
Sensoria – Software Engineering for
Service-Oriented Overlay Computers

Martin Wirsing, Matthias Hölzl, Nora Koch, Philip Mayer

Ludwig-Maximilians-Universität München, Germany
{wirsing,hoelzl,koch,mayer}@pst.ifi.lmu.de

Abstract. Service-Oriented Computing is a paradigm where services
are understood as autonomous, platform-independent computational en-
tities that can be described, published, categorised, discovered, and dy-
namically assembled for developing massively distributed, interoperable,
evolvable systems and applications. These characteristics have pushed
service-oriented computing towards nowadays widespread success, demon-
strated by the fact that many large companies invested a lot of efforts
and resources to promote service delivery on a variety of computing plat-
forms, mostly through the Internet in the form of Web services. In the
past, service-oriented computing and development has been done in a
pragmatic, mostly ad-hoc way. Theoretical foundations were missing that
are needed for trusted interoperability, predictable compositionality, and
quality issues like security, correctness, or resource usage. The IST-FET
integrated project Sensoria has addressed these issues by developing
a novel comprehensive approach to the engineering of service-oriented
software systems where foundational theories, techniques and methods
are fully integrated in a pragmatic software engineering approach, sup-
porting semi-automatic development and deployment of self-adaptable
(composite) services.

1 Introduction

Selling services rather than hardware or software has become the biggest growth
business in the computing industry. Business in this area has already evolved
from relatively simple (customer) services to global complex (business) solutions.
Computing is becoming a utility and software a service. This trend is changing
the economics of IT industry and influences the e-Society as a whole.

In the service-oriented computing (SOC) paradigm, services are understood
as autonomous, platform independent computational entities that can be de-
scribed, published, discovered, and dynamically assembled for developing mas-
sively distributed, interoperable, evolvable systems. Today, services are being
delivered on a variety of computing platforms, mostly through the Web, Per-
sonal Digital Assistants, and mobile phones. Tomorrow, they will be delivered
on all kinds of global computers and a plethora of new services will be required
for e-government, e-health, and e-science, just to name a few of the areas that
are already taking shape within the Information Society. Thanks to their abil-
ity to be dynamically assembled, services can provide a much required layer of



2

integration between the different global computers that are being studied and
proposed by industry and academia for supporting the operation of the future
Information Society. As a result, service-oriented computing is bound to play
the role of an ideal overlay computer for Global Computing.

In the past, service-oriented computing and development has been done in
a mostly ad-hoc way. Theoretical foundations for trusted interoperability, pre-
dictable compositionality, and quality issues like security, correctness, or resource
usage were not well-established and service-oriented software development was
not integrated in a controllable process based on powerful analysis and verifica-
tion tools. Furthermore, it was not clear whether formal approaches to service-
oriented software development would scale up to the development of large, com-
plex systems.

In order to answer these questions, Sensoria has developed a novel com-
prehensive approach to the engineering of software systems for service-oriented
overlay computers where foundational theories, techniques and methods are
fully integrated in a pragmatic software engineering approach. This approach
is focused on global services that are context-adaptive, personalisable, and may
require hard and soft constraints on resources and performance; it takes into
account the fact that services have to be deployed on different, possibly interop-
erating global computers to provide novel and reusable service-oriented overlay
computers.

The results of Sensoria include a new generalised concept of service for
global overlay computers, new semantically well-defined modelling and program-
ming primitives for services, new powerful mathematical analysis and verifica-
tion techniques, tools for system behaviour and quality of service properties, and
novel model-based transformation and development techniques. The innovative
methods of Sensoria are demonstrated by application in the service-intensive
areas of e-business, automotive systems, and e-university.

This chapter is structured as follows: In section ??, we introduce the Sen-
soria project with its aims and contributions to the field of service-oriented
computing. Sections ?? to ?? outline the three main research themes of Sen-
soria and provide pointers to the remaining parts of the book. We conclude in
section ??.

