

Sensoria
016004
Software Engineering for Service-Oriented Overlay Computers

 www.sensoria-ist.eu

Automotive Case Study
On Road Assistance Demonstrator

Tutorial

 Authors: Rong Xie (CIR), Nora Koch (CIR,LMU)

 Period covered: from 01.09.2008 to 28.02.2010
 Date of preparation: 15.2.2010
 Revision: Draft
 Dissemination level: PU

 Contract start sate: September 1, 2005 Duration: 48 months
 Project coordinator: Martin Wirsing (LMU)
 Partners: LMU, UNITN, ULEICES, UWARSAW, DTU, PISA, DSIUF,
 UNIBO, ISTI, FFCUL, UEDIN, ATX, TILab, FAST, BUTE,
 S&N, LSS-Imperial, LSS-UCL, MIP, ATXT, CIR

Integrated Project funded by the
European Community under the
“Information Society Technologies”
Programme (2002—2006)

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 2

Executive Summary

This report provides a detailed documentation on the Automotive Demonstrator implemented in the
SENSORIA project in order to demonstrate the use of a set of techniques, methods, and tools developed within
the scope of the project. The techniques used are UML4SOA, various model transformations from UML to
BPEL and WSDL, the CASE tool MagicDraw, and the SENSORIA Development Environment (SDE). In
particular, the Demonstrator focuses on the development process of service-oriented software. It demonstrates
how a model-driven process can work, which automatically generates and deploys a service based on a model
of the service. This service is defined as an orchestration of web services.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 3

Contents

1 Introduction .. 7

2 System Requirements of the Demonstrator ... 9
2.1 Software... 9
2.2 JDK1.6 (for SDE) .. 9

2.2.1 JDK1.5 (for Tomcat5) ... 9
2.2.2 Eclipse3.4 .. 9
2.2.3 Eclipse Plug-ins ... 11
2.2.4 Tomcat 5.5... 14
2.2.5 ActiveBPEL Engine (ActiveBPEL4.1 Final Release)... 14
2.2.6 Dino 0.2.2 .. 14
2.2.7 MySQL5.1 ... 14
2.2.8 MagicDraw.. 14

2.3 Hardware.. 15
2.4 Standards.. 15

3 Architecture of the Automotive Demonstrator.. 16
3.1 Overview.. 16
3.2 Service Orchestration... 18
3.3 View Manager.. 19
3.4 Web Services ... 19

3.4.1 Position Service ... 20
3.4.2 Bank Service (Bank Card Charge) .. 20
3.4.3 Garage Service... 21
3.4.4 Rental car service .. 21

3.5 Semantic Dynamic Service Discovery (Dino) ... 22
3.5.1 Integrating Dino in the Automotive Demonstrator.. 22
3.5.2 Registration of Ontology Description in Dino... 23
3.5.3 Registration of Capability Documents in Dino ... 23
3.5.4 Requirement Document of Request to Dino.. 24

3.6 Map Display and Route Plan ... 24

4 MDD4SOA Plug-ins for Generation of Executable BPEL..26
4.1 Integration of MDD4SOA_Extension in SDE... 26
4.2 Functions of the MDD4SOA Extension .. 27

4.2.1 Transformation to Executable BPEL... 27
4.2.2 Transformation to Interactive BPEL ... 28
4.2.3 Deployment to a Web Server... 29

4.3 Configuration of the Converter.. 29

5 Demonstration Process... 30
5.1 Model-Driven Development .. 30
5.2 Building UML4SOA Orchestration Model.. 31
5.3 Transformation Chain .. 32

5.3.1 Orchestration of Eclipse Plug-in Functions with SDE Graphical Orchestrations 33
5.3.2 Result of the transformation .. 36

5.4 Run Deployed Application .. 39
5.5 Running the Demonstrator after Modifying the UML4SOA Model 43

6 Lessons Learned and Future Work .. 50

7 References ... 51
7.1 Documents ... 51
7.2 Tools .. 51

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 4

Appendix .. 53
A.1 Configuration of MDD4SOA_Extension plug-in projects.. 53

A.1.1 Configuration of Plug-in Project ... 53
A.1.2 Configuration of feature project .. 55
A.1.3 Configuration of Update Site Project ... 56

A.2 Deploy a Web Service with Eclipse Web Developer Tools .. 58

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 5

Index of Figures

Figure 1: Screenshot of properties of eclipse icon in windows desktop 10
Figure 2: Installed JRE... 10
Figure 3: Configure VM Arguments .. 11
Figure 4: Update plug-ins... 12
Figure 5: Select to installed plug-ins of Ganymede ... 12
Figure 6: Select plug-ins to be installed for SDE and MDD4SOA.. 13
Figure 7: Architecture of the Demonstrator ... 17
Figure 8: Sequence diagram of a standard process in the Demonstrator 18
Figure 9: Sequence BPEL process for the service orchestration.. 19
Figure 10: Dino integration .. 23
Figure 11: Map display... 24
Figure 12: Route in map... 25
Figure 13: BPEL2ActiveBPEL/WSDL converter and deployment 26
Figure 14: Directory structure of a BPEL deployment archive.. 29
Figure 15: Model-driven development process.. 30
Figure 16: Activity diagram of the orchestration ... 32
Figure 17: Sequence Activity diagram of the orchestration... 32
Figure 18: Creating a graphical orchestration (.god file) ... 33
Figure 19: Chain tool script demochain.god .. 34
Figure 20: Set arguments of functions ... 36
Figure 21: In ActiveBPEL engine executable BPEL process of scenario of Figure 16......... 37
Figure 22: Interactive BPEL process of scenario of Figure 16 .. 38
Figure 23: Start page of the demonstration .. 39
Figure 24: Car location... 40
Figure 25: Find Garage... 41
Figure 26: Find best garage .. 41
Figure 27: Find rental car station ... 42
Figure 28: Best rental car station.. 43
Figure 29: Payment with credit card .. 43
Figure 30: Activity diagram of the orchestration for parallel scenario 44
Figure 31: BPEL process of scenario of Figure 30 .. 45
Figure 32: Interactive BPEL process of scenario of Figure 30 .. 46
Figure 33: Start page .. 47
Figure 34: Payment with credit card .. 47
Figure 35: Result of payment ... 48
Figure 36: Location service.. 48
Figure 37: Find service providers... 49
Figure 38: Find best provider ... 49
Figure 39: Configure dependences... 53
Figure 40: Specify the libraries and folders that constitute the plug-in classpath.................. 54
Figure 41: Select folders for build.. 54
Figure 42: Testing and debug... 55
Figure 43: Feature project .. 56
Figure 44: Create update site project.. 56
Figure 45: Create update site project with web resources.. 57
Figure 46: Update Site Map ... 57
Figure 47: Create web service .. 58

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 6

Figure 48: Publish web service .. 59
Figure 49: Select methods of web service.. 59
Figure 50: Server location .. 60

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 7

1 Introduction

This report provides a detailed documentation on the Automotive Demonstrator implemented in the
SENSORIA project in order to demonstrate the use of a set of techniques, methods, and tools developed within
the scope of the project.

The main goal of the Automotive Demonstrator is to show the power of the SENSORIA approach based on the
application of model-driven architecture (MDA) principles in the area of service-oriented computing.
Implementation following the model-driven approach is based on the construction of models and model
transformations. In particular, it demonstrates how a model-driven development process can work, which
automatically generates and deploys a service based on a model of the composition of services. This service is
defined as an orchestration of web services.

The Automotive Demonstrator implements the On Road Assistance scenario [D1.4a, Koch07, BK07]. In this
scenario, the diagnostic system reports a severe failure in the car engine; for example, the vehicle’s oil lamp
reports a low oil level. This triggers the diagnostic system of the vehicle to perform an analysis of the sensor
values. The diagnostic system reports, for example, a problem with the pressure in one cylinder head, and
therefore the car is no longer drivable. It sends a message with the diagnostic data as well as the vehicle’s GPS
data to the car manufacturer or service centre.

Based on the car position, the service discovery system identifies and selects the appropriate services in the
area: repair shop (garage), tow truck and car rental. When the driver makes an appointment with the garage; the
diagnostic data is automatically transferred to the garage, which could then be able to identify the spare parts
needed to perform the repair. The service discovery system identifies as well a car rental service, providing the
GPS data of the stranded vehicle. The driver makes an appointment with the car rental service to pick up the
rental car. The current version of the Demonstrator is limited to the orchestration of garage and rental car
services, but could easily be extended to include also the tow truck service. We assume that the owner of the
car has to deposit a security payment in order to be able to use the services.

