UML Extensions for Service-Oriented Systems *

Howard Foster!, Laszlé Gonczy?, Nora Koch®?, Philip Mayer?, Carlo
Montangero®, and Déniel Varré?

! Tmperial College London, UK
2 Budapest University of Technology and Economics, Hungary
3 Ludwig-Maximilians-Universitit Miinchen, Germany
4 Cirquent GmbH, Germany
5 Universit4 di Pisa, Ttaly
howard.foster@imperial.ac.uk, {nora.koch,philip.mayer}@pst.ifi.lmu.de,
monta@di.unipi.it, {varro,gonczy}@mit.bme.hu

Abstract. A trend in software engineering is towards model-driven de-
velopment. Models are used to document requirements, design results,
and analysis in early phases of the development process. However, the
aim of modeling is very often more ambitious as models are used for
automatic generation in so-called model-driven engineering approaches.
The relevance of models leads to the need of both, high-level domain spe-
cific modeling languages (DSML), and metamodels which are the basis
for the definition of model transformations and code generation.

For the service-oriented computing domain we developed within the SEN-
SORIA project a DSML for building and transforming SOA models. This
DSML is defined as a family of UML profiles, which complement the
SoaML profile for the specification of SOAs structure. Our family of
profiles focus on orchestration of services, service-level agreements, non-
functional properties of services, implementation of service modes and
service deployment.

1 Introduction

A range of domain-specific languages and standards are available for engineer-
ing service-oriented architectures (SOAs) such as Web Services Description Lan-
guage (WSDL), Web Services Business Process Execution Language (WS-BPEL),
Web Services Choreography Description Language (WS-CDL), WS-Policy and
WS-Security. These languages deal with the various aspects of SOA systems, such
as service descriptions, orchestrations, policies and non-functional properties of
services at a specification level. However, more systematic and model-driven ap-
proaches are needed for the development of service-oriented software. Models
of SOAs are required for providing a complete — whenever possible a graphical
— picture of the systems represented at a high level of abstraction. Achieving
the properties of service-oriented systems mentioned above requires then model
elements that ease the understanding of the individual artefacts of a system, and
their integration.

* This work has been partially sponsored by the project SENSORIA, IST-2 005-016004.



Within the SENSORIA project, we have created ways of modeling these dif-
ferent aspects with the help of the Unified Modeling Language (UML)[24]. The
UML is accepted as lingua franca in the development of software systems. It
is the most mature language used for modeling. However, plain UML is not
expressive enough for the specification of structural and behavioral aspects of
services. Service modeling introduces a new set of key distinguishing concepts,
for example partner services, message passing among requester and provider of
services, compensation of long-running transactions, modes, and policies asso-
ciated to services. Without specific support for those concepts in the modeling
language, diagrams quickly get overloaded with technical constructs, degrading
their readability.

Several attempts have been made to add service functionality to the UML.
Most notably, SoaML [25] is an upcoming standard UML profile of the OMG for
specification of service-oriented architectures, which does only cover structural
aspects. Our own contribution to the field of UML service modeling comple-
ments SoaML, and consists in introducing more service-specific model elements
mainly for the behavioral aspects of services-oriented software. In a first step,
metamodels are defined as a conservative extension of the UML metamodel, i.e.
they do not imply any adjustment in the UML metamodel. In a second step,
UML profiles are created for these metamodels using the UML extension mech-
anisms provided by mapping stereotypes to the metaclasses. The result is the
SENSORIA family of UML profiles for the development of SOAs.

The use of the UML for modeling has many advantages when compared to
the use of proprietary modeling techniques. These advantages are (1) to be able
to use existing CASE tool support, which is provided by commercial and open
source tools; (2) to avoid the definition from scratch of a new modeling lan-
guage, which would require an own project to detail their syntax, semantics and
provide user-friendly tool support. These metamodels and the corresponding
UML profiles constitute the basis for model transformations and code genera-
tion defining a model-driven development process. In particular, the MDD4SOA
(Model-Driven Development for SOA) transformers — also developed within the
scope of the SENSORIA project — are model transformations implemented as
Eclipse plug-ins. They automatically transform service orchestrations specified
with our UML4SOA profile to executable code, such as BPEL/WSDL, Java and
Jolie.

In the following sections, we will discuss the individual UML extensions which
form our SENSORIA family of profiles for SOA development and the SoaML
profile (section 3), which are jointly used to model the different aspects of service-
oriented software. The SENSORIA family of profiles comprise UML4SOA, a profile
for service orchestration (section 4), for non-functional properties of services
(section 5), business policies (section 6), for implementation modes of SOAs
(section 7), and service deployment (section 8). These UML profiles can be used
separately or in combination, depending on the software requirements and the
decisions of the service engineer. The running example belongs to the case study



from the automotive domain, which is detailed in section 2. Finally, in section 9
we present some related work and conclude in section 10.

2 Case Study

The SENSORIA family of profiles that are presented in the following sections are
illustrated by models of the On Road Assistance scenario of the automotive case
study [15,29]. In this scenario, the diagnostic system reports a failure in the car
engine, for example, the vehicle’s oil lamp reports a low oil level. This triggers
the in-vehicle diagnostic system to perform an analysis of the sensor values.
The diagnostic system reports e.g. a problem with the pressure in one cylinder
head, and therefore the driver will not be able to reach the planned destination.
The diagnostic system sends a message for starting the assistance system, which
orchestrates a set of services.

Based on availability and the driver’s preferences, the service discovery sys-
tem identifies and selects the appropriate services in the area: repair shops
(garage) and rental car stations. The selection of services takes into account
personalized policies and preferences of the driver to find these "best services”.
We assume that the owner of the car has to deposit a security payment before
being able to order services. In order to keep the scenario simple, we limit the
involved services, but they could be easily extended e.g. to identify as well a
towing service, providing the GPS data of the stranded vehicle in case the vehi-
cle is no longer drivable. In such a case, the driver makes an appointment with
the towing service, and the vehicle will be towed to the shop.

The On Road Assistance scenario is complemented with the Emergency sce-
nario [15] that is needed when the damaged car blocks the route and a convoy
behaviour is required from other cars. It is used to illustrate the reconfiguration
issues of a service-oriented system. In case of an emergency, the vehicles that
are driven in a default mode are reconfigured to be driven in a convoy mode
guided by the Highway Emergency System. The master vehicle is then followed
by the other vehicles of the convoy. In the Emergency scenario the car navigation
system is able to react to events which cause the switching between the modes
specified in the different architecture configurations.

3 Modeling Structural Aspects of SOAs

The basic structure of a software system is the ground layer on which other
specifications are based — this holds true not only for traditional architectures,
but also for the SOA-based systems we have considered in SENSORIA. Although
the UML does include mechanisms for modeling structural aspects of software,
the specific requirements of SOA systems — for example, the central concept
of a service and the separation of requested and provided services — cannot be
expressed in a concise way, as services and service providers are not first level
citizens of the UML.



