, modeling of
functional properties has received less attention and model-
ing of non-functional properties has received much too little.
Non-functional properties such as responsiveness, availabil-
ity, scalability and security have a direct impact on whether
the system is accepted and valued by end users. In contrast,
the internal organization of the codebase into packages and
classes is entirely invisible and irrelevant to end users. From
this perspective the current emphasis on modeling of static
software structure seems misplaced, to say the least.

In this paper, we have presented a model-driven approach
for the development of service-oriented systems with explicit
support for the specification of non-functional properties.
Our main contributions are

– the ability to specify non-functional properties right
within the model of the SOA system, enabling model-
ing of performance and security,

– model-based support for performance analysis, in partic-
ular performance estimates and reliability analysis, based
on the timed process algebra PEPA,

– and the introduction of deployment mechanisms that
comprise model-to-model and model-to-text transforma-
tions.

We also created a method for analyzing the performability-
reliability versus performance of services with non-func-
tional parameters as described in [18], but which is not
included in this work.

We plan to extend the current UML4SOA-NFP approach
to cover system’s reliability at architecture level. Future work

123

Non-functional properties in the model-driven development of SOSs

will necessarily encompass further validation of the approach
presented against larger projects. We plan to apply it to more
complex case studies in collaboration with industry.

References

1. Alwagait, E., Ghandeharizadeh, S.: DeW: a dependable web ser-
vices framework. RIDE 01, 111–118 (2004)

2. Amsden, J., Gardner, T., Griffin, C., Iyengar, S.: Draft UML
1.4 Profile for Automated Business Processes with a Map-
ping to BPEL 1.0. Specification, IBM. http://www.ibm.com/
developerworks/rational/library/content/04April/3103/3103_
UMLProfileForBusinessProcesses1.1.pdf (2003), Last visited:
10.12.2008

3. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic con-
cepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secure Comput. 1(1), 11–33 (2004)

4. Balogh, A., Varró, D., Pataricza, A.: Model-based optimization of
enterprise application and service deployment. In: ISAS, pp. 84–
98, (2005)

5. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based
performance prediction in software development: a survey. IEEE
Trans. Softw. Eng. 30(5), 295–310 (2004)

6. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-based modeling
and refinement of service-oriented architectures. J. Softw. Syst.
Model. (SOSYM) 5(2), 187–200 (2005)

7. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence
diagrams and statecharts to analysable Petri Net models.
In: Inverardi, P., Balsamo, S., Selic, B. (eds.) Proceedings of
the Third International Workshop on Software and Performance,
pp.35–45. ACM, Rome, Italy, (2002)

8. Börger, E., Stärk, R.: Abstract State Machines. A Method for High-
Level System Design and Analysis. Springer, Berlin (2003)

9. Caceres, P., Marcos, E., Vera, B.: A MDA-based approach for web
information system development. In: Workshop in Software Model
Engineering (WiSME@UML2003) (2003)

10. Canevet, C., Gilmore, S., Hillston, J., Kloul, L., Stevens, P.: Ana-
lysing UML 2.0 activity diagrams in the software performance
engineering process. In: Dujmovic, J.J., et al. (eds.) Proceedings of
the Fourth International Workshop on Software and Performance,
WOSP 2004, Redwood Shores, California, USA, January 14–16,
2004, pp. 74–78 (2004)

11. Cortellessa, V., Marco, A.D., Inverardi, P.: Software performance
model-driven architecture. In: SAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pp. 1218–1223. ACM
Press, New York (2006)

12. D’Ambrogio, A., Bocciarelli, P. : A model-driven approach to
describe and predict the performance of composite ser-
vices. In: Cortellessa, V., Uchitel, S., Yankelevich, D. (eds.)
WOSP, pp. 78–89. ACM, New York (2007)

13. Dujmovic, J.J., Almeida, V.A.F., Lea, D. (eds.): Proceedings of
the Fourth International Workshop on Software and Performance,
WOSP 2004, Redwood Shores, California, USA, January 14–16,
2004. ACM, New York (2004)

14. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.):
Handbook on Graph Grammars and Computing by Graph Trans-
formation, volume 2: Applications, Languages and Tools. World
Scientific, Singapore (1999)

15. Ermagan, V., Krüger, I.: A UML2 profile for service modeling. In:
International Conference on Model Driven Engineering Languages
and Systems. LNCS, vol. 4735, IEEE, pp. 360–374. Springer,
Berlin (2007)