The services involved then in the implementation of the On Road Assistance are the following:

� Position Service providing the GPS data of the stranded vehicle

� Bank Service for charging a credit card

� Garage Services for the localization and selection of garages

� Rental Car Services for the localization and selection of car rental stations.

For the demonstration, a first UML model is built as the sequential orchestration of the required services for
determining the car position, finding garages in nearby the car and selecting the most convenient garage first,
finding rental car stations nearby and selecting one afterwards. The orchestration process finalizes with the
credit card charge service. Using a chain of model transformations the model is transformed to an executable
service implemented in WSDL and BPEL and deployed to a web server. Model transformations and
deployment are performed in a fully automatic way.

The Automotive Demonstrator is designed in such a way that the invocation of each service is visualized in the
web browser and expects a user interaction, almost all just a click on a continue button. In fact, the position of
the car, asset of garages and car rentals nearby the car position, and then the selected garage and car rental
station are visualized in Google maps API. For the implementation of the interactions and the visualization
dynamic generated web pages are associated to each service and the BPEL process is enriched with additional
interactive features by a complementary model transformation.

The power of the model-driven development approach is shown by a second run of the Demonstrator that
consists of changing the orchestration model. The changes are twofold: (1) the credit charge service is invoked
at the beginning of the process, and (2) the localization of garages and rental car stations as well as the
selection of the most appropriate garage and rental car station are parallelized. Again, the model
transformations and deployment are performed automatically with the tool chain defined for this purpose.

The models are built using the UML4SOA notation, which is an UML extension that has been defined to model
service-oriented systems. The model transformations convert the UML4SOA models to BPEL and WSDL in

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 8

several steps. The model transformation from UML to BPEL and WSDL defined so far within the scope of the
SENSORIA project were not sufficient for supporting the model-driven process, i.e. the automatic generation
based on the UML4SOA models built of the application. In addition, deployment of the application only could
be performed manually.

To overcome these limitations additional model-to-model and model-to-code transformations, and a function
supporting automatic deployment of a web application onto a web application server were implemented. The
first additional model transformation is needed to provide BPEL and WSDL code that is executable by a BPEL
engine (in our case ActiveBPEL). The second model transformation is needed to allow user interactions and to
visualize results step by step during the demonstration. The third one is to deploy the resulting web application.

Note that the model transformations are independent of the scenario, even more they are independent of the
BPEL/WSDL application, i.e. they are totally generic and reusable for other services modeled as orchestration
of other services.

The CASE tool MagicDraw was used for the modelling activities and the demonstration process was
implemented using the SENSORIA Development Environment (SDE), which is an Eclipse-based framework
for the integration and use of the tools developed in the project for the analysis and development of service-
oriented software. The resulting web application is run under a Tomcat v5 server.

The reminder of the document is organized as a reference guide for the installation of the software required for
the Automotive Demonstrator and the information needed for a successful run of the demonstration. Section 2
describes the system requirements of the Automotive Demonstrator. Section 3 presents the architecture of the
Demonstrator. Section 4 presents the newly defined model transformations. Section 5 describes the
demonstration process and the results of running the demonstration twice. First run is based on the sequential
orchestration of services and the second run on the modified model changing order of services and introducing
parallelism. Finally, section 6 describes lessons learned and sketches some future work.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 9

2 System Requirements of the Demonstrator

The following section describes the system requirement and development environment of the Demonstrator.
The section covers the software- and the hardware configuration as well as the standards used in the
implementation.

2.1 Software

A set of software tools must be installed to develop and run the Demonstrator. At first, a UML CASE tool like
MagicDraw or IBM Rational Software Modeler (RSM) is needed to modeling the UML model. After modeling
the Eclipse Development Environment v3.4 and a set of Eclipse plug-ins (SDE, MDD4SOA) must be installed
for running the model transformations and the implementation of the web services. The application data of web
services should be stored in a database (e.g. MySQL v5). The web services and service orchestration (BPEL
process) must be deployed in an application server like Tomcat v5.5. A BPEL engine (e.g. ActiveBPEL engine)
must be installed to run the BPEL process. Java Development Kit (JDK) v1.6 is necessary to use all feature of
the SDE. Further more DINO [DINO07a, Dino07b] is required to realization of the semantic dynamic service
registry and discovery. More details on required software components and tools that the Demonstrator needs
are described in the following subsections.

2.2 JDK1.6 (for SDE)

The Automotive Demonstrator is written mainly in Java, for which implementation the SUN’s JDK 1.6 was
used. The SDE is built on cutting-edge technology. It requires Java JDK 1.6 to be installed. Former versions,
including 1.5, will NOT work as the SENSORIA Development Environment (SDE) uses the Java 6 Scripting
Engine. Note that you will need the JDK. Only the JRE isn’t sufficient for running the all feature of SDE.

Download: http://java.sun.com/javase/downloads/index.jsp

2.2.1 JDK1.5 (for Tomcat5)

JDK1.5 must also be installed, because the ActiveBPEL Engine 4.1 runs only with Apache Tomcat5. Tomcat5
requires the version 1.5 of JDK.

Download: http://java.sun.com/javase/downloads/index_jdk5.jsp

2.2.2 Eclipse3.4

SENSORIA SDE needs the new features of Eclipse3.4. Therefore, the Eclipse3.4 must be installed as IDE. It is
recommended to explicitly use the Java VM when running Eclipse. This is achieved with the -vm command
line argument (for example: -vm “D:\program files\Java\jdk1.6.0_06\bin\javaw.exe”). Without -vm, Eclipse
uses the first Java VM found on the O/S path.

For example for Windows, Figure 1 indicates how to configure Java VM explicitly. Right mouse click at
eclipse icon in windows desktop � properties � link � set target with
(D:\EntwicklungsProgramm\eclipse_jee_ganymede_SR13.4.1\eclipse\eclipse.exe -vm "D:\program
files\Java\jdk1.6.0_06\bin\javaw.exe" -Xmx1024M)

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 10

Figure 1: Screenshot of properties of eclipse icon in windows desktop

Also, within Eclipse, the right JDK must be selected in the preferences before starting a Runtime Workbench.
The Java JDK 1.6 must be selected as default JRE in Eclipse (Window > Preferences > Java > Installed JREs...)
as shown in Figure 2.

Figure 2: Installed JRE

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 11

In addition, set VM Memory for Runtime Workbench as follows: Click “Edit”, configure VM Arguments "-
Xmx1024m" in Figure 3.

Download: http://www.eclipse.org/downloads/

Figure 3: Configure VM Arguments

2.2.3 Eclipse Plug-ins

The Eclipse plug-ins (e.g. Graphical Editors and Frameworks, Models and Model Development, SOA
Development, Web and Java EE Development, SDE, MDD4SOA and MDD4SOA_Extension) are necessary
for running the Automotive Demonstrator.

2.2.3.1 Installation of Plug-ins using Ganymede Update Site

Begin the installation of the plug-ins by selecting the menu path as shown in Figure 4.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 12

Figure 4: Update plug-ins

Select the “Graphical Editors and Frameworks”, “Models and Model Development”, “SOA Development”,
“Web and Java EE Development” of Ganymede Update Site and install them as illustrated in Figure 5.

Figure 5: Select to installed plug-ins of Ganymede

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 13

2.2.3.2 Installation of the SENSORIA Development Environment (SDE)

The SENSORIA Development Environment (SDE) has to be installed as Eclipse plug-in through the Eclipse
update site of SDE. Further information about SDE can be found at the SDE website.

SDE website: http://svn.pst.ifi.lmu.de/trac/sct

Eclipse update site of SDE: http://svn.pst.ifi.lmu.de/update/sct

2.2.3.3 MDD4SOA

MDD4SOA is a model-driven development approach for SOA applications. It is based on UML4SOA models
and on model transformations. UML4SOA is a UML profile for modeling service-oriented software; in
particular, for modeling orchestrations of services inside a SOA-based system [MSKa, MSKb]. The model
transformations defined before the Automotive Demonstrator was built, were not sufficient for supporting the
model-driven process, i.e. the automatic generation based on the UML4SOA models built of the application.
We implemented additional model-to-model and model-to-code transformations to overcome these limitations.
Note that these implemented model transformations are independent of the scenario, even more they are
independent of the BPEL/WSDL application, i.e. they are totally generic and reusable for other services
modeled as orchestration of other services.