We therefore need an extension of the UML to be able to express these
ideas. In SENSORIA, we have chosen to use the existing profile SoaML, which is
currently in a beta 2 phase and on its way to becoming an OMG standard. We
feel that we can adequately express our ideas of structural aspects of services in
SoaML, and have therefore sought to integrate our own specific profiles presented
in later sections with SoaML.

In this section, we introduce some of the basic concepts specified in SoaML
which we need for modeling our case study and as a basis for defining our profiles.
For the complete description, please refer to the SoaML specification [25].

Structural service modeling employs the basic UML mechanisms for mod-
eling composite structures, enhanced with stereotypes from the SoaML pro-
file — <participant>, <servicePoint>, <requestPoint>, <servicelnterface> and <mes-
sageType> (listed in Table 1). The basic unit for implementing service function-
ality is a service participant, modeled as a class with the stereotype <participant>.
A participant may provide or request services through ports, which are stereo-
typed with <requestPoint> or <servicePoint>, respectively. Each port has a type,
which is a <servicelnterface> implementing or using operations as defined in a
standard UML interface definition.

Table 1. SoaML metaclasses and stereotypes (excerpt)

Metaclass Stereotype UML Meta-|Description
class
Participant <participant> Class Represents some (possibly concrete) en-

tity or component that provides and/or
consumes services

ServicePoint <servicePoint> Port Is the offer of a service by one partici-
pant to others using well defined terms,
conditions and interfaces. It defines the
connection point through which a partic-
ipant provides a service to clients
RequestPoint  |<«requestPoint> Port Models the use of a service by a partic-
ipant and defines the connection point
through which a participant makes re-
quests and uses or consumes services
Servicelnterface|<servicelnterface> |Class Is the type of a <servicePoint> or <re-
questPoint> specifying provided and re-
quired operations.

MessageType |<messageType> |DataType, Is the specification of information ex-
Class changed between service requesters and
providers

As an example for using these stereotypes, we present the structural dia-
gram for the scenario introduced in the previous section (see Fig. 1). As can
be seen from the figure, the central orchestration of the case study — i.e., the
component which coordinates the actions of all the services — is modeled as a
«<participant>. The OnRoadAssistant participant has seven ports, six of which



are <RequestPoint>s, indicating that a certain service is requested. The last port
is a <ServicePoint>, indicating that a certain service is provided.

As mentioned above, each «<RequestPoint> and <ServicePoint> is typed with
a <Servicelnterface> which defines, though interface realizations and usage as-
socations, the operations required or provided at the given port. In our case,
the orchestration provides, through the <Servicelnterfaces> ClientInterface, the
operation startAssistant to clients. In the other direction, it requires e.g. the
operation selectBestGarage from another service, which is indicated through the
<Servicelnterface> SelectBestInterface which is the type of the <RequestPoint> se-
lectBestGarage.

With the basic structure of service-based systems and our case study specified
using SoaML, we can move on to define profiles for additional aspects of SOA
systems.

ClientRequester O ==Servicelrterface== CreditChargeProvider
+startassistant() = — —| Clientinterface +chargeCredts userData | UserData 1: CreditChargeData
+cancelCreditChargel creditChargeDats @ CreditChargeData )
T T
| |
=types= |<<ServicePoints= (s

client
[

artic 1

" - OnRoadAssistant z::;g::;:gg:cg ==Servicelnterface==
S=naGUESEOInt== it st CreditChargelnterface
==Servicelterface== selectRertalCarService . =atypess
Selectestinterface [ — ~ - = 7
=atypess
e — — — — — —
==ReruestPoint== zatype=s ==Servicelnterface==
| selectGarageService _—— = Locationinterface
~RequestPaint==
| ] locationService .
|FeEage=s RequestPaint=» findRentalCar Statians Service I
| findGaragesService | f:Reques{Pnint» | =usages>
| <etypess <etypes> |
[ |
L' A
SelectBestAssistantProvider i :rServicelmana‘ci» LocationProvider
+selectBestGarane( garagelist | Garagelist ) : Garage i +getPosition( userDsta : UserData ) : Location
Findinterface
+zelectBestRentCarStation rentalCarList : RentalCarStationList ) . RentalCarStation
T
| ==usagE==
W
FindAssistanceProvider C

+findRentalCarStations( carLocation : Locstion ) RertalCarStationList
+fincdGarages( carLocation : Locstion ) GarageList

Fig. 1. SoaML structural diagram of the On Road Assistance scenario

4 Service Orchestrations

A key aspect of service-orientation is the ability to compose existing services, i.e.
creating a description of the interaction of several services, which has come to
be known as an orchestration. An orchestration is a behavioral specification of
a service component, or <Participant> in SoaML. As with structural aspects, the
UML does contain mechanisms for specifying behavior — for example, as activity



or sequence diagrams — but does not contain specific support for constructs used
in service orchestrations such as message passing, compensation, event handling,
and the combination of these.

To enable developers to model service orchestration behavior in an easy and
concise way, we have created UML4SOA, a profile for UML which defines a high-
level domain specific modeling language (DSML) for behavioral service specifica-
tions. UML4SOA was first introduced in [19] and described in more detail in [20].
It has been used as the central language for the specification of the SENSORIA
case studies and enjoys the support of several formalisms and formal tools.

4.1 Metamodel

An excerpt of the UML4SOA metamodel is shown in Fig. 2, which includes the
main concepts of our DSML and the relationships among these concepts. For ex-
ample, we introduce elements such as ServiceSendAction for modeling the asyn-
chronous invocation of a service, i.e. without waiting for a reply from the external
partner. Another specific concept of the service-oriented domain is the compen-
sation of long-running transactions. Therefore we define model elements such
as CompensationAction and CompensationEdge. For each non-abstract class of
the metamodel we defined a stereotype with the objective of producing semanti-
cally enriched and increased readable models of service-oriented systems, e.g. a
stereotype <sendAction> for the ServiceSendAction metaclass, and a stereotype
<compensate> for the CompensateAction metaclass. Table 2 provides an overview
of the elements of the metamodel, the stereotypes that are defined for these
metamodel elements (they comprise the profile UML4SOA), the UML meta-
classes they extend, and a brief description. For further details on UML4SOA,
including the full metamodel, the reader is referred to [18].

UML4SOA proposes the use of UML activity diagrams for modeling ser-
vice behavior, in particular for modeling orchestrations which coordinate other
services. We assume that business modelers are most familiar with this kind
of notation to show dynamic behavior of business workflows. An UML4SOA
<ServiceActivity>, as noted above, can be directly attached as the behavior of a
<Participant>.

4.2 Example

As an example for modeling a service-oriented system in UML4SOA, we show
the implementation of the On Road Assistance scenario defined in Fig. 1.