16. Foster, H., Göczy, L., Koch, N., Mayer, P., Montangero, C., Varró,
D.: D1.4b: UML for Service-Oriented Systems. Specification,
SENSORIA Project 016004 (2010)

17. Gönczy, L., Ávéd, J., Varró, D.: Model-based deployment of
web services to standards-compliant middleware. In: Isaias, P.,
Nunes, M.B., Martinez, I. (eds.) Proceedings of WWW/Internet
2006(ICWI2006). Iadis Press (2006)

18. Gönczy, L., Déri, Z., Varró, D.: Model-Based Performability Anal-
ysis of Service Configurations with Reliable Messaging. In: Koch,
N., Vallecillo, A., Houben, G.-J. (eds.) Proceedings of the Model
Driven Web Engineering (MDWE), CEUR, vol. 389 (2008)

19. Grønmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-Driven
Web Services Development. In: Proceedings of the IEEE Inter-
national Conference on e-Technology, e-Commerce and e-Service
(EEE’04), pp. 42–45. IEEE, Los Alamitos, CA, USA (2004)

20. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Style-based mod-
eling and refinement of service-oriented architectures. In: Eighth
IEEE International Enterprise Distributed Object Computing Con-
ference (EDOC’04), IEEE, pp. 47–57. IEEE (2004)

21. Hillston, J.: A Compositional Approach to Performance Model-
ling. Cambridge University Press, Cambridge (1996)

22. Johnson, S.: UML 2.0 Profile for Software Services. Specifica-
tion, IBM (2005) http://www.ibm.com/developerworks/rational/
library/05/419_soa, Last visited: 10.12.2008

23. Jonkers, H., Iacob, M.-E., Lankhorst, M.M., Strating, P.: Integra-
tion and Analysis of Functional and Non-Functional Aspects in
Model-Driven E-Service Development. In: EDOC, pp. 229–238
(2005)

24. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. Wiley-
Interscience, IEEE Computer Society, USA (2008)

25. Li, P., Chen, Y., Romanovsky, A.: Measuring the Dependability of
Web Services for Use in e-Science Experiments. In: Penkler, D.,
Reitenspieß, M., Tam, F. (eds.) Service Availability, Third Interna-
tional Service Availability Symposium, ISAS 2006, Helsinki, Fin-
land, May 15–16, 2006, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 4328, pp. 193–205. Springer, Berlin (2006)

26. Looker, N., Xu, J.: Dependability assessment of grid middleware.
In: Proceedings of the 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2007, 25–28
June 2007, Edinburgh, UK, pp. 125–130. IEEE Computer Society,
USA (2007)

27. López-Grao, J.P., Merseguer, J., Campos, J.: From UML Activity
Diagrams to Stochastic Petri Nets: Application to Software Perfor-
mance Engineering. In Dujmovic, J.J., et al. (eds.) Proceedings of
the Fourth International Workshop on Software and Performance,
WOSP 2004, Redwood Shores, California, USA, January 14-16,
2004, pp. 25–36 (2004)

28. Mantell, K.: From UML to BPEL. Specification, IBM. http://www.
ibm.com/developerworks/webservices/library/ws-uml2bpel/
(2005). Last visited: 10.12.2008

29. Mayer P., Schroeder A., Koch N.: A model-driven approach to
service orchestration. In: SCC’08, IEEE, pp. 1–6. IEEE, USA
(2008)

30. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: model-driven ser-
vice orchestration. In: The 12th IEEE International EDOC Con-
ference (EDOC 2008), pp. 203–212. IEEE Computer Society,
Munich, Germany (2008)

31. Merseguer, J., Bernardi, S., Campos, J., Donatelli, S.: A compo-
sitional semantics for UML state machines aimed at performance
evaluation. In: Silva, M., Giua, A., Colom, J. (eds.) Proceedings
of the 6th International Workshop on Discrete Event Systems,
pp. 295–302. IEEE Computer Society Press, Zaragoza, Spain
(2002)

32. Object Management Group: UML Profile for Schedulabili-
ty, Performance and Time Specification. http://www.omg.org/
technology/documents/formal/schedulability.htm (2005)

123

http://www.ibm.com/developerworks/rational/library/content/04April/3103/3103_UMLProfileForBusinessProcesses1.1.pdf
http://www.ibm.com/developerworks/rational/library/content/04April/3103/3103_UMLProfileForBusinessProcesses1.1.pdf
http://www.ibm.com/developerworks/rational/library/content/04April/3103/3103_UMLProfileForBusinessProcesses1.1.pdf
http://www.ibm.com/developerworks/rational/library/05/419_soa
http://www.ibm.com/developerworks/rational/library/05/419_soa
http://www.ibm.com/developerworks/webservices/library/ws-uml2bpel/
http://www.ibm.com/developerworks/webservices/library/ws-uml2bpel/
http://www.omg.org/technology/documents/formal/schedulability.htm
http://www.omg.org/technology/documents/formal/schedulability.htm