MDD4SOA must be installed as an Eclipse plug-in through the Eclipse update site of MDD4SOA.

MDD4SOA website: http://www.mdd4soa.eu/web/

Eclipse Update Site of MDD4SOA: http://www.mdd4soa.eu/update

2.2.3.4 Extending MDD4SOA

MDD4SOA_Extension is an extension of the MDD4SOA plug-in. It includes two additional model
transformations. The objective of these model transformations is to convert BPEL/WSDL files to ActiveBPEL
Engine compatible BPEL/WSDL files. In addition it includes a method to deploy BPEL process to web server.
This extension could be installed as an Eclipse plug-in through the Eclipse update site of
MDD4SOA_Extension. Figure 6 shows the selection of plug-ins to be installed for SDE and MDD4SOA.

Eclipse updates site of MDD4SOA_Extension: http://www.sensoria-ist.eu/cirquent/eclipse_Plug-in _update

Figure 6: Select plug-ins to be installed for SDE and MDD4SOA

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 14

2.2.4 Tomcat 5.5

An Apache Tomcat (version 5.5) is used as application server. The different web services and BPEL process
must be deployed at the application server. The Apache Tomcat 5 or higher version is required by ActiveBPEL
Engine 4.1.

Download: http://tomcat.apache.org/download-55.cgi

2.2.5 ActiveBPEL Engine (ActiveBPEL4.1 Final Release)

For the orchestration of the services we use the Business Process Execution Language (BPEL). The XML-
based BPEL files are executed in the open source execution engine ActiveBPEL, version 4.1. This engine runs
web applications in the webapps directory of an Apache Tomcat application server. (We use Tomcat 5.5,
because this version has been tested for ActiveBPEL 4.1). With the BPEL engine, the different services could
be invoked.

To create and to deploy own web services, the tools of Apache Axis 2, version 1.3, is used. Axis is embedded
in the Apache Tomcat similarly to ActiveBPEL. Axis provides tools for creating and deploying new web
services or for transforming existing applications into web services.

Requirements of ActiveBPEL engine:

- Apache Tomcat 5.5

- Sun’s JDK 1.5

The installation itself is described in the documentation section of the web site (http://www.activevos.com).
After running the install script the ActiveBPEL container is integrated in the Tomcat server. The BPEL engine
would always be started automatically when starting the Tomcat.

Download ActiveBPEL 4.1: http://www.activevos.com/community-open-source-engine-download.php

Tutorial for Installing ActiveBPEL:
http://users.encs.concordia.ca/~yuhong/teaching/UNB/CS6905/Task0_GettingUpandRunning-
LITEVERSION.doc

2.2.6 Dino 0.2.2

The Dino tool [DINO07a, Dino07b] (version 0.2.2) is used for the semantic dynamic service discovery. The
Dino project provides a tools and a runtime system for enabling dynamic and adaptive composition of
autonomous services based on the non-functional requirements of services.

Web page of Dino: http://www.cs.ucl.ac.uk/staff/a.mukhija/dino/

2.2.7 MySQL5.1

MySQL5.1 was used as database to store the test data of the Demonstrator.

Download of MySQL5.1: http://dev.mysql.com/downloads/mysql/5.1.html

2.2.8 MagicDraw

We use MagicDraw15.0 to model the orchestration of the services that define the application of the
Demonstrator. IBM Rational Software Modeler (RSM) or the IBM Rational Software Architect (RSA) can be
used as well. The UML Profile (MDD4SOA Profile) was tested with both CASE tools, MagicDraw and
RSM/RSA.

Download of Magicdraw: http://www.magicdraw.com/

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 15

2.3 Hardware

Basically the Automotive Demonstrator will run on any machine where a standard Java distribution is
available. Furthermore, to connect to the different services, which are requested in the scenario, it must be
possible to establish an Internet connection. Especially it has to be ensured, that Java applications accessing the
Internet are not blocked by a firewall or a proxy.

To provide services, which can be invoked by the Demonstrator, different application servers, running either on
one or more physical machines, must be installed. As application servers we will use the Apache Tomcat
running on any Tomcat compatible operating system (e.g. Windows, Linux, Mac).

2.4 Standards

Especially in the area of service-oriented architectures it is the aim to use standard methods and tools whenever
they are suitable. The Demonstrator mainly relies on web service techniques, such as WSDL, BPEL,
SOAP/XML-RPC and REST. In addition, we use the UML standard for modeling the SENSORIA Automotive
demonstration application.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 16

3 Architecture of the Automotive Demonstrator

Basically the Demonstrator of the “On Road Assistance” scenario has the issue to show the “car breakdown”
scenario implemented with a service-oriented approach. The driver of a car has got a vehicle malfunction or an
accident somewhere on the road. Now the user wants to get help and road assistance. Therefore he can invoke
several services by using the cars built in communication device. This is exactly what the Demonstrator wants
to show different workflows for this scenario.

3.1 Overview

The architecture of the Demonstrator for the automotive scenario is built as typical client/server architecture.
On the client side is only a full JavaScript enabled web browser is needed, for example Firefox or Internet
Explore. The business logic specified as a service orchestration is deployed on the server side.

The application is defined as a three tier architecture on the server as showed in Figure 7. The first layer is the
presentation layer. The “ViewManager” in the presentation layer is a component developed to parser the client
request, to call the service orchestration and generate web pages for the client.

The business logic is located in the second layer. A BPEL process lies in this layer, which is in charge of the
service orchestration. Several local or remote web services can be called by the BPEL process. A special
service is used for the invocation of the Dino broker.

A database lies in the third layer, i.e. the persistent layer. The database will contain all data needed by the
services.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 17

Figure 7: Architecture of the Demonstrator

The architecture of the Automotive Demonstrator for the “On Road Assistance” scenario consists of two
different kinds of components. On the one hand, components, which are located inside the vehicle. On the other
hand, components that are arranged somewhere outside the vehicle. They could be spread over the World Wide
Web. For the Demonstrator all the web services contained in the same application server as service
orchestration are called as local service. All the other web services are called remote services, which are hosted
on another remote server.

The standard process in the Demonstrator for requesting a service is shown in the sequence diagram of Figure
8.

The Orchestrator is in charge of controlling the service requesting process that consists of the following steps:

1. The client fills in the form at the web page and presses the button in the web browser.

2. The http-request sends to ViewManager in the web server.

3. The ViewManager parses the request and call the BPEL process (ServiceOrchestration).

4. Local or remote web services are invoked by the BPEL process.

5. Web services get the service data from database and send the result to BPEL process.

6. Then the BPEL process sends the result back to the ViewManager.

Tomcat 5.5
ActiveBPEL Engine

BPEL /WSDL

MySQL

Axis Hibernate

Dino Broker

Axis

Java / JSF

HTML
JavaScript

Google MAP API

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 18

7. The ViewManager generates a web page based on the results and sends the web page to client as http-
response.

8. After that, the results of service invoke and information of the next task can be shown on the web
browser of client side.

If the client clicks the button of next task, the standard process of the Demonstrator will be executed again until
reaching the end activity of the BPEL process.

Figure 8: Sequence diagram of a standard process in the Demonstrator

3.2 Service Orchestration

The Orchestrator is the key element of the Demonstrator, as it is the controlling element, which invokes all the
services. A very important issue for the Orchestrator is how to build the workflow of the processes. For this the
Business Process Execution Language (BPEL) is used. In the BPEL language the workflow for the automotive
scenario will be determined. This includes to define, which kind of services are invoked, if different services
have to be requested sequentially or parallel and some compensation mechanisms when services are cancelled

At the beginning the BPEL process receives the input from the ViewManager. Depending on this input it
forwards the information to the other elements. In the other direction the BPEL process sends the results of the
calculations or invoke of other web service back to the ViewManager.