The process On Road Assistance is modeled as a UML4SOA orchestration
(see Fig. 3) . It illustrates how the assistance process interacts with its client
and its partners through ports. It starts with a receipt (<receive>) of the call
startAssistant through the client port, receiving the request to start the assis-
tance. Note that the initial call to startAssistant starts the complete activity —
a convention we chose to make the workflow more explicit. Furthermore, note
that the port is given in the «<Ink> pin, while the operation is denoted in the
main body of the action.



Table 2. UML4SOA metaclasses and stereotypes

Metaclass

Stereotype

UML
class

Meta-

Description

ServiceActivity Node

<serviceActivity>

Activity, Struc-
tured ActivityN-
ode

Represents a special activity for
service behavior or a grouping
element for service-related ac-
tions

ServiceSendAction

<send>

CallOperation-
Action

Is an action that invokes an op-
eration of a target service asyn-
chronously, i.e. without waiting
for a reply. The argument val-
ues are data to be transmitted
as parameters of the operation
call. There is no return value

ServiceReceiveAction

<receive>

AcceptCall-
Action

Is an accept call action repre-
senting the receipt of an oper-
ation call from an external part-
ner. No answer is given to the
external partner

ServiceSend&Receive

<send&receive>

CallOperation-
Action

Is a shorthand for a sequential
order of send and receive actions

ServiceReplyAction

<reply>

ReplyAction

Is an action that accepts a re-
turn value and a value contain-
ing return information produced
by a previous ServiceReceiveAc-
tion action

CompensationEdge

<compensation>

ActivityEdge

Is an edge which connects an or-
chestration element to be com-
pensated with the one specify-
ing a compensation. It is used to
associate compensation handlers
to activities and scopes

EventEdge

<event>

ActivityEdge

Is an edge connecting event han-
dlers with an orchestration el-
ement during which the event
may occur. The event handler
attached must contain a receive
or a timed event at the begin-
ning.

CompensateAction

<compensate>

Action

Triggers the execution of the
compensation defined for a cer-
tain named service activity (can
only be inserted in compensa-
tion or exception handlers)

CompensateAllAction

<compensateAll>

Action

Triggers compensation of all
nested service activities from the
service activity attached to the
current compensation or excep-
tion handler. The nested service
activities are compensated in re-
verse order of completion.

LinkPin

<Ink>

InputPin

Holds a reference to the part-
ner service by indicating the cor-
responding service point or re-
quest point involved in the in-
teraction

SendPin

<snd>

InputPin

Is used in send actions to denote
the data to be sent to an exter-
nal service

ReceivePin

<Lrcv>

OutputPin

Is used in receive actions to de-
note the data to be received
from an external service




T =
ServiceElement CompensateAllAction ‘
CompensationEdge compensationHandler
1

ServiceActivitylode ‘
compensatedElement 1

1

compensationTarget
0.* eventHandler
EventEdge Comp teActi |
evertBaseblement |
1
i
ServicelteractionAction Pin |
T p | InputPin | | OutputPin |
partrier LinkPin | SendPin | ReceivePin |
o.* o.* o.*
ServiceReplyAction

ServiceReceiveAction

‘ ServiceSend&ReceiveAction ‘

ServiceSendAction

Fig. 2. Excerpt of the UML4SOA metamodel (includes some highlighted UML meta-
classes)

Once the initial request has been received, the process goes on to interact
with partner services. The process first charges the credit card of the user to
ensure that payment is available for later actions. This is done with the help
of a «send&receive> action, invoking the operation «chargeCredit> on the service
attached to the <RequestPoint> creditChargeService. The <send&receive> action
also uses a <snd> pin for denoting the information to be sent (the variable
userData, in this case) and the variable in which the return information will be
stored (creditChargeData, defined in the <receive> pin). A similar call is placed
to retrieve the position of car using the locationService port.

Once this initial setup phase has completed, the process enters the find-
Assistance service activity. Here, it simultaneously interacts with two external
services available through the findGaragesService and findRentalCarStationsSer-



<<receive>>
startAssistant()

<<serviceActivity>>
:NoAssistance

|/ <<serviceActivity>> |
| Main |
| |
[ T '
| [ <<serviceActivity>> |
| | l <<compensation>> |
i I
usefData <<sendgreceive>> reditChargeService |
I chargeCredit ﬁ 9
|creditchargebata | - - = = = == = = = = = I
| <<serviceActivity>>
| { ; Il
- 4 cancelation
| | Il
| userData <<send&receive>> | <<send>> lsnd creditChargeData Hl
getPosition cancelCreditCharge
i locationService | . .
| carlLocation il creditChargeService
I |
| \ _ _ _ _ _ _ _______ul
| |
I <<serviceActivity>> M
L findAssistance I
|
I | '
I | '
- - |
[ carLocationfed <<send&receive>> I findGarages Service <<send&receive>> lsnd carLocation

findGarages findRentalCar Stations

garageList [re indRentalCarStations Service [int lred rentalCarList I

[garageList.size == 0 or rentalCarList.size == 0] ]

| | garageList <<send&receive>> link] selectGarageService <<send&receive>> lsnd rentalCarList I
selectBestGarage selectBestRentCarStation talCarStati H |
] : y
! garage selectRentalCarService [Ink] rentaiCarstatio
I L
I h
[ h
S
| |
| |
- . L - - e L L L

Fig. 3. UML4SOA activity diagram showing the OnRoadAssistance participant



vice ports. If the process finds both a garage and a rental car station, it continues
to retrieve the nearest one. If it is not able to find at least one garage and one
rental car station, an exception is thrown.

Note that there is a standard UML exception handler attached to the service
activity. Inside the exception handler, the process invokes a <compensateAll> ac-
tion. The meaning of this action is to undo previously and successfully completed
work. In this case, the process refers of course to the credit card charge. To be
able to undo this operation, a compensation handler is attached to that action,
which consists of an action canceling the charge with another service call to the
service identified by the CreditChargelnterface port.

As can be seen from Fig. 3, the behavioral specification of this process is
concise and very readable. The specification also directly uses elements defined
in the structural diagram in Fig. 1, thus exploiting the information defined there,
not repeating it unnecessarily.

4.3 Model-Driven Development Support

UMLA4SOA specifications can be used for more than just modeling to understand
the semantics of a system. With the MDD4SOA (Model-Driven Development for
SOA) transformers, UML4SOA orchestrations can be automatically transformed
to executable code in BPEL/WSDL, Java, and Jolie by using model transfor-
mations.

Also, UML4SOA models enjoy formal methods support — the SENSORIA
project includes tools and methods for checking qualitative and quantitative
properties of orchestrations, as well as checking protocol compliance of an or-
chestration. UML4SOA was used to model different scenarios of the SENSORIA
case studies. We refer the interested reader to Chapter 7-1 of this book for more
information.