S. Gilmore et al.

33. Object Management Group: UML for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms, v1.1. http://
www.omg.org/spec/QFTP/1.1/ (2008)

34. Object Management Group (OMG). Unified Modeling Language:
Superstructure, version 2.1.2. Specification, OMG. http://www.
omg.org/docs/formal/07-11-02.pdf (2007)

35. Object Management Group (OMG): UML Profile for MAR-
TE, Beta 2. Specification, OMG. http://www.omgmarte.org/
Documents/Specifications/08-06-09.pdf (2008)

36. Object Management Group (OMG). Service Oriented Architec-
ture Modeling Language (SoaML)—Specification for the UML
Profile and Metamodel for Services (UPMS), revised submission.
Specification, OMG. http://www.omg.org/cgi-bin/doc?ptc/09-04-
01 (2009). Last visited: 30.08.2009

37. Petriu D., Woodside, C.: An intermediate metamodel with scenar-
ios and resources for generating performance models from UML
designs. Softw. Syst. Model. 6, 163–184 (2007)

38. Röttger, S., Zschaler, S.: Model-driven development for non-func-
tional properties: refinement through model transformation. In:
Proceedings of the Unified Modeling Language (UML 2004).
LNCS, vol. 3273, pp. 275–289. Springer, Berlin (2004)

39. Software Engineering for Service-Oriented Overlay Computers.
http://www.sensoria-ist.eu

40. Tribastone M., Gilmore, S.: Automatic extraction of PEPA per-
formance models from UML activity diagrams annotated with
the MARTE profile. In: Proceedings of the Seventh International
Workshop on Software and Performance (WOSP). ACM, Prince-
ton, New Jersey, USA (2008)

41. Vara, J.M., de Castro, V., Marcos, E.: WSDL automatic generation
from UML models in a MDA framework. In: NWESP 2005, pp.
319. IEEE, USA (2005)

42. Varró, D., Balogh, A.: The model transformation language of
the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–
234 (2007)

43. Varró, D., Pataricza, A.: Generic and meta-transformations for
model transformation engineering. In: Baar, T., Strohmeier, A.,
Moreira, A., Mellor, S. (eds.) Proceedings of the UML 2004:
7th International Conference on the Unified Modeling Language.
LNCS, vol. 3273, pp. 290–304. Springer, Lisbon (2004)

44. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in
service oriented architecture. In: IEEE International Conference on
Service Computing, Chicago, IL, pp. 222–229. IEEE, USA (2006)

45. Web Services Security: SOAP Message Security 1.1 (WS-Security
2004). http://docs.oasis-open.org/wss/v1.1/

46. Wirsing, M., Hölzl, M., Acciai, L., Clark, A., Banti, F. Fantechi,
A., Gilmore, S., Gnesi, S., Gönczy, L., Koch, N., Lapadula, A.,
Mayer, P., Mazzanti, F., Pugliese, R., Schroeder, A., Tiezzi, F.,
Tribastone, M., Varró, D.: A pattern-based approach to augment-
ing service engineering with formal analysis, transformation and
dynamicity. In: Proceedings of 3rd International Symposium on
Leveraging Applications of Formal Methods, Verification and Val-
idation (ISOLA 2008), Porto Sani, Greece, LNCS. Springer, Berlin
(2008)

47. Woodside, C.M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T.,
Meseguer, J.: Performance by unified model analysis (PUMA). In:
WOSP, pp. 1–12. ACM, New York (2005)

48. WS-Reliability 1.1 specification. http://docs.oasis-open.org/
wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf

49. WS-ReliableMessaging 1.1 specification. http://docs.oasis-open.
org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

Author Biographies

Stephen Gilmore is a Reader in
Computer Science at The Uni-
versity of Edinburgh, Scotland
where he is a member of the Lab-
oratory for Foundations of Com-
puter Science. He received his
PhD from the Queen’s University
of Belfast in Northern Ireland.
His interests include quantitative
modelling of software systems
and biological processes. The
focus of his work is on using pro-
cess algebra to model systems
and to derive analysis results
which guide the modification or

optimisation of systems according to formally specified performance
metrics.