If the orchestration is specified in BPEL process, the BPEL file has to be executed. Therefore a BPEL
execution engine is required. For our Demonstrator we focus on open source solutions, which bring us to
ActiveBPEL or Apache ODE. Both are open source and can be used for executing BPEL code. For our
Demonstrator we will focus on the ActiveBPEL for the following reasons: (1) All in all, this engine seems to be
in a further development stage than the ODE. For example ActiveBPEL supports the invocation of REST web
services from the BPEL code. This feature is not yet implemented in the ODE engine. (2) We invoke web
services, which are provided over the Internet. It is then a useful feature, because many of these services are
published in the REST style.

ActiveBPEL engine runs under the most popular application servers. To execute BPEL code, an archive
containing the BPEL file itself and its WSDL descriptions must be deployed on the application server. Now the
BPEL process can be invoked from other entities just like a web service. Similar to these, the requesters of the
BPEL processes are informed how to access the service by using WSDL descriptions.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 19

Figure 9 shows a sequence BPEL process for the first variant of our scenario, which consist of the sequential
composition of services.

Figure 9: Sequence BPEL process for the service orchestration

3.3 View Manager

ViewManager is a server side program to coordinate the BPEL process and user interfaces. It’s a bridge
between the BPEL process and the user interface.

The user fills-in the form and press the button in the web page. A http-request will be send to the ViewManager
of application server. The ViewManager parses the request and prepares the input parameters. Then it calls the
BPEL process (orchestration). The BPEL process has the whole business logic. It processes the business plan
and decides what should be done in this step and what should be done in the next step.

The BPEL process waits for the next call of the ViewManager at next “receive” activity. ActiveBPEL Engine
give a “receive Queue” (list of next “receive” or Tasks) in the URL:

http://localhost:8080/BpelAdmin/message_rec_queue.jsp.

The ViewManager reads the next tasks with the framework “HttpClient” of Apache from the “receive Queue”
URL and updates the list of next tasks in the session variable with the “receive Queue” from URL and uses this
session variable to decision the next call of BPEL process. At the same time, the ViewManager gets the results
of BPEL process and generates a web page according to the results. After that the ViewManager sends the web
page to the client as http-response. Thus the client can see the result and know what the next task is.

3.4 Web Services

A web service is defined by the W3C as "a software system designed to support interoperable machine-to-
machine interaction over a network" [WSDL07]. Web services are frequently just web application
programming interfaces (API) that can be accessed over Internet, and executed on a remote system hosting the
requested services.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 20

The W3C web service definition encompasses many different systems, but in common usage the term refers to
clients and servers that communicate over the HTTP protocol used on the web. Such services tend to fall into
one of two camps: Big web services and RESTful [REST08] web services.

"Web Services" use Extensible Markup Language (XML) messages that follow the Simple Object Access
Protocol (SOAP) standard and have been popular with traditional enterprise. In such systems, there is often a
machine-readable description of the operations offered by the service written in the Web Services Description
Language (WSDL). The latter is not a requirement of a SOAP endpoint, but it is a prerequisite for automated
client side code generation in many Java and .NET SOAP frameworks (frameworks such as Spring, Apache
Axis2 and Apache CXF). Some industry organizations, such as the WS-I, mandate both SOAP and WSDL in
their definition of a web service.

In the SENSORIA Demonstrator the web service is the basic functional element of the orchestration. The
orchestration orchestrates several web services together as a new process. This new process can be deployed as
a new web service. The orchestration doesn’t implement any new function self. It just reuses the exported
functions of the web services.

For this Demonstrator there are six concrete web Services separately implemented. All web Services will be
implemented in standard Java. Every web service is a web project and could be deployed in different web
server. Each web service could be used as a basic invoke activity in BPEL process. Apache Axis2 will be used
to develop the web services in this demonstration.

For the deployment of web services with the Eclipse Web Developer Tools see: Appendix A.2.

3.4.1 Position Service

Some services in the car assistance scenario implemented in the Automotive Demonstrator require the current
position of the car. Therefore information from the Global Positioning System (GPS) is used. The GPS data is
taken from the built-in GPS device of the vehicle.

A client program reads the current location data from GPS device periodically, for example in every five
minutes and sends the location data to the position service server. Then the position service server updates the
location data in the database for the user. In this way the current location of every user will be saved in the
database of the position service server.

The “PositionService” is a web service for the orchestration. This web service exports the method “getPosition”
to read the data from the database and give the current position of a specific car back. The description is shown
in Table 1. The information from this service will used as input parameter for other requested services.

Web Service PositionService

Method getPosition

Input parameters userID

Output location of the specified user

WSDL getPositionPL.wsdl

Table 1: Position service

3.4.2 Bank Service (Bank Card Charge)

For requesting the car assistance services, first the user’s credit card will be charged. Therefore credit card data
has to be provided in the Automotive Demonstrator before or after using the services. Then the provided data
will be checked by a bank service and the bank service will debit the payment to the user’s account. This web
service exported a method “chargeCredit” as shown in Table 2.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 21

Web Service BankService

Method chargeCredit

Input Parameters userID, card information

Output Message of payment

WSDL chargeCreditPL.wsdl

Table 2: Bank service

3.4.3 Garage Service

A garage offers the repair services for different car types. There are several configurations: A garage could only
repair cars of a certain brand, such as an authorized dealer. Furthermore a garage might be limited due to the
lack of technical equipment for repairing certain brands of cars. Two web services for the orchestration are
prepared. The first is to find the garages in the near of user. The second is to find the “best” garage for the user,
where “best” could be defined as the “nearest”, the “cheapest”, the “fastest” service, etc. In our example it is
the nearest.

The web service “findGarageService” exported a method “findGarage”as shown in Table 3.

Web Service findGarageService

Method findGarage

Input Parameters location of user

Output a list of garage in the near of current user position

WSDL findGaragePL.wsdl

Table 3: Service to find garages nearby

The web service “selectBestGarageService” exported a method “selectBestGarage” as shown in Table 4.

Web Service selectBestGarageService

Method selectBestGarage

Input Parameters location of user

Output the best garage

WSDL selectBestGaragePL.wsdl

Table 4: Service to select the “best” garage service

3.4.4 Rental car service

If the broken vehicle cannot be repaired in time, the user needs to find a car rental station and rent another car.
These services could help the user to find a best car rental station in the near of the broken car. Two different
web services for orchestration will be implemented. The first is to find a list of rental stations nearby to the
stranded car. The second is to find the “best” rental station for the user.

The web service “findRentalStationService” exported a method”findRentalStation” as shown in Table 5.

Web Service findRentalStationService

Method findRentalStation

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 22

Input Parameters location of user

Output a list of rental stations in the near of current user position

WSDL findRentalStationPL.wsdl

Table 5: Service to find rental car stations nearby

The web service “selectBestRentalCarService” exports a method”selectBestRentalCar” as shown in Table 6.

Web Service selectBestRentalCarService

Method selectBestRentalCar

Input Parameters location of user

Output the best rental station

WSDL selectBestRentalCarPL.wsdl

Table 6: Service to select the “best” rental car service

3.5 Semantic Dynamic Service Discovery (Dino)

The realization of semantic dynamic service discovery in the Automotive Demonstrator is possible though the
integration of the Dino tool. “Dino provides a runtime infrastructure for supporting all stages of service
composition, namely: service discovery, selection, binding, delivery, monitoring and adaptation” [Dino07a].

The services can be registered at the Dino repository in different steps. At first the existing web services must
be described semantically. That means, the ontology description file (.owl file) must be created for each
service. Secondly the criteria for the selection of services in Dino are the non-functional requirements of a
service. So the non-functional requirements of each service must be defined statically as Capability Documents
(.qos file). At last the ontology description files (.owl file) and Capability Documents (.qos file) must be copy
to the special folders of the Dino broker server, so the services could be registered in Dino.

3.5.1 Integrating Dino in the Automotive Demonstrator

In this Demonstrator a DinoService and a set of variants for the FindRentalStationsService and the Dino tool
are integrated to show how to realize semantic dynamic service discovery. These components and how they are
related is shown in Figure 10.

The ServiceOrchestration (BPEL) invokes an Axis web service (DinoService), which does not provide the
concrete function itself. Instead it sends the request to the Dino broker server. The Dino broker server discovers
the services from the Dino repository and selects the appropriate service according to the non-functional
requirement of services. The selected FindRentalStationsService must fulfill all details of the quality
requirements of the request.

Dino invokes the selected service automatically and delivers the result back to the DinoService. After that
DinoService returns the result to the ServiceOrchestration (BPEL).