5 Non-Functional Properties of Services

Non-functional extensions of UML4SOA aim to provide the modeling of arbi-
trary “quality of service” properties defined for a particular given client-server
pair. Since in real service configurations, service properties can vary for differ-
ent classes of clients, we follow a contract-based approach, where non-functional
properties of services are defined between two participant components, namely,
the service provider and the service requester. These contracts are modeled by
<«nfContracts>. Different non-functional aspects (performance, security, etc.) are
modeled in corresponding <nfCharacteristics> which group different properties in
<nfDimensions> (where a <runTimeValue> is associated to each dimension). The
reason for creating separate classes for these instead of storing in properties is
to correlate real SLAs where most parameters are typically bound to a range of
allowed values. Moreover, concepts like average values, deviation, etc. need to
be modeled in a uniform way.



During a negotiation process, participants create an agreed contract of the
provider and requester. Finally, properties of services need to be monitored at
runtime (modeled as <monitors) either by the participating parties or by involv-
ing a separate entity.

5.1 Metamodel

A metamodel of UML4SOA-NFP is shown in Fig. 4. The profile was motivated
by the UML 2.0 Profile for QoS & Fault Tolerance [23]. However, we followed
a more simple way of defining a general framework for QoS, which then can be
”instantiated” by defining concrete aspects such as performance, security, etc.
Table 3 shows the usage of the stereotypes.

Servicelnterface

-agreesd (*
-reguester R
Participant ; T HFContract monitorediContract Monitor

-provider

* *

E3

-guararteedCharacteristizes
1%

HFCharacteristic

manitars

-dimensions

1.* 1.4

NFDimension1 values RunTimeValue

Fig. 4. Metamodel of non-functional extensions (includes some highlighted SoaML
metaclasses

5.2 Examples

In the On Road Assistance scenario, several QoS requirements can be formed
on service connections. To illustrate the use of UML4SOA-NFP, we modeled
(part of) a contract between OnRoadAsssistant (the orchestrator component)
and CreditChargeProvider. First we show a brief textual specification of non-
functional requirements:

— All communications between these services must be secure, e.g. message
content must be encrypted and digitally signed.

— All messages from the orchestrator component to the credit card manager
must be acknowledged when received.



— As all succesful scenarios pass this step, the throughput of the service must
be high enough (1000 requests per hour) with a reasonable response time.

Fig. 5 shows an excerpt of a concrete contract. Note that the class diagram
corresponds to a template which is filled (instantiated as object diagram). This
will include concrete values for encrypting methods, response time, etc.

==participant== ==participant==
OnRoadAssistant CreditChargeProvider

==nfContract==
CreditChargeAssistantContract

==nfCharacteristic== ==nfCharacteristic== ==nfCharacteristic==
Performance Security ReliableCommunication

==nfDimengion== ==nfDimenzion== ==nfDimenzion== ==nfDimengion== ==nfDimension==
Throughput ResponseTime Encryption DigitalSignature MessagingSemantics
-guaranteedyalue | Integer | |-averaget'alue : Integer | [-encrypBody | Boolean -sigBody : Boolean -fitterDuplicates : Boolean
-enctypHeader | Boolean -zigHeader : Boolean | [-needsAck ; Boolean
-encrypSignature : Boolean -sig&lgarithm : String | |-maxNumberRetrans : Integer
-encryptAlgorithm : MFP:String

Fig. 5. Non-functional paramaters in (part of) the On Road Assistance scenario

5.3 Model-Driven Development Support

As this profile may describe arbitrary types of requirements (logging, security,
performance, etc.), the development support for different aspects obviously vary
for different development phases (early design/analysis/deplyoment/operation).

Table 3. UML4SOA-NFP metaclasses and stereotypes

Metaclass Stereotype UML Metaclass |[Description

NFContract <nfContract> Class Represents a non-functional con-
tract between a service provider
and a service requester
NFCharacteristic| <nfCharacteristic> | Class Represents a non-functional aspect
such as performance, security, reli-
able messaging, etc.

NFDimension <nfDimension> Class Groups non-functional properties
within a non-functional aspect
(characteristics)

RunTimeValue |<runTimeValues> |Attribute An actual non-functional property

Monitor <monitors Class A run-time service to monitor a

contract (not used in the paper)




UML4SOA-NFP has support for middleware-level performability analysis as
described in [7] and [9]. This enables the early estimation of a trade-off between
reliability and performance. Evolving model transformations are developed to
support the automated code generation of middleware configuration with QoS
constraints. Details of this technology are described in [6] (modeling), [8] (per-
formability analysis) and [9] (transformations for deployment). These transfor-
mations are based on the VIATRA framework, described in details in Chapter
6-2 of this book.

Also a transformation-based technique is currently under development, which
will help to create simple transformations on UML4SOA-NFP models extended
with additional information on their intended usage (e.g. security analysis) and/or
target platform (e.g. Apache stack). These models and transformations give a
flexible tool to support the quickly changing WS-* platforms in every phase of
service engineering. This transformation set will include validation steps to check
both modeling errors and domain specific requirements.

6 Business Policies Support

This part of the UML4ASOA profile deals with the connection of services and
business policies, in the context of STPowLA [10]. The goal of STPOWLA is to
define the business process so that the business stakeholder can easily adapt it to
the current state of affairs, by controlling the resources used by the basic tasks in
the workflows. To this purpose, the stakeholders issue policy definitions, which
constrain the resource usage as a function of the state of the workflow when a
task is needed.

Here we show how to define business workflows in terms of taskSpecifications,
that is, interfaces of ServicePoints as from SoaML, enriched with information on
the ranges of variability in the use of resources (service level dimensions).

We note that the profile we present here does not cover policies explicitly.
This is why it is called Business Policies Support profile. Indeed, policies are
better expressed as tables than as UML models. In another chapter of this book
(Chapter 1-3) it is shown how to integrate workflows and policies in a SOA, to
support flexible workflow enactment.

6.1 Metamodel

The metamodel for business policies support consists of a series of related ele-
ments, relationships, and a number of constraints. Not all the concepts are new,
since we exploit the NFDimension concept from the NF-UML4SOA profile, (cfr.
Section 5). We deal first with the elements devoted to the basic tasks in (Fig. 6):

— Servicelnterface specifies the interface of the service point a Task connects
to at enaction time. Constraint: just one operation specified.
— Requires is used to link a TaskSpecification to its Servicelnterface.



Dependency ‘

Service Interface | {subsetsftarget}

| -

r 0y
just one operation just one operation called main with the same
L signature of the requested interface

Fig. 6. Metamodel for business policies support: Task specification (includes some
highlighted UML classes)

Requires

{subsetsizource}

of the type
"ot the
supplier

HFDimension

— TaskSpecification specifies a Task, identifying (via Requires) the Serviceln-
terface. It also specifies (via Dim) the non-fuctional dimensions that charac-
terize the service to invoke.

— TaskSpecification owns an operation called main, with the same parameters
and return type of the required service. Indeed, main triggers the search and
invocation of a suitable service, and returns the computed result. The search
identifies a service implementation that satisfies the current policies.

— Dim allows specifying the relevant service level dimensions in a TaskSpeci-
fication, by linking to <nfDimension> from NF-UML4SOA. It also defines a
default value, which is used to select the service provider, when no policy
with specific requirements for the target dimension is in place.