2 Sensoria – Well-Founded SOC Development

The core aim of the Sensoria EU project was the production of new knowl-
edge for systematic and scientifically well-founded methods of service-oriented
software development. Sensoria provides a comprehensive approach to design,
formal analysis, automated deployment, and reengineering of service-oriented
applications. The research themes of Sensoria therefore range across the whole
lifecycle of software development. Sensoria methods and tools rely on mathe-
matical theories and methods that allow rigorous verification of SOA artifacts.
Realistic case studies for different important application areas including telecom-
munications, automotive, e-learning, and e-business are defined by the industrial



3

partners have been used to verify the applicability of Sensoria methods to in-
dustrial domains.

In Sensoria a model-driven approach to service development was chosen, as
it enables developers to control the variety of specific distributed, global comput-
ing platforms, and to ensure a strict separation of concerns that can break the
complexity of service composition and evolution. In this approach, services are
first modelled in a platform-independent architectural design layer; these mod-
els are then analysed using formal methods and refined; afterwards, they can be
used for generating implementations over different global computing platforms
in a (semi-)automated way. This is shown in Fig. ??.

Feedback 
Prepare formal results for 

improving the models 

Transformation 
Translating to formal 

languages for analysis

Hidden Formal 

Methods
Verifying correctness of SOA 

models

Modelling 
Modelling SOA applications, 

e.g. UML Profiles for SOA 

Sensoria Development Environment

Runtime
Runtime Support for SOA, 

e.g. Service Discovery

Reengineering
Adapting Legacy Code to SOA 

Design Principles

Legacy Systems

Requirements

Code Generation 
Creating Executable Code,

e.g. BPEL, Java, ...

Fig. 1. Sensoria support for the model-driven development process

In more detail, the main technical ingredients that Sensoria provides to the
service engineer are:

Modelling. Service-oriented applications are designed using high-level visual for-
malisms such as the industry standard UML or domain-specific modelling lan-
guages to precisely capture domain-specific requirements.

Transformation and Feedback. Formal representations are generated by auto-
mated model transformations from engineering models.

Hidden Formal Methods. Back-end mathematical model analysis is used to reveal
performance bottlenecks, or interactions leading to errors or violation of service
contracts. For critical services, the developers can perform deep semantic analysis
for certification.



4

Feedback. Feedback from the formal analysis is presented to the developer in a
way that is easy to understand and used to improve the engineering models.

Code Generation. The high-level models are used to generate executable code,
e.g., in Java or BPEL, and configuration data for deploying the resulting services
to various standards-compliant service platforms.

Runtime. The generated code can utilize advanced run-time infrastructure that
was developed as part of the Sensoria project, e.g., dynamic service brokering,
as well as standard service platforms.

Reengineering of legacy services. Many existing systems are built as monolithic
non-extensible applications which cannot be easily adapted to new business pro-
cesses. Sensoria develops methods to transform these applications into layered
systems with well-defined service interfaces.

Sensoria Development Environment. The Sensoria Development Environ-
ment supports the above activities by providing an Eclipse-based, fully-customizable
tool chain for the entire model-driven workflow.

These individual development activities have been grouped into three major
themes that served as drivers for the scientific research of the Sensoria project;
they also provide the structure for the remainder of this book:

Linguistic Primitives for Modelling and Programming SOA systems. Language
primitives for services and their interactions have been developed on two different
abstraction levels, an architectural design level and a programming abstraction
level for service overlay computing. The scientific tools used are category theory
and process calculi, defining software architectures and programming languages
for mobile global computing systems. To make these formal approaches available
for practitioners, appropriate UML extensions have been devised which provide
a visual representation of the declarative modelling primitives. In addition, the
process algebraic programming primitives and their mathematical theory serve
for simulating and analysing UML models.