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 23

Figure 10: Dino integration

3.5.2 Registration of Ontology Description in Dino

The web services must have be registered at the Dino repository. The first step is to create an ontology
description (.owl file) for each web service. That document (.owl file) provides a semantic description of the
service-operations. Dino must get this information by copying the documents in special folders in the Dino
broker Server as below:

� rentalCarAxisServiceFind.owl to ontology-cache
� rentalCarAxisServiceFind1.owl to owls-services/
� rentalCarAxisServiceFind2.owl to owls-services/
� rentalCarAxisServiceFind3.owl to owls-services/

3.5.3 Registration of Capability Documents in Dino

Each web service has special non-functional properties. For describing these details Dino has its own format.

The example below shows the syntax of a capability document (.qos file):

<QosDoc>
<and>

<qos name="PriceLevel" minVal="0.0" maxVal="5.0" avgVal="0.0" confidence="0.5"/>
 <qos name="CustomerSatisfaction" minVal="0.0" maxVal="0.0" avgVal="0.0" confidence="0.5"/>

</and>
</QosDoc>

Dino must get this information also by copying of the documents in special folders in the Dino broker Server:

� rentalCarAxisServiceFind1.qos to owls-services/
� rentalCarAxisServiceFind2.qos to owls-services/
� rentalCarAxisServiceFind3.qos to owls-services/

Now Dino has all necessary information and can wait for requests for semantic dynamic service discovery.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 24

3.5.4 Requirement Document of Request to Dino

The requests to Dino must be formulated in a special format. That xml-structure is called ReqDoc. The by Dino
selected service must fulfill all details of the ReqDoc.

The example below shows the syntax of a ReqDoc file (rentalCarAxisFindReqDoc.xml):

<ReqDoc name="rentalCarService" xmlns="http://www.cs.ucl.ac.uk/research/dino/Dino-ReqDoc">
<mode name="dino">

<service name="rentalCarService"
functional-ref="http://localhost:8080/Dino_Reqdoc/rentalCarAxisFind.owl"
qos-ref="http://localhost:8080/Dino_Reqdoc/rentalCarAxisFindDino.qos"/>

</mode>
</ReqDoc>

“qos-ref” is the URL of the required Quality of Service (qos) file for the request to Dino. Dino compares this
qos file of request (qos in ReqDoc) with the qos files of service implementations (the qos files in the folder
“owls-services”) and find the best matched service implementations.

There are some limitations of current version of Dino:

� Dino needs a direct Internet access. A proxy cannot be configured.
� The repository of Dino is a file repository. The discovery of service and comparison of non-functional

requirement are executed linearly.
� The folder “repository” of Dino broker has to be deleted manually and Dino broker server has to be

restarted in case the ontology description (owl file) of a service is changed.
� Dino supports currently only non-functional properties as decision criteria.

3.6 Map Display and Route Plan

To provide the driver with useful information, the display of maps is an essential feature for the Demonstrator.
These maps could be provided by different map services. For example the requested service could be selected
regarding the geographical position of the car.

The Google Maps API (http://code.google.com/apis/maps/) is used to show the map and to plan the route in the
Automotive Demonstrator.

Figure 11: Map display

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 25

On the map the car position and the positions of the different service providers are separately marked as shown
in Figure 11. If the user goes along with the selected choice, then he can request the service. Otherwise he tells
the system to choose another service or to modify his request completely.

If the user selects a service provider, the route plan from current car location to service provider could be
indicated. Figure 12 shows an example of route plan.

Figure 12: Route in map

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 26

4 MDD4SOA Plug-ins for Generation of Executable BPEL

The MDD4SOA Eclipse plug-in in its first version was designed for transforming UML models to abstract
BPEL processes. The resulting BPEL process file and WSDL files generated were not executable by any BPEL
engine. The specification of namespaces, service location and service binding of web services in BPEL/WSDL
files were not enough for a running application using a specific BPEL engine.

The ActiveBPEL engine, we used for our Automotive Demonstrator, requires on the one hand a specific
directory structure, and on the other hand a catalog file and a process deployment descriptor file (pdd file).
Therefore, we implemented an extension of the MDD4SOA Eclipse plug-in called
“BPEL2ActiveBPEL/WSDL Converter and Deployment”. It is used for the generation of executable BPEL and
it is also implemented as an Eclipse plug-in. The new plug-in comprises two methods to transfer the abstract
BPEL/WSDL files to executable BPEL/WSDL files in ActiveBPEL engine and one extra method to deploy the
executable BPEL process to a web server.

4.1 Integration of MDD4SOA_Extension in SDE

In its initial form, the SENSORIA Development Environment (SDE) perspective has the layout as in Figure 13.
(Note that in the screenshot of Figure 13, some tools have already been installed by using other update sites
available on the SDE web site).

Figure 13: BPEL2ActiveBPEL/WSDL converter and deployment

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 27

Three views are visible in SDE:
� On the left-hand side, the SENSORIA Browser is displayed. It contains a categorized listing of all

tools which are currently available in this particular instance of the SDE.
� On the right-hand side, the SENSORIA blackboard is displayed. The blackboard is used to store

Java object values in-between service invocations when using the manual generic user interface (UI)
to access tool functions.

� At the bottom, the SENDORIA shell is displayed. As pointed out above, the shell is a manual
orchestrator which can be used to employ JavaScript to call tool (plug-in) functions.

Double-clicking on a tool in the SENSORIA Browser displays more information about the functions of the
tool, e.g. of the “BPEL2ActiveBPEL/WSDL Converter and Deployment”.

Besides some general information about the tool in the upper section, all available functions of the tool are
listed in the function section. These functions may be directly invoked using the generic wizard UI by selecting
the appropriate links. This is detailed in the following sections.

For the development of Eclipse plug-ins like the “BPEL2ActiveBPEL/WSDL Converter and Deployment” the
reader is referred to the SDE tutorial (http://svn.pst.ifi.lmu.de/trac/sct/wiki/Tutorial) and briefly described in the
Appendix A.1.

4.2 Functions of the MDD4SOA Extension

There are three new functions in MDD4SOA_Extension. You can find them in “BPEL2ActiveBPEL/WSDL
Converter and Deployment” of the catalog “Transformation” in the SENSORIA browser. Figure 13 is a
screenshot of the MDD4SOA_Extension.

4.2.1 Transformation to Executable BPEL

The goal of this function is to convert an abstract BPEL process and several abstract WSDL descriptions to an
executable BPEL process in the ActiveBPEL engine. In this function the namespaces, service location and
service binding of web services in BPEL/WSDL files are specified based on the information available within
the configuration file.

At same time this function generates the for ActiveBPEL engine specified directory structure sketched in
Figure 14, WSDL-catalogue file (catalog.xml) and process deployment descriptor file (.pdd file). A Process
Deployment Descriptor (.pdd) file describes service binding and, optionally, the process version details of a
BPEL process. The WSDL-catalogue file tells the BPEL engine, where the WSDL files can be found in the
deployment archive.

The example below shows the syntax of a WSDL-catalogue file:

The example below shows the syntax of a Process Deployment Descriptor (.pdd) file:

<wsdlCatalog>
 <wsdlEntry location="string" classpath="slash/separated/classpath/filename.wsdl"/>
</wsdlCatalog>

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 28

Function: convert2ActiveBPELandWSDL (String inputFilePath, String outputFileDir, String configFilePath)

Parameters:

� inputFilePath: the absolute file path of the input abstract BPEL file, the abstract WSDL files have to
be saved in the same directory as the input abstract BPEL file.

� outputFileDir: the absolute file path of the output directory for generated BPEL/WSDL files

� configFilePath: the absolute file path of the configuration file

Return value of this function is the absolute file path of the generated BPEL file.

4.2.2 Transformation to Interactive BPEL

In the current version of UML4SOA profile there is no data handling. It will be including in the next version of
UML4SOA profile. The user interactions must be modeled explicitly in BPEL. So we give a compromise
solution for this problem of the current version of UML4SOA profile. This method inserts a receive activity
before every invoke activity and a reply activity after every invoke activity in the BPEL. At the same time an
assign activity is inserted before the new reply activity. The result of the invoke activity as output message for
reply activity will be specified in this assign activity. So the BPEL process is forced to communicate with
client. Data handling and user interactions are controlled in the ViewManager (see section3.3).