The next concepts are depicted in Fig. 7:

— WfSpecification defines a workflow, specifying its attributes and internal be-
havior. The formers can be used to express conditions in the policies. The
behavior is specified by the owned WfActivity.

— Workflow is an activity action that calls the specified behavior, i.e., a lower
level workflow.

— Task is an activity action that calls the specified main operation.

— WfActivity defines the behavior of a workflow. Constraint: an owned action
is either a Workflow or a Task.

All the concepts above are rendered as stereotypes in the UML profile shown in
Table 4. The defaultValues are rendered as tagged values of the «dim> depen-
dency: the tag is defaultValue, and the type is given by the target dimension.

6.2 Examples

To show how STPOWLA supports flexibility in the On Road Assistance sce-
nario, we consider, within the general OnRoadAssistance workflow, a single task,
namely the one that selects the best garage, and a policy that allows the driver
to choose directly the repairing services which he knows and trusts, in his own
town:



Table 4. Business policies support metaclasses and stereotypes

Metaclass

Stereotype

UML Metaclass

Description

Servicelnterface

<servicelnterface>

Interface

Specifies the interface of the ser-
vice point a Task connects to at
enaction time

Requires

<Requires>

Association

Associates a TaskSpecification to
the signature of the services that
implement it

TaskSpecification

<taskSpecification>

Class

Specifies a Task, functionally via
Requires, and non-functionally
via Dim. The latter identifies the
QoS dimensions that character-
ize the service to invoke. It owns
a main operation, with the same
parameters and return type of the
required service, whose behavior
is to trigger the search and invoca-
tion of a suitable service (i.e., one
whose QoS characteristics satisfy
the current policies), and to re-
turn the computed result

<Dim>

Dependency

Allows specifying the relevant
service level dimensions
a TaskSpecification, by
ing to <nfDimension>

UML4SOA-NFP

in
link-
from

W {Specification

<WfSpecification>

Class

Defines a workflow, specifying its
attributes and internal behavior.
The latter is specified by the
owned WfActivity

WfActivity

<WrfActivity>

Activity

Defines the behavior of a work-
flow. Constraint: an owned action
is either a Workflow or a Task

Workflow

<Workflow>

CallBehavior-
Action

Calls the specified behavior,
namely, a lower level Workflow

Task

< Task>

CallOperation-
Action

Calls the specified main operation




Class Activity CallBehaviorAction CallOperationAction

the actions are either the operation is "main" of
weorkflowe or task some TazkSpecification

WrSpecification WA ctivity hehaviour Workflow Task
1 1

Fig. 7. Metamodel for business policies support: Workflow specification (includes some
highlighted UML classes)

==gtatemachine=» - - -
RoadAssist Behavi =awwiSpecifications= ==nfDimension==
adAssistance_Sehaviour RoadAssistance ServiceAutomation
crashlLocation:Location -automatic
-driverTown : Town -manual

Tdefaultalue=automstic } |“dlm»
==zervicelnter face=>= . ==taskSpecification==
FindGarage Serequires=> TaskSpecification
+findGarager : Locstion ) : Garage +main : Location ) : Garage

Fig. 8. Fragments of the On Road Assistance model

If the car fault happens in the driver’s town, then let him select the services to
be used. Otherwise choose the services automatically.

Fig. 8 shows an excerpt from the model of the scenario just outlined, exemplifying
the use of the concepts both at the workflow and at the task level. To formalize
the policies, the modeler needs to define, for the workflow, the attributes that
specify the driver’s home town and the car crash location, as detected by the
embedded car GPS. Indeed, they are needed to express the conditions in the
policy. So, the <wfSpecification> RoadAssistance, at the top-centre of the figure,
lists the two attributes crashLocation and driverTown. The relevant part of the
related <wfActivity> is shown to the left: the actions appear as shown: here, the
task invokes the main operation of FindGarage, whose <taskSpecification> appears
to the right (bottom). The name of the node is of little importance, being useful
only to distinguish two nodes in the same workflow, when they use the same
<taskSpecification.

Moreover, <taskSpecification> FindGarage requires the findGarage service (at its
left), and declares the main operation accordingly. The modeler here has to in-
troduce a suitable <nfDimension> to express the choice between the service that
searches for a garage nearby the crash location, and the service that interacts
with the driver to contact his own choice. This is AutomationLevel (top-right).
The default value is fixed as automatic, via the tagged value for «<dim>.



7 Service Modes for Adaptive Service Brokering

In this section we describe a part of the SENSORIA family of profiles that ad-
dresses service adaptation and reconfiguration based upon operational states of
the service system being described. The Service Modes profile complements the
UML4SOA profile for orchestration by providing an abstraction of service sys-
tem adaptation through architecture, behavior and constraints. Service Modes
are an extension of Software Architecture Modes.

Software Architecture Modes are an abstraction of a specific set of services
that must interact for the completion of a specific subsystem task, i.e., a mode
will determine the structural constraints that rule a (sub)system configuration
at runtime [13]. Therefore, passing from one mode to another and interactions
among different modes formalize the evolution constraints that a system must
satisfy: the properties that reconfiguration must satisfy to obtain a valid transi-
tion between two modes which determine the structural constraints imposed to
the corresponding architectural instances. A Service Mode represents a Software
Architecture Mode scenario of a service system. It combines a service architec-
ture with behavior and policy specifications for service components within the
service system and is intended to be evolved as new requirements are desired
from the system. In this section we detail the specification of service modes by
way of a Service Modes profile in the UML notation.

7.1 Metamodel

A metamodel for service modes (illustrated in Fig. 9) extends and constrains a
number of UML core elements. As an overview, a ModeModel defines a package
which contains a number of service architecture scenarios (as Mode packages)
and components and also contains a ModeModelActivity to define how to switch
between different service scenarios. Each scenario is defined in a Mode pack-
age which is a container for a ModeCollaboration and describes the role that
each component plays within the scenario (e.g. a service requester and/or a
provider). Each ModeCollaboration holds a ModeActivity which describes the
process in which the mode orchestration is fulfilled. Each ModeCollaboration
also refines the components of the Mode for additional service adaptation re-
quirements (such as the constraints for service brokering). A ModeConstraint
specifies a constraint on adaptation of ModeCollaborations. These constraints
can also specify Quality-Of-Service (QoS) attributes for service components, and
we reuse the QoSRequired and QoSProvided stereotypes related to the QoS Pro-
file (as discussed in section 5.1). We now elaborate on service mode architecture,
behaviour and adaptation relationships through examples.