Qualitative and Quantitative Analysis Methods for Services. Mathematical mod-
els for service computing formalise different aspects of overlay computers: at this
level, services are seen as abstract computational entities, modelled in a platform-
independent architectural layer. The mathematical models, hidden from the de-
veloper, enable qualitative and quantitative analysis supporting the service de-
velopment process and providing the means for reasoning about functional and
non-functional properties of services and service aggregates. Sensoria results
include powerful mathematical analysis techniques; in particular program anal-
ysis techniques, type systems, logics, and process calculi for investigating the
behaviour and the quality of service of properties of global services. These tech-
niques are then tailored to several specific purposes: Firstly, they can be used to
reveal performance bottlenecks or interactions leading to errors or violation of



5

service contracts. Secondly, they are used to deal with security issues like con-
fidentiality, integrity, non-interference, access control, and trust management.
Finally, for critical services, deep semantic analysis may be used for certifica-
tion.

Model Driven Development, Tools, and Validation. Sensoria techniques may
be integrated into several software process models. Specific emphasis is placed
on Model-Driven Development (MDD). Sensoria introduces automated model
transformations to allow generation of formal representations from engineering
models, back-translation from formal results to user-level models, and genera-
tion of code. All techniques and methods developed within Sensoria are ac-
companied by tools, which are integrated into a common tooling platform (the
Sensoria Development Environment). To prove that the developed methods are
applicable in industrial contexts, Sensoria includes several case studies from
various application domains of software engineering, whose scenarios have been
rigorously tested.

Summarising, the added value of Sensoria comes from the availability of
sound engineering techniques supported by mathematical foundations, languages
with formal semantics and associated analysis methods, and the ability to au-
tomate many of the development steps currently done by hand in the design
of service-oriented software. The next three sections describe the above three
points in more detail.

3 Part I: Linguistic Primitives for Modelling and
Programming SOA Systems

The first theme of Sensoria has been focused on the definition of adequate lin-
guistic primitives for modelling and programming service-oriented systems, en-
abling model-driven development for implementing services on different global
computers. The primitives introduced in Sensoria allow both high-level sys-
tem modelling as well as detailed, rigourous specifications of SOA systems using
mathematical notations. Automated model transformations allow switching be-
tween these two levels, and in addition enable generation of executable code.

Sensoria has first established foundations for service description, interac-
tion and composition, at the level of architectural specification. Based on this,
core calculi for service-oriented computing have been developed, accounting for
different interaction and composition architectures, like message-driven or data-
driven. Finally, the core calculi have been extended to establish a solid mathe-
matical basis for quality of service, service level agreements, workflow-like trans-
actions with compensation, and dynamic reconfiguration.



6

3.1 Modelling in Service-Oriented Architectures

Modelling of Service-Oriented Architectures has been investigated on different
abstraction levels and with different aims in Sensoria, which has led to four
main outcomes.

Firstly, SOA systems can be modelled on a high level of abstraction with
the help of the Unified Modelling Language (UML). The UML is accepted as
the lingua franca in the development of software systems. It is the most ma-
ture language used for modelling. However, plain UML is not expressive enough
for the specification of structural and behavioural aspects of services. Senso-
ria therefore provides individual UML extensions which form a Sensoria family
of profiles for SOA development, which are jointly used to model the different
aspects of service-oriented software. The Sensoria family of profiles comprise
a profile for service orchestration (UML4SOA), for non-functional properties of
services, business policies, for implementation modes of SOAs, and service de-
ployment. The UML extensions are further detailed in chapter “UML Extensions
for Service-Oriented Systems”.

Secondly, one can also take a more formal approach to SOA system speci-
fication with the help of the Sensoria Reference Modelling Language (SRML).
SRML is inspired by the Service Component Architecture (SCA). It makes avail-
able a general assembly model and binding mechanisms for service components
and clients that may have been programmed in possibly many different lan-
guages, e.g. Java, C++, BPEL, or PHP. However, where SCA supports bottom-
up low-level design, SRML instead addresses top-down high-level design. More
specifically, the aim was to develop models and mechanisms that support the
design of complex services, and analysis techniques through which designers can
verify or validate their properties. These composite services can then be put
together from (heterogeneous) service components using assembly and binding
techniques such as the ones provided by SCA. SRML will be discussed in detail
in chapter “The Sensoria Reference Modelling Language”.