Function: convert2InteractiveBPELandWSDL(String inputFilePath, String outputFileDir, String
configFilePath)

Parameters:

� inputFilePath: the absolute file path of the input BPEL file

� outputFileDir: the absolute file path of the output directory for generated BPEL/WSDL files

� configFilePath: the absolute file path of the configuration file

Return value of this function is the absolute file path of the generated BPEL file.

<process xmlns=”http://schemas.active-endpoints.com/pdd/2006/08/pdd.xsd”
xmlns:bpelns="http://target.sensoria.cirquent.de/orchestration2_orchestration2_Interactive.bpel"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
location="bpel/orchestration2_orchestration2_Interactive.bpel"
name="bpelns:orchestration2_orchestration2_Interactive">

<partnerLinks>
 <partnerLink name="findGaragePL">
 <partnerRole endpointReference="static">
 <wsa:EndpointReference xmlns:g="http://garage.sensoria.cirquent.de/findGaragePL.wsdl">
 <wsa:Address>http://localhost:8080/SensoriaGarage/services/GarageService</wsa:Address>
 <wsa:ServiceNamePortName="findGaragePLServicePort">

 g:findGaragePLService
 </wsa:ServiceName>
 </wsa:EndpointReference>
 </partnerRole>
 <myRole allowedRoles="" binding="RPC" service="findGaragePLService"/>
 </partnerLink> …
</partnerLinks>
<wsdlReferences>
 <wsdl location="project:/findGaragePL.wsdl"
 namespace="http://garage.sensoria.cirquent.de/findGaragePL.wsdl"/> ...
</wsdlReferences>
</process>

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 29

4.2.3 Deployment to a Web Server

This function compresses the output directory of BPEL process as a bpr file (BPEL deployment archive file)
and deploys the bpr file to the bpr directory of Tomcat server. The directory structure of a BPEL deployment
archive for ActiveBPEL engine is sketched in Figure 14.

Figure 14: Directory structure of a BPEL deployment archive

Function: deployToTomcat(String bpelDir, String configFilePath)

Parameters:

� bpelDir: the absolute file path of the input directory of to deployed BPEL process

� configFilePath: the absolute file path of configuration file

Return value of this function is a message of deployment status.

More details on the documentation of the deploying of a BPEL Process can be found under:

http://www.activebpel.org/samples/samples-2/deploy/doc/index.html

4.3 Configuration of the Converter

An orchestration invokes several web services. These web services could be deployed anywhere in the web
locally or remotely. Currently, the orchestration gets the information on location of services through the
configuration file.

 Output Dir

META-INF

 pdd

catalog.xml

process.bpel

service.wsdl

process.pdd

bpel wsdl

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 30

5 Demonstration Process

The goal of the Automotive Demonstrator is to show how some SENSORIA techniques can be used to support
a real model-driven process with fully automatic generation of a web application based on the orchestration of
services. In particular, the Automotive Demonstrator shows how to build a model of orchestration and
transform models into other models and code (model2model & model2code).

5.1 Model-Driven Development

Model-Driven Development (MDD) is a software development methodology which focuses on creating models,
or abstractions, more close to some particular domain concepts rather than computing (or algorithmic) concepts.
It is meant to increase productivity by maximizing compatibility between systems, simplifying the process of
design, and promoting communication between individuals and teams working on the system.

A modeling paradigm for MDD is considered effective if its models make sense from the point of view of the
user and can serve as a basis for implementing systems. MDD gives architects the ability to define and
communicate a solution while creating artifacts that become part of the overall solution.

Figure 15: Model-driven development process

Figure 15 shows a sample of the SENSORIA model-driven development process (MDD4SOA). It consists of
the following steps:

1. At first you should build the UML model for orchestration are built with the UML4SOA Profile in a
UML tool (e.g. Magicdraw, Rational Software Modeler or the Rational Software Architecture).

2. The orchestration model is transformed to an abstract BPEL process and a set of WSDL files with a
corresponding function of the MDD4SOA Eclipse plug-in.

3. The abstract BPEL process and the WSDL files are transformed to executable BPEL process and
WSDL files, i.e. the BPEL process is executable with an ActiveBPEL engine. The transformation is
performed with the corresponding function of the MDD4SOA_Extension.

4. The executable BPEL process and the WSDL files are deployed to a web server (e.g. Tomcat).

If all web services invoked by the orchestration are already implemented and available, the whole application
can be run immediately. If there are some web services still not implemented, these web services have to be
implemented with the specification of the WSDL generated by the model transformation.

After the model transformation and deployment of applications have been executed successfully, the web
server can be started. Then the server applications are ready for client request. If the orchestration model is
changed, the whole process should be run again.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 31

5.2 Building UML4SOA Orchestration Model

The UML4SOA orchestration model can be built with a UML tool (e.g. Magicdraw, Rational Software
Modeler or the Rational Software Architecture). Before starting to build a model, the UML4SOA profile must
be installed in the UML tool (details see: http://www.mdd4soa.eu/web/wiki/InstallUseProfile). Then the
specific UML4SOA model elements can be used to model an activity diagram representing an orchestration
model.

Once the model is complete, export the model to UML files (EMF UML2 (v2.x) XMI files) like it is shown in
Figure 16. The exported UML files will be used as input files in the model transformation of the MDD4SOA
plug-in. Figure 16 is the activity diagram of a sequential composition of services (first variant of our scenario).
We used the MagicDraw. Tool.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 32

Figure 16: Activity diagram of the orchestration

Figure 17: Sequence Activity diagram of the orchestration

5.3 Transformation Chain

Once the orchestration has been modeled, then it can be transformed step by step to an executable BPEL
process and deployed to the web server. The basic functions of the transformation between different models
and the function of deployment are available as Eclipse plug-in functions of the MDD4SOA in the SDE. these
functions can be orchestrated manually or with help of the graphical tool chain editor of SDE or as a script. The
advantage of the script or the graphic representation of the tool chain is an easy execution of the whole
development process.

One of the main aims of the SDE is the enabling of orchestration of tools. As tools can be discovered using the
SENSORIA core and their interface functions, orchestration can be provided by arbitrary tools on top of this
service layer. The SDE provides three options for orchestrating tools:

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 33

� SENSORIA Shell provided within the core is a manual orchestrator which provides such an
orchestration mechanism as a UNIX-like shell with the additional ability to store, load, and execute
scripts.

� SENSORIA Scripts are written in JavaScript and executed without parameterization. In order to
create new tools, SENSORIA Tool Scripts may be written which contain JavaScript functions. After
converting them to tools, they can be used as any other tool through the tool browser.

� Graphical Orchestrations (Tool Chain) is a graphical editor. It allows to write data-driven activity
diagrams. Such orchestrations are again tools themselves.

In all orchestrations, the SENSORIA core can be accessed directly; thus any tool can be retrieved from the core
and its interface functions executed. In this demonstration the graphical orchestrations tool chain will be
applied. Further information can be found at the SDE Tutorial (http://svn.pst.ifi.lmu.de/trac/sct/wiki/Tutorial).

5.3.1 Orchestration of Eclipse Plug-in Functions with SDE Graphical Orchestrations

Figure 18 shows how to create a graphical orchestration (.god file): File > New > Other > Sensoria
Development > Sensoria SDE Graphical Orchestration

Figure 18: Creating a graphical orchestration (.god file)

The canvas of the editor corresponds to a new tool to be created in the SDE. As each tool can contain multiple
functions, a function needs to be added first. To do so, click on Function in the palette on the right hand side,
and click onto the canvas to create a new function. Name it appropriately, for example
convert2ActiveBPELandWSDL.

Now, tool functions can be dragged into the new function as appropriate from the palette on the right-hand side,
which contains all executable function of all installed tools. Additionally, the following Meta-tools can be used:

� Use Link to model data flow from an output of a function to the input of another

� Use Input Pin to add an input parameter to a function

� Use Output Pin to add an output parameter to a function

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 34

An example of a complete script is shown in Figure 19.

Figure 19: Chain tool script demochain.god

In the Demonstrator the following transformations will be done. The following five functions of SDE will be
orchestrated.