7.2 Examples

A Service Modes Architecture consists of specifying the service components,
their requirements and capabilities and interface specifications. A high-level ar-
chitecture configuration is given in UML to represent the component specifica-
tions and their relationships. Each component will offer services to its clients,



Package ‘ ‘ Collaboration ‘ Activity ‘ ‘ Constraint ‘ ‘ Component ‘ ‘ Interaction
Fay Fay Fuy Fuy Fuy
QoSProvided
Mode b Mode Mode Mode
Model 1 1| ModelActivity Constraint Interaction
1 1 l* T 1
Mode QoSRequired
Activity

1
BrokerComponent

*

Mode Mode - PR
- grounding : String
+izDefault : Boolean 1 #| Collaboration 1 q.# |+isRequired : Boolean
+isProvided : Boolean

Fig. 9. Metamodel for service modes and service brokering specification (includes some
highlighted UML classes)

each such service is a component contract. A component specification defines
a contract between clients requiring services, and implementers providing ser-
vices. The contract is made up of two parts. The static part, or usage contract,
specifies what clients must know in order to use provided services. The usage
contract is defined by interfaces provided by a component, and required inter-
faces that specify what the component needs in order to function. The interfaces
contain the available operations, their input and output parameters, exceptions
they might raise, preconditions that must be met before a client can invoke the
operation, and post conditions that clients can expect after invocation. These
operations represent features and obligations that constitute a coherent offered
or required service. At this level, the components are defined and connected in a
static way, or in other words, the view of the component architecture represents
a complete description disregarding the necessary state of collaboration for a
given goal. Even if the designer wishes to restrict the component diagram to
only those components which do collaborate, the necessary behavior and con-
straints are not explicit to be able to determine how, in a given situation, the
components should interact. An example composite structure diagram for a ser-
vice modes architecture is illustrated in Fig. 10 for the Emergency scenario of the
Automotive Case Study (discussed in section 2). Note that the architecture rep-
resents both local services (via a localDiscovery component) and remote services
(remoteDiscovery via a Vehicle Services Gateway).

Service Mode Behavior specification is a local coordinated process of ser-
vice interactions and events for mode changes. The behavior is similar to that of
service orchestrations, for which orchestrations languages such as WS-BPEL are
widely adopted. Service mode behavior may be formed as described in section 4.



Convoy <<Mode>><<ModeDefault>><<ModeCollaboration>>

LocalServices1

[

L]

localDiscovery :

]

GPSBinding

orchestrator : Orchestrator

AccessExtServices1

1 1 T
BindDisplay {4 m%Oi\serEind v Iv_lh. l
: Vehicle
Communication Gateway
L

driverVehicleUI :
-

reasoner :

[ 1

Detour <<Mode>>

remoteDiscovery :
RemoteDiscovery

Plannerl .+

il Il

A vean

Lr 1T
3] 0
«BrokerComponents «BrokerComponents
otherVehicle : routePlanner :

[F—=<

gPS : GPS

VehicleResponseTime

{self.othervehicle.QoSR:

«QoSRequired, ModeConstraint»
Time<20}

erviceDiscover

0

remoteDiscovery :

«BrokerComponent»
otherVehicle : OtherVehicle
-

roadConditions1

L
«BrokerComponent»
hWEmergency :

Planning <<Mode>>

e
remoteDiscovery :

Plannerl

2

.,

«BwkerCumpanenﬂ
routePlanner :

Fig. 10. Emergency service brokering architecture with Modes profile

At design time however, the activities for mode orchestration consist of two
concepts. Firstly, orchestrating the default composition of services required and
provided in the specified mode architecture. Secondly, the orchestration should
also be able to react to events which cause mode changes, or in other words
cater for the switching between the modes specified in the different architecture
configurations. To specify mode changes, the engineer adds event handlers (and
follow on activities) to react to certain events which cause a mode change. An
example Service Mode Behavior is illustrated in Fig. 11. Note the events that
lead to mode changes, for example receiving notification of an accident from an
highway emergency service leads to a mode switch to a detour mode configura-

tion.

Convoy <<Mode== <<ModeDefault==

<zModeCollaboration==

start

N info o displ P
o A S O

HWEmergencyEvent

refreshi

is Accident

evert

notifySwitch H detourSwitch

DVUI «=Comvoyhiodes==

. [ awaitingDisplay

startl

display refresh

[ displayed

Fig. 11. Convoy service mode behavior specified in an activity diagram




Service Dynamism and Adaptation focuses on constraining changes to
architecture and services, identifying both functional and non-functional variants
on the specification. Using the Service Modes Profile we identify ModeCollabora-
tions (composite structure diagrams) with ModeConstraints (UML constraints)
which are categorised further by a constraint stereotype. Additionally, architec-
tural constraints may be specified in the Object Constraint Language (OCL) or
another constraint based language. The constraint language adopted becomes an
implementation-dependent aspect of analysing models in UML. The ModeCon-
straint is itself extended to support a specific kind of adaptation, that for service
brokering. A BrokerComponent defines a service component which is included
in service brokering specifications and can be used to identify the role of the
brokered component (either requested or provided), and holds a specification for
the service profile. Additionally, one or more (BrokerConstraints) can be associ-
ated with a BrokerComponent, to identify the QoS either requested or provided
by the service. An example constraint applied to a BrokerComponent is also
illustrated in Fig. 10, in this case for the requirement that a QoSResponseTime
should be offered less than 20ms by the other vehicle service.

As a summary of the semantics for the Service Modes profile, we list each pro-
file metaclass, stereotype and UML metaclass in Table 5. Service Mode models
built using the specification described in this section can be analysed for safety
and correctness using the approach described in [3] and used for generating
runtime service broker requirements and capability specifications as described
in [5].

Table 5. Service Modes metaclasses and stereotypes

Metaclass Stereotype UML Meta-|Description
class
ModeModel <ModeModel> Package A Model containing Mode
packages
ModeModelActivity |« ModeModelActivity> | Activity The process flow for a Mode-

Model (policy)
ModeCollaboration |«ModeCollaboration> |Collaboration |Contains composite structure
and interactions

ModeActivity <ModeActivity> Activity The process flow for a Mode
(orchestration)
ModeConstraint <ModeConstraint> Constraint Constraints on mode service
or activity action
Modelnteraction <Modelnteraction> Interaction Interaction protocol between
Mode components
BrokerComponent |<«BrokerComponent> |Component Service component to be bro-

kered within a Mode
BrokerConstraint |<BrokerConstraint> |ModeConstraint|A constraint on a BrokerCom-
ponent




8 Service Deployment

In this section we describe a part of the SENSORIA family of profiles that ad-
dresses describing service composition deployment and more specifically, how
service orchestrations are configured with appropriate infrastructure nodes and
resources. A Service Deployment profile complements the UML4SOA profile for
orchestration by providing an abstraction of service composition deployment
through infrastructure nodes such as web server and servlets.