Business processes typically structure their activities with workflows, which
are often implemented in a rather static fashion in their IT systems. Nowadays,
system requirements change rapidly as business activities try to maintain their
competitive edge, and hence a predominant need arises for the IT systems to
present the same agility. This problem has been investigated in Sensoria and
has lead to a new approach, StPowla, which marries service-oriented architec-
ture, policies and workflows to provide businesses with this agility at execution
time of their workflows. In StPowla the business is modelled as a workflow and is
ultimately carried out by services. Indeed, policies provide the necessary adap-
tation to the varied expectations of the various business stakeholders. A key idea
is that the stakeholders can define policies to adapt the core work ow by mod-
ifying the service to be invoked or the QoS levels. StPowla is further discussed
in chapter “Model-Driven Development of Adaptable Service-Oriented Business
Processes”.

Finally, another important aspect of service-oriented computing systems lies
in their architecture, which must match the global structure required by the



7

business processes they are intended to support. Sensoria provides a solution
for this problem with Architectural Design Rewriting (ADR), which can be used
as a formal model for architectural and business design and helps in formalising
crucial aspects of the UML4SOA and SRML modelling languages mentioned
above. The key features that make ADR a suitable and expressive framework
are the algebraic presentation of graph-based structures, which can improve the
automated support for specification, analysis and verification of service-oriented
architectures and applications. ADR is discussed in chapter “A Formal Support
to Business and Architectural Design for Service-Oriented Systems”.

3.2 Calculi for Service-Oriented Computing

Sensoria has investigated a foundational methodology for describing service
specifications and for developing a discipline for their composition. This method-
ology relies on services as the fundamental elements for developing applications,
thus conforming to the Service-Oriented Computing (SOC) paradigm. The fun-
damental vehicle used in this respect has been the theory of process calculi and
their operational modelling as labelled transition systems, intended as the col-
lections of linguistic constructs, tools, models, and prototype implementations
that have been developed for designing, analysing, and experimenting with open
components interactions.

Core calculi have been adopted in the Sensoria project with three main
aims. First of all, they have been used to clarify and formally define the ba-
sic concepts that characterize the Sensoria approach to the modeling of service
oriented applications. In second place, they are formal models on which the Sen-
soria analysis techniques have been developed. Finally, they have been used to
drive the implementation of the prototypes of the Sensoria languages for pro-
gramming actual service-based systems. The Sensoria core calculi are described
in chapter “Core Calculi for Service-Oriented Computing”.

In a formal language, it is common to have several terms denoting the same
process. To understand when different terms refer to the same process, the lan-
guage needs to be equipped with a notion of equivalence. Sensoria has investi-
gated bisimilarity notions applied to some of the Sensoria core calculi. The aim
was to develop algebraic reasoning on processes by finding useful axioms (cor-
rect with respect to bisimilarity). Two different applications for this are program
transformations and spatial characterizations of systems. The former is used to
show how to transform object-oriented diagrams to session oriented ones, how
to break sessions into smaller pieces that can be implemented using current
technologies, and to show that an implementation of a service is compliant to a
more abstract specification. The latter proves that bisimilarity is a congruence
and shows behavioral identities that illuminate the spatial nature of processes
and pave the way for establishing a normal form result. This is further discussed
in chapter “Behavioural Theory for Session-Oriented Calculi”.

An important tool for verifying system correctness are static analysis tech-
niques. Within Sensoria, such techniques have been developed for CaSPiS
(Calculus of Sessions and Pipes) and CC (Conversation Calculus), two session



8

oriented calculi developed within the project. Each technique aims at guaran-
teeing a specific property one would expect from service-oriented applications.
These models and techniques may be complementary used and combined in or-
der to provide as many guarantees as possible on the correctness of services’
behaviour. Chapter “Static Analysis Techniques for Session-Oriented Calculi”
contains more information on static analysis.