Two functions under “Converter UML4SOA to BPEL / WSDL”:

1. loadSingleActivityFromUMLModel: transforms UML2 models to the Intermediate Orchestration
Model (IOM)

� Input: model (IFile of uml model)

� Output: activity (Activity of IOM)

2. convertToBPELandWSDLPath: transform IOM to abstract BPEL / WSDL

� Input: activity (Activity of IOM)

� Output: absolute file path of the generated BPEL file.

Three functions under “BPEL2ActiveBPEL/WSDL Converter and Deployment”

1. convert2ActiveBPELandWSDL: transform abstract BPEL / WSDL to executable BPEL / WSDL

� Input: inputFilePath (the absolute file path of input abstract BPEL file)

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 35

� Input: outputFileDir (the absolute file path of the output directory for executable
BPEL/WSDL files)

� Input: configFilePath (the absolute file path of configuration file)

� Output: absolute file path of the generated BPEL file.

2. convert2InteractiveBPELandWSDL: transform BPEL to interactive BPEL

� Input: inputFilePath (the absolute file path of input BPEL file)

� Input: outputFileDir (the absolute file path of the output directory for generated
BPEL/WSDL files)

� Input: configFilePath (the absolute file path of configuration file)

� Output: absolute file path of the generated BPEL file.

3. deployToTomcat: deploy to tomcat web server

� Input: bpelDir (the absolute file path of the root directory of the BPEL/WSDL files)

� Input: configFilePath (the absolute file path of configuration file)

� Output: message of deployment

Transformer process: UML model � Intermediate Orchestration Model (IOM) � abstract BPEL/WSDL �
for ActiveBPEL engine executable BPEL/WSDL � interactive BPEL�deploy to Tomcat

Name of function Goal of function

loadSingleActivityFromUMLModel UML model � Intermediate Orchestration Model (IOM)

convertToBPELandWSDLPath Intermediate Orchestration Model (IOM) � abstract BPEL/WSDL

convert2ActiveBPELandWSDL abstract BPEL /WSDL � for ActiveBPEL engine executable
BPEL/WSDL

convert2InteractiveBPELandWSDL ActiveBPEL engine executable BPEL / WSDL � interactive BPEL

deployToTomcat interactive BPEL�deploy to Tomcat

Table 7: Functions for building a tool chain

These five tool functions can be used for draggeding into the tool chain.

Finally, to execute a function, simply click on the green play button in the upper right corner of the
outermost function as shown in Figure 20. In addition, Figure 20 indicates how to set the parameters in order to
run a tool function.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 36

Figure 20: Set arguments of functions

Select a parameter and click “change”. You can set the parameter from string, blackboard or file in the new
windows. If you want to set a parameter from file, you should select a file type (e.g. java file object,
IFile/Icontainer or absolute file system path) and click “browser” to select a file. (Change����From
file����Browser in Figure 20)

In this case you should set the following three parameters:

� model: Eclipse IResource object (IFile/Icontainer) of an UML file

� outputDir: absolute file system path for output directory

� config: absolute file system path of configure file

5.3.2 Result of the transformation

Figure 21 shows the BPEL process of the first variant of the “On Road Assistance” scenario, which is
executable in an ActiveBPEL. The process is a sequential composition of services.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 37

Figure 21: In ActiveBPEL engine executable BPEL process of scenario of Figure 16

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 38

Figure 22 shows the BPEL process enriched with interactive elements. Before every invoke activity a receive
activity has been automatically inserted. After every invoke activity an assign activity and a reply activity have
been inserted. This process is also executable in an ActiveBPEL engine.

Figure 22: Interactive BPEL process of scenario of Figure 16

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 39

5.4 Run Deployed Application

If the BPEL process was already deployed in web server, the web server can be started. Afterwards the BPEL
process will be available as a web service. The BPEL process can be invoked as any standard web service with
Axis.

In the Automotive Demonstrator the client uses the web interface in their web browser to run the application.

� The user fills-in the form and press the button “Start Service” to send an http-request to server.
� The server gets the request and redirects the request to ViewManager.
� ViewMagager parses the request and builds the parameters for next service invoke and calls the BPEL

process.
� The BPEL process starts and invokes the web services as modeled in the orchestration. Result is sent to

the ViewManager.
� The ViewManager builds a web page according these results and sends the web page to client.

Figure 23 shows the start page of the demonstration.

Figure 23: Start page of the demonstration

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 40

According to the workflow of the orchestration of our scenario of Figure 16, the PositionService is started in
the first step. The current location of the car is shown in the map of Figure 24. The next step is to find the
garage nearby the car according to the workflow of orchestration.

Figure 24: Car location

In this step a list of garages are found by the FindGarageService and shown in the map of Figure 25. The
garages are marked in the map. According to the workflow of orchestration in scenario of Figure 16 the next
step is to find best garage.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 41

Figure 25: Find Garage

In this step the best garage is found by SelectGarageService and shown in the map of Figure 26. According to
the workflow of orchestration in the scenario of Figure 16 the next step is to a find rental car station.

Figure 26: Find best garage

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 42

In this step a list of rental car stations is found by FindRentalStationService and shown in the map of Figure 27.
According to the workflow of orchestration in the scenario of Figure 16 the next step is to find the best rental
car station.

Figure 27: Find rental car station

In this step the best rental car station is found by SelectBestRentalCarService and shown in the map of Figure
28. According to the workflow of orchestration in the scenario of Figure 16 the next step is to charge the credit
card.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 43

Figure 28: Best rental car station

In this step the services will be paid with credit card as shown in Figure 29. This is the last step of the scenario
according to the workflow of orchestration of Figure 16.

Figure 29: Payment with credit card

5.5 Running the Demonstrator after Modifying the UML4SOA Model

If you want to change your business logic, you can change the UML4SOA model and run the transformation
process with tool chain function in last section (file demochain.god) again.

In this demonstration we change the sequence process of previous scenario to a parallel process for the second
variant of the scenario. In the first scenario the user pays the credit in the last step after the using of all services.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 44

In the current scenario the user must pay the credit at first, and then uses the services. In the first scenario the
services are invoked one by one sequentially. In the second the services “findGarage” and “findRentalStation”
are invoked in parallel. The results of both services would be shown in the same view. The services
“selectBestGarage” and “SelectBestRentalCar” will also be invoked in parallel.

Figure 30 shows the modified parallel UML model of scenario of Figure 30:

Figure 30: Activity diagram of the orchestration for parallel scenario

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 45

After the modification of the UML model you have to export it as UML file and run the tool function in the file
tool chain to transfer the model. The following two BPEL process are obtained as results of the
transformations.

Figure 31 shows the parallel BPEL process of the second scenario without user interaction. This BPEL process
is executable in ActiveBPEL engine. If the BPEL process is started, the process will be executed without
interruption until the end.

Figure 31: BPEL process of scenario of Figure 30

Figure 32 shows the BPEL process of the parallel scenario of Figure 30. This BPEL process is able to
interactively communicate with the client. In comparison with the BPEL process of the scenario of Figure 16,
the BPEL process of Figure 30 has a receive activity inserted before each invoke activity. After each invoke
activity an assign and a reply activity has been inserted. If the BPEL process is invoked, the process will wait at
the receive activity for user input and send the results to the user at a reply activity.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 46

Figure 32: Interactive BPEL process of scenario of Figure 30

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 47

If the interactive BPEL process is successfully deployed to a web server, the server application can be started
through the web server. The user will fill-in the form and press “Start Service” in Figure 33 to start service
request in the web browser (e.g. Firefox or Internet Explore).

Figure 33: Start page

According to the workflow of orchestration in the scenario of Figure 30 the service “ChargeCredit” is started in
the first step. The user must fill-in the credit card information to guarantee the payment as shown in Figure 34
before using other services.

Figure 34: Payment with credit card

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 48

If the credit card is accepted, the Figure 35 will be shown. According to the workflow of orchestration in
scenario of Figure 30 the next step is to find the current location of the car.

Figure 35: Result of payment

In this step the current location of the car is found by getPositionService and shown in the map of Figure 36.
According to the workflow of orchestration of the scenario of Figure 30 the next step is to find garages and
rental car stations in parallel.

Figure 36: Location service

In this step the FindGarageService and FindRentalcarService is invoked in parallel in the BPEL process. The
results of both services are shown in Figure 37. According to the workflow of orchestration in the scenario of
Figure 30 the next step is to find the best garage and the best rental car station in parallel.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 49

Figure 37: Find service providers

In this step the FindBestGarageService and FindBestRentalcarService is invoked in parallel in the BPEL
process. The results of both services are shown in Figure 38. This is the last step of the scenario of Figure 30
according to the workflow of orchestration.