Service compositions, implemented as web services using BPEL or other ex-
ecution languages, are executed by a specialist container, sometimes called a
service composition engine or run-time environment. These containers use var-
ious system resources depending on the activities specified in the composition.
BPEL engines will, for example upon receiving a SOAP message to start a BPEL
process, instantiate this process and execute it in a separate thread concurrently
with other ongoing BPEL processes. Again BPEL engines typically have config-
urable database connections and thread pools and they would delay the start of
a BPEL process until they can assign a thread from a pool. Both Web service
and BPEL containers typically map these threads efficiently to a set of operat-
ing system threads. The amount of operating system threads however, is finite
due to the finite amount of memory required to handle the stack segment of
the thread. Administrators must therefore carefully configure the thread pools
to avoid exhaustion of the operating system resources. A Service Deployment
model of the architecture can describe the characteristics of the host server and
orchestration, and can be used to analyze such configurations for safety and
correctness.

8.1 Metamodel

The Service Deployment metamodel (illustrated in Fig. 12) focuses on modeling
the deployment architecture nodes (Servlet, WebServer) and deployment arti-
facts (ServiceOrchestration and Resource). One or more service orchestrations

Serviet

Service
.*| Orchestration

hasResources Resource ThreadPool

1

hostedBy

1.*  |+uzagehap : String +zize : Integer

Fig. 12. Metamodel for service composition deployment and resources (includes some
highlighted UML classes)



(of type ServiceOrchestration) are modeled as artifacts which are deployed on
to servlet nodes. A service orchestration can only be deployed to one servlet in-
stance. Servlets are hosted on web server nodes (a web server is a web container
which manages the creation and deletion of servlet instances). A servlet also has
pre-defined resource allocations, which are modeled as one or more objects of
type Resource artifact. Resource is a general object for any finite system allo-
cation object, however in this example we also illustrate a ThreadPool type of
Resource.

Semantics The metamodel for service deployment consists of a series of related

elements, relationships and a number of constraints. For each element we list
each profile metaclass, stereotype and UML metaclass in Table 6.

Table 6. Service Deployment metaclasses and stereotypes

Metaclass Stereotype UML Meta-|Description
class
ServiceOrchestration | <ServiceOrchestration> | Artifact A reference to a service or-
chestration process
Servlet <Servlet> Node An execution container for
orchestration processes
WebServer <WebServer> Node A host for servlet containers
Resource <Resource> Artifact A type of resource used by a
Servlet or Webserver
ThreadPool < ThreadPool> Resource A resource collection of
threads

8.2 Examples

A deployment model using the Service Deployment profile is illustrated in Fig. 13.
Two service orchestrations (RoadAssitance and RoutePlanning) are deployed to
a single servlet artifact. The servlet artifact manages a collection of threads in
a ThreadPool. The servlet is also hosted by a WebServer. The example can be
used to model check that the collaborating service orchestrations, along with the
management of thread acquisition and release, is safe and correct.

For a more complete example of using the Service Deployment profile, along
with detailed analysis of the model, the reader is invited to refer to [4].

9 Related Work

Several other attempts exist to define UML extensions for service-oriented sys-
tems. Most, however, do not cover aspects such structural, behavioral and non-
functional aspects of SOAs. For example the UML2 profile for software ser-
vices [14,17] provides an extension for the specification of services addressing



==threadPaal==
. Resourcel
==zerviceOrchestrations= [ <zdeploy== | ==3erviets= — — F|-size: Integer )
RoadAssistance F — — A Servietl -usageap  String
j i ==pleploy==
“33:1\2::2;?:::?'0“” O ey = 1 [ewebzerverss
g 1 In-Vehicle
WebServer

Fig. 13. Example: Deployment model for two service orchestrations and one servlet

only their structural aspects. The UML extension for service-oriented architec-
tures described by Baresi et al. [1] focuses mainly on modeling SOAs by refining
business-oriented architectures. The extension is also limited to stereotypes for
the structural specification of services. Other modeling approaches require very
detailed UML diagrams from designers trying to force service-oriented languages
(like BPEL) on top of UML in order to facilitate automated transformation from
UML to BPEL [11]. The approach lacks an appropriate UML profile preventing
building models at a high level of abstraction; thus producing overloaded dia-
grams. Some other extensions, conversely to UML4SOA, do not cover vital parts
of service orchestrations such as compensation handling, e.g. the UML profile
described in [2]. Our UML4SOA approach tries to fill this gap providing a UML
profile for service orchestrations.

The OMG also started an effort to standardize a UML profile and metamodel
for services (SoaML) [25]. The current beta version focus on structural aspects
of services, such as service components, service specifications, service interfaces
and contracts for services. We see our family of UML profiles as a complementary
set to the profile SoaML.

With respect to business policies, we have already mentioned that several
of the stereotypes introduced here bear some relationships to SoaML ones. For
instance, a <wfSpecification is a <capability>, which can <use> only (the capabili-
ties offered by) other «workflows’s and «task>’s. Similarly, a <taskSpecification> is
also a <capability> , whose <contract>’s can only span the space defined by the
<«NFDimension>’s indentified via the «dim> dependencies. In either cases, the
<servicelnterface> is a simple SoaML <«servicelnterface>, i.e. a plain UML inter-
face. Finally, the <partecipant>’s that implement these capabilities can be actu-
ally invoked only if they fulfill the current contract, as idenfified by the policies
in place. Therefore, from the business policies perspective, the Business Policies
profile could be seen as a specialization of SoaML, to address the concerns of a
large share of the stakeholders, explicitely.

A few words are needed in relation to another widely known standard spec-
ification, namely Web Services Policy [28]. In fact, this is a machine-readable
language to represent the capabilities and requirements, the policies, of a Web



service. As such, the standard addresses low level issues, related to the automa-
tion of service selection, and will help in the implementation of STPOWLA .

As for non-functional properties, the UML Profile for QoS and Fault Tol-
erance [23] and UML Profile for Schedulability and Time [12] were considered
during the development of UML4SOA-NFP. As our profile is general purpose
(i.e., not bound to any specific aspect like security or performance), it can be
extended to describe typical patterns for SLAs which is an ongoing work.

What is generally missing from the existing profile approaches is the ability
to identify the requirements and capabilities of services and then to elaborate
on the dynamic changes anticipated for adaptation or self-management. For the
design of service compositions the dynamic composition of services has largely fo-
cused on planning techniques, such as in [26,21], generally with the specification
of a guiding policy with some goals of service state. Runtime service brokering
also plays an important role in being able to adapt component configurations [22]
between requesters and providers yet there is little detail on providing analysis
of requirements for brokering. Software Architecture Modes were perhaps first
introduced in [13], in which they identify a mode as an abstraction of a specific
set of services that must interact for the completion of a specific subsystem task.
Hirsch’s introduction to modes included architectural configuration but did not
elaborate on component behavioral change as part of mode adaptation. Conse-
quently, the concept of mode architectures has been extended with behavioral
adaptation in [16], focusing on modes as behavioral specifications relating to
architecture specification albeit indirectly. We provide a UML profile for service
modes.

10 Conclusions

As service-oriented computing continues to gain support in the area of enter-
prise software development, approaches for handling SOA artefacts and their
integration on a high level of abstraction while keeping a semantic link to their
implementation become imperative. In this paper, we have focused on a UML-
based domain specific modeling language for the specification of service-oriented
software. Such a modeling language is the basis for the definition and use of
model transformers to generate code in executable target SOA languages like
BPEL and WSDL, in a model-driven development process.