A key issue of the service approach is given by its compositional nature. For
example, existing services can be combined (a process which is called orches-
tration) to create a more complex business process. This yields the problem of
properly selecting and configuring services to guarantee that their orchestra-
tion enjoys some desirable properties. These properties may involve functional
aspects, and also non-functional aspects, like e.g. security, availability, perfor-
mance, transactionality, etc. Sensoria includes a framework for designing and
composing services in a “call-by-contract” fashion, i.e. according to their be-
haviour. For a discussion on how to plan compositions of services so that the
resulting choreography satisfies the desired functional and non-functional prop-
erties see chapter “Call-by-Contract for Service Discovery, Orchestration and
Recovery”.

3.3 Negotiations, Planning, and Reconfiguration

The SOC paradigm has to face several challenges like service discovery, Service
Level Agreements (SLA) and Quality of Service (QoS), workflow-like transac-
tions and compensations, monitoring and dynamic reconfiguration. Sensoria
has addressed these aspects, namely SLA/QoS, transactions with compensa-
tions, and dynamic reconfiguration, to a) establish a solid mathematical basis
that can serve to formalise crucial aspects of SLAs, b) distill service aggregation
patterns, and c) provide a sound architectural basis for dynamic reconfigurations.

One of the ultimate goals of service-oriented computing (SOC) is to provide
support for the automatic on-demand discovery of basic functionalities that, once
combined, correctly compute a user defined task. To this aim, it is necessary
for services to come equipped with a computer-understandable interface that
exposes enough information in order to match the provided functionalities with
the user needs.

Services may expose both functional properties and non-functional proper-
ties. Non-functional properties focus on the Quality of Service (QoS) and typ-
ically include performance, availability, and cost. QoS parameters play an im-
portant role in service composition and, specifically, in dynamic discovery and
binding. Indeed, a service requester may have minimal QoS requirements below
which a service is not considered useful. Moreover, multiple services that meet
the functional requirements of a requester can still be differentiated according to
their non-functional properties. In Sensoria, this challenge is addressed with a
simple calculus, called cc-pi calculus, for modelling processes able to specify QoS
requirements and to conclude QoS contracts. See chapter “CC-Pi: A Constraint
Language for Service Negotiation and Composition” for more information.



9

Another prominent issue in the automated combination of services concerns
the compliance between the operations invoked by the client – the client pro-
tocol – and the receive operations executed by the service – the service pro-
tocol. Among other things, this requires a) actually extracting a manageable
description of the service interface (contract) from a reasonably detailed service
specification, and b) guaranteeing that the services retrieved from a repository
behave correctly according to the user and the other retrieved services needs.
Such techniques have been investigated in Sensoria and are detailed in chapter
“Advanced Mechanisms for Service Composition, Query and Discovery”.

In enterprise computing, services are used to model business processes, which
may potentially take a large amount of time. Such activities, known as long-
running transactions, are often supported by specialised language primitives and
constructs such as exception and compensation handling. Exception handling is
used to react to unexpected events, while compensation handling is used to undo
previously completed activities. The impact of adding exception- and compen-
sation handling to a language is detailed in chapter “Advanced Mechanisms for
Service Combination and Transactions”. Furthermore, specification and refac-
toring of long-running transactions is discussed in chapter “Model-Driven De-
velopment of Long-Running Transactions”.

Finally, SOA systems should offer the ability to dynamically reconfigure SOA
architectures to adapt to changing requirements. The Sensoria Architectural
Design Rewriting approach introduced above can also be used as a foundational
model for reconfigurable service-oriented systems. This is detailed in chapter “A
Formal Support to Reconfiguration of Service-Oriented Systems”.