Figure 38: Find best provider

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 50

6 Lessons Learned and Future Work

The Automotive Demonstrator implemented so far is a simplified version of the On Road Assistance scenario
of the Automotive Case Study. However, it is used to demonstrate the SENSORIA model-driven approach,
which makes use of models built with the UML4SOA extension for service-oriented software and a set of
model-transformations defined within the context of the SENSORIA project which allows automatic generation
of web service applications.

Many extensions and improvements of this Automotive Demonstrator are possible. On the one hand, extending
the functionality of the Demonstrator with additional features of the automotive scenario since the current
version is the result of the first step an incremental and iterative development process. On the other hand,
improving the development with early analysis, for which different SENSORIA analysis tools that are already
integrated in the SDE, can be used, such as WS-Engineer or PEPA.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 51

7 References

7.1 Documents

[BK07] Dominik Bernd and Nora Koch. SENSORIA Automotive Scenario: Illustrating Service
Specification. pp. 26. Technical Report no. 2. FAST. 2007.

[D1.4a] Nora Koch, Philip Mayer, Reiko Heckel, László Gönczy and Carlo Montangero.D1.4a: UML
for Service-Oriented Systems. Deliverable SENSORIA project.

[DINO07a] Arun Mukhija, Andrew Dingwall-Smith, and David Rosenblum. DINO - Dynamic and
Adaptive Composition of Autonomous Services. Technical report, Department of Computer
Science, University College London, London, Januar 2007. White paper on the Dino Approach

http://www.cs.ucl.ac.uk/staff/a.mukhija/dino/DinoWhitePaper.pdf

[DINO07b] Arun Mukhija, Andrew Dingwall-Smith, and David Rosenblum. QoS-Aware Service
Composition in Dino. In Proceedings of the 5th European Conference onWeb Services
(ECOWS 2007), pages 3–12, Halle, Germany, November 2007,
http://www.cs.ucl.ac.uk/staff/A.Mukhija/papers/ecows07.pdf

[Koch07] Nora Koch. SENSORIA Automotive Case Study: UML Specification of On Road Assistance
Scenario. pp. 19. Technical Report no. 1. FAST. 2007.

[MSK08a] Philip Mayer, Andreas Schroeder and Nora Koch. A Model-Driven Approach to Service
Orchestration. Proceedings of the 2008 IEEE International Conference on Services Computing
(SCC 2008). 533-536. Vol. 2. IEEE Computer Society. 2008.

[MSK08b] Philip Mayer, Andreas Schroeder and Nora Koch. MDD4SOA: Model-Driven Service
Orchestration. Proceedings of The 12th IEEE International EDOC Conference (EDOC 2008).
203-212. IEEE Computer Society. 2008.

[REST08] Pautasso, Cesare; Zimmermann, Olaf; Leymann, Frank (2008-04), "RESTful Web Services vs.
Big Web Services: Making the Right Architectural Decision", Proceedings of 17th
International World Wide Web Conference (WWW2008) (Beijing, China)
http://www.jopera.org/docs/publications/2008/restws

[WSDL07] Roberto Chinnici, Hugo Haas, Web Services Description Language (WSDL) Version 2.0,
W3C Recommendation 26 June 2007, http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-
20070626/,

[DINO09] Michel Alessandrini. Finance Case Study: DINO Integration and Intelligent Extension, S&N,
Feb. 28th 2009.
http://www.pst.ifi.lmu.de:8080/FinanceCaseStudy/DOWNLOAD/20090225_dino-
integration.pdf

7.2 Tools

Demonstrator source http://www.sensoria-
ist.eu/cirquent/automotive_demonstrator/on_road_assistance.zip

MDD4SOA_Extention source http://www.sensoria-ist.eu/cirquent/MDD4SOA_Extention.zip

Eclipse Update Site of
MDD4SOA_Extension

http://www.sensoria-ist.eu/cirquent/eclipse_plugin_update/

SDE website http://svn.pst.ifi.lmu.de/trac/sct

Eclipse update site of SDE http://svn.pst.ifi.lmu.de/update/sct

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 52

SDE 4.0 tutorial http://svn.pst.ifi.lmu.de/trac/sct/wiki/Tutorial

MDD4SOA website http://www.mdd4soa.eu/web/

Eclipse update site of
MDD4SOA

http://www.mdd4soa.eu/update

Dino web page: http://www.cs.ucl.ac.uk/staff/a.mukhija/dino

Java JDK http://java.sun.com/javase/downloads/index.jsp

Eclipse http://www.eclipse.org/downloads/

Tomcat 5.5 http://tomcat.apache.org/download-55.cgi

XAMPP http://www.apachefriends.org/en/xampp.html

Magicdraw http://www.magicdraw.com/

Google Maps API http://code.google.com/apis/maps/

ActiveBPEL http://www.activevos.com/community-open-source-engine-download.php

Tutorial of Deploying a BPEL
Process

http://www.activebpel.org/samples/samples-2/deploy/doc/index.html

Tutorial for Installing
ActiveBPEL

http://users.encs.concordia.ca/~yuhong/teaching/UNB/CS6905/Task0_Getti
ngUpandRunning-LITEVERSION.doc

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 53

Appendix

A.1 Configuration of MDD4SOA_Extension plug-in projects

A.1.1 Configuration of Plug-in Project

MDD4SOA_Extension is an Eclipse plug-in. So an Eclipse Plug-in project should be created. At first open the
plug-in .xml file in the perspective (plug-in development) in eclipse. Then open the tab (Dependencies) and add
all other depended eclipse plug-ins like in Figure 39.

Figure 39: Configure dependences

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 54

Click the tab (Runtime) and specify the libraries and folders that constitute the plug-in classpath as shown in
Figure 40. If it is unspecified, the classes and resources are assumed to be at the root of the plug-in.

Figure 40: Specify the libraries and folders that constitute the plug-in classpath

Click the tab (Build) and select the folders and files to include in the binary build. Select the folders and files to
include in the binary build as shown in Figure 41.

Figure 41: Select folders for build

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 55

To test and debug the plug-in, you can click the tab (Overview), then test this plug-in by launching a separate
Eclipse application. For debug you can launch an Eclipse application in Debug mode as shown in Figure 42.

Figure 42: Testing and debug

A.1.2 Configuration of feature project

Create a feature project for above plug-in project. At first open the feature.xml file in the perspective (Plug-in
development) in eclipse. Then open the tab (Overview) and set the same version as the plug-in project as
shown in Figure 43.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 56

Figure 43: Feature project

A.1.3 Configuration of Update Site Project

Create an update site project for above feature project as shown in Figure 44.

Figure 44: Create update site project

Select “Generate a web page listing all available features within the site” as shown in Figure 45.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 57

Figure 45: Create update site project with web resources
At first open the site.xml file in the perspective (plug-in development) in eclipse. Then open the tab (Overview)
and set the same version as the plug-in project as shown in Figure 46.

Figure 46: Update Site Map
If the version of plug-in project change, the version of feature and update site project must also be changed.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 58

A.2 Deploy a Web Service with Eclipse Web Developer Tools

You can publish you java class as a web service with the Eclipse Web Develop Tools. At first the java class file
should be selected. Then right click the mouse and select “Create Web Service” of “Web Services”.

Java class right click� Web Services�create web service as shown in Figure 47:

Figure 47: Create web service

After the click a wizard will be opened as following screenshot. Then you can set the configuration for the
web service. The web server could be specified. In this demonstration Tomcat v5.5 server should be selected
(Server: Tomcat v5.5 server). After that eclipse will deploy the web service automatically to tomcat v5.5 server.

The checkbox of “Publish the Web service” should also be selected like below as shown in Figure 48.

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 59

Figure 48: Publish web service

After the configuration you should click “next” button to continue the next wizard.

Figure 49: Select methods of web service

Automotive Case Study: On Road Assistance Demostrator (Tutorial) 15.2.2010

016004 (Sensoria) 60

Select to deployed methods, then click “finish” button to finish the publication wizard of web service as shown
in Figure 49.

Select Use Tomcat installation as shown in Figure 50 to deploy Web Projects to Tomcat in Eclipse.

Figure 50: Server location