Our main contribution are a set of UML profiles for modeling of services that
comprise modeling of service orchestration, business policies and non-functional
properties of services, service modes for adaptive service brokering and service
deployment. Each profile provides a small set of model elements that allow the
service engineer to produce diagrams which visualize services and their function-
ality in a simple fashion.

These are profiles for separate purposes, which share some basic concepts (e.g.
service, participant, etc.). It is the service engineer who decides which profiles to
use as they cover different steps of the development lifecycle, e.g. QoS parameters
bound to an SLA could be transformed to the input of Modes while they can



be also used in St-Powla. The policy support profile depends on UML4SOA-
NFP, insofar as it imports NFDimension to characterize the QoS of the services
subjected to the policies.

Further details on the profiles and tools discussed in this paper are available

on the SENSORIA project website [27].

References

1.

10.

11.

12.

L. Baresi, R. Heckel, S. Thone, and D. Varré. Style-Based Modeling and Refine-
ment of Service-Oriented Architectures. Journal of Software and Systems Modeling
(SOSYM), 5(2):187-200, 2005.

V. Ermagan and I. Kriiger. A UML2 Profile for Service Modeling. In International
Conference on Model Driven Engineering Languages and Systems, volume LNCS
4735 of IEEE, pages 360-374. Springer-Verlag, 2007.

H. Foster. Architecture and Behaviour Analysis for Engineering Service Modes.
In Proceedings of the 2nd Workshop on Principles of Engineering Service Oriented
Systems (PES0S09), Vancouver, Canada, 2009.

H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosenblum, and S. Uchitel.
Model Checking Service Compositions under Resource Constraints. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the foundations of Software
Engineering, pages 225-234, New York, NY, USA, 2007. ACM.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Leveraging Modes and UML2
for Service Brokering Specifications. In Proceedings of the 4th Model-Driven Web
Engineering Workshop (MDWE 2008), Toulouse, France, 2008.

S. Gilmore, L. Génczy, N. Koch, P. Mayer, and D. Varré. Non-Functional Prop-
erties in the Model-Driven Development of Service-Oriented Systems. Journal of
Software and Systems Modeling, 2010. Accepted for publication.

L. Génczy, Z. Déri, and D. Varré. Model Driven Performability Analysis of Service
Configurations with Reliable Messaging. In Proc. of Model Driven Web Engineering
Workshop (MDWE 2008), 2008.

L. Gonczy, Z. Déri, and D. Varré. Model Transformations for Performability Anal-
ysis of Service Configurations. pages 153-166, Berlin, Heidelberg, 2009. Springer-
Verlag.

L. Gonczy and D. Varré. Developing Effective Service Oriented Architectures:
Concepts and Applications in Service Level Agreements, Quality of Service and
Reliability, chapter Engineering Service Oriented Applications with Reliability and
Security Requirements. IGI Global, 2010. To be published.

S. Gorton, C. Montangero, S. Reiff-Marganiec, and L. Semini. StPowla: SOA, Poli-
cies and Workflows. In E. D. Nitto and M. Ripeanu, editors, ICSOC’07 Workshops
Revised Selected Papers, volume 4907 of Lecture Notes in Computer Science, pages
351-362. Springer, 2009.

R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik. Style-Based Modeling and
Refinement of Service-Oriented Architectures. In Eighth IEEE International En-
terprise Distributed Object Computing Conference (EDOC’04), IEEE, pages 47-57.
TEEE, 2004.

O. M. Group. UML Profile for Schedulability, Performance and Time Specification,
2005. http://www.omg.org/technology/documents/formal/schedulability.
htm.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for Software Architectures.
In Proceedings of EWSA 2006, 3rd European Workshop on Software Architecture,
Lecture Notes in Computer Science. Springer Verlag, 2006.

S. Johnston. UML 2.0 Profile for Software Services, available at http://www-
128.ibm.com/developerworks/rational/library /05/419soa. Request For Proposal -
AD/02-01/07, 2005.

N. Koch and D. Berndl. Requirements Modelling and Analysis of Selected Scenar-
ios: Automotive CASE Study. Technical Report D8.2a, SENSORIA Deliverable,
2007.

J. Kofron, F. Pl4sil, and O. Sery. Modes in Component Behavior Specification via
EBP and their application in Product Lines. Information and Software Technology,
51(1):31-41, 2009.

R. J. Machado, J. M. Fernandes, P. Monteiro, and H. Rodrigues. Transformation of
UML Models for Service-Oriented Software Architectures. In In Proceedings of the
12th IEEFE International Conference and Workshops on Engineering of Computer-
Based Systems, Washington, DC, USA, pages 173182, 2005.

P. Mayer, N. Koch, and A. Schroeder. The UML4SOA Profile. Technical report,
Ludwig-Maximilians-Universitat Miinchen, July 2009.

P. Mayer, A. Schroeder, and N. Koch. A Model-Driven Approach to Service Or-
chestration. In Proceedings of the 2008 IEEE International Conference on Services
Computing (SCC 2008), volume 2, pages 533-536, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

P. Mayer, A. Schroeder, and N. Koch. MDD4SOA: Model-Driven Service Orches-
tration. In The 12th IEEFE International EDOC Conference (EDOC 2008), pages
203-212, Munich, Germany, 2008. IEEE Computer Society.

B. Medjahed, A. Bouguettaya, and A. Elmagarmid. Composing Web Services on
the Semantic Web. VLDB Journal, pages 333-351, 2003.

A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum. QoS-Aware Service Com-
position in Dino. In ECOWS ’07: Proceedings of the Fifth European Conference
on Web Services, pages 3—12, Halle, Germany, 2007. IEEE Computer Society.
OMG. UML for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms, vi.1, 2008. http://www.omg.org/spec/QFTP/1.1/.

OMG. Unified Modeling Language: Superstructure, version 2.2. Technical Report
formal/2009-02-02, Object Management Group, 2009.

OMG. Service oriented architecture Modeling Language (SoaML) - Specifica-
tion for the UML Profile and Metamodel for Services (UPMS), revised submis-
sion. Specification, Object Management Group, 2010. http://www.omg.org/spec/
SoaML/1.0/Beta2/, Last visited: 22.07.2010.

M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of
Web Services by Planning at the Knowledge Level. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2005.

SENSORIA. Software Engineering for Service-Oriented Overlay Computers.
http://www.sensoria-ist.eu/, last visited 15.03.2010.

W3C Working Group. Web Services Policy 1.5 - Primer. http://www.w3.org/TR/
ws-policy-primer/. Last visit 22.10.2009.

R. Xie and N. Koch. Automotive CASE Study: Demonstrator (Tutorial). Technical
report, Cirquent GmbH, 2009. http://www.sensoria-ist.eu/, last visited 15.03.2010.