László Gönczy completed his
PhD studies at Budapest Univer-
sity of Technology and Econom-
ics (BUTE) where he is working
as a research associate. He is also
the Director of Services and Edu-
cation at the OptXware Research
and Development Ltd. He holds
an MSc in Software Engineer-
ing from BUTE and a MSc in
Engineer-Economics from Cor-
vinus University of Budapest.
His professional interest includes
model-driven development of
Service-Oriented Architectures
and dependability analysis based

on high level system models. He was involved in several research and
industrial R+D projects and published articles in these fields. He is
currently working on SENSORIA EU FP6 and CoMiFin FP7 projects.

Nora Koch is a research assis-
tant at the Ludwig-Maximilians-
Universität (LMU) of Munich
and works as project manager
at Cirquent GmbH. Her main
research interests focus on soft-
ware engineering methods for the
development of web applications
and personalized RIAs, and ser-
vice-oriented systems, in partic-
ular model-driven engineering.
Nora is the leader of the Web
Engineering Group at the LMU,
responsible for the development
of the UML-based Web Engi-

neering (UWE) methodology and CASE tool support. Nora has been
involved in several national and European projects, and works in the
EU project SENSORIA since 2005.

123

http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/docs/formal/07-11-02.pdf
http://www.omg.org/docs/formal/07-11-02.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omg.org/cgi-bin/doc?ptc/09-04-01
http://www.omg.org/cgi-bin/doc?ptc/09-04-01
http://www.sensoria-ist.eu
http://docs.oasis-open.org/wss/v1.1/
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

Non-functional properties in the model-driven development of SOSs

Philip Mayer is a research asso-
ciate and doctoral candidate in
the research group on Program-
ming and Software Engineer-
ing at LMU Munich, Germany.
He has received his masters in
computer science at the Univer-
sity of Hannover in 2006. Main
research interests of Philip lie
in the area of program analy-
sis and refactoring, service-ori-
ented software systems, MDA,
and software development tool-
ing. Philip is currently working
in the EU research project SEN-

SORIA on development of service-oriented software systems.

Mirco Tribastone holds a degree
in Computer Engineering from
the University of Catania, Italy.
He is currently working toward
his PhD in Informatics at the
Laboratory for Foundations of
Computer Science at The Uni-
versity of Edinburgh. He his
interested in analytical tech-
niques for performance evalua-
tion, with focus on performance
prediction of computer systems
using process-algebraic specifi-
cations.

Dániel Varró is an associate pro-
fessor at the Budapest University
of Technology and Economics.
His main research interest is
model-driven systems and soft-
ware engineering with special
focus on model transformations.
He regularly serves in the pro-
gramme committee of various
international conferences in the
field. He is the founder of the
VIATRA2 model transformation
framework, and the principal
investigator at his university of
the SENSORIA, DIANA and Se-

cureChange European Projects. Previously, he was a visiting researcher
at SRI International, at the University of Paderborn and TU Berlin. He
is a three time recipient of the IBM Faculty Award.

123

	Non-functional properties in the model-driven development of service-oriented systems
	Abstract
	1 Introduction
	2 Challenges in the development of service-oriented systems
	3 Modeling service-oriented systems
	3.1 The eUniversity case study
	3.2 Modeling structural aspects
	3.3 Modeling behavioral aspects

	4 Enhanced modeling with non-functional properties
	4.1 Non-functional aspects of services
	4.2 Extending structural models with non-functional properties
	4.3 Extending behavior models with non-functional properties

	5 Early estimation and evaluation of non-functional properties
	5.1 Overview of PEPA
	5.1.1 Language elements
	5.1.2 Rates of activities

	5.2 From UML activity models to PEPA
	5.2.1 Overview of system equation and workload
	5.2.2 Basic transformation blocks
	5.2.3 PEPA model of the running example

	5.3 Handling interaction between orchestrators
	5.3.1 Extraction of message buffers
	5.3.2 Communication between orchestrators

	5.4 Compensation and exception handling
	5.5 Performance evaluation of the case study
	5.5.1 Sensitivity analysis: fixed rates, varying workload
	5.5.2 Sensitivity analysis: fixed workload, varying rates

	6 Automating service deployment by model transformations
	6.1 Target deployment languages and transformation flow
	6.2 Transformation implementation in VIATRA2
	6.3 Derived deployment descriptor for the eUniversity case study

	7 Related work
	7.1 UML modeling approaches
	7.2 Methods for analyzing non-functional properties
	7.3 Deployment mechanisms for non-functional properties

	8 Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