4 Part II: Formal Analysis of Service-Oriented Systems

The previous section has introduced language primitives and in particular core
calculi for the rigourous specification of service-oriented systems. These mathe-
matical models, hidden from the developer, enable qualitative and quantitative
analysis supporting the service development process and providing the means for
reasoning about functional and non-functional properties of services and service
aggregates.

In Sensoria, a full spectrum of qualitative analysis techniques has been de-
veloped, thus allowing service engineers to guarantee a high level of security and
trust for the location transparent delivery of services while allowing mobility
of resources. Furthermore, Sensoria has investigated means for coping with
the quantitative aspects of service-oriented systems. The focus lay on stochas-
tic methods for developing analysis techniques and tools to study and verify
quantitative properties such as resource usage and quality of service.

4.1 Qualitative Analysis Techniques for Service-Oriented
Computing

Quality of service is becoming a key parameter in determining the success or
failure of information systems offering their services using overlay computers;



10

techniques are needed for validating the performance of systems with respect to
their specifications (in particular as regards security and trust). Sensoria has
investigated analysis techniques for ensuring quality of service properties in SOC
systems.

In the service-oriented environment, the view of a system can be divided into
different levels; at the abstract level (as is usually the view found in academia),
the system is independent of the underlying communication protocols, and at
the concrete level (as is usually the view found in industry), the system must be
understood in connection with how it makes use of established communication
protocols. Motivated by this separation of concerns, Sensoria has devised a
specification approach called CaPiTo to facilitate modelling systems at both the
abstract and the concrete level. To bridge the gap between the two levels, an
intermediary level has been defined that connects them. Chapter “Analysing the
Protocol Stack for Services” discusses CaPiTo.

Early validation of system requirements and early detection of design errors
is an important cornerstone of creating high-quality software systems. Sensoria
supports such validation by a common logical framework for verifying functional
properties of service-oriented systems, which has been instantiated in the CMC
and UMC model checkers. The design principles used in these tools are detailed
in chapter “An Abstract, On-The-Fly Framework for the Verification of Service
Oriented Systems”.

Service architectures should be dynamic, where service bindings and con-
texts change with the environment. The task of designing and analysing such
architectures becomes very complex. As a remedy, Sensoria has developed a
specification profile and analysis framework for so-called service modes. A service
mode provides an encapsulation of both specification and adaptation in different
service scenarios. The modes approach is described in chapter “Specification and
Analysis of Dynamically-Reconfigurable Service Architectures”.

Finally, Sensoria also provides various tools which accompany the formal
methods laid out in the previous sections for analysis and verification of service
oriented systems. Four of these tools (CMC, UMC, ChorSLMC, and LocUsT)
are described in chapter “Tools and Verification”.

4.2 Quantitative Analysis Techniques for Service-Oriented
Computing

Service-oriented computing is made up of many activities that are quantity
driven (service level agreement, quality of service, negotiation, orchestration,
resource usage are only some of them). As a consequence, the issue of quanti-
tative description and analysis of such systems in the global computing setting
needs to be addressed in all the phases of SOA software development.

Service-oriented computing goes beyond the usual problems encountered in
network based systems by its focus on open-endedness. Addressing key functional
aspects of network aware programming such as distribution awareness, mobility
and security, and guaranteeing their integration with performance and depend-
ability guarantees is complemented in Sensoria by specific features intended



11

for service-oriented architectures. Chapter “SoSL: Service Oriented Stochastic
logics” introduces the temporal logic SoSL and shows how SoSL formulae can
be model-checked against systems descriptions expressed with MarCaSPiS, a
process calculus designed for addressing quantitative aspects of SOC.

Service Level Agreements (SLAs) underpin the expectation of the perfor-
mance of a system as seen by a particular client of a service. Most often an SLA
will speak about the response-time of the system. In general, a qualitative analy-
sis of a service-oriented system requires abstracting the parts of the system which
are relevant to the analysis into an abstract model which is generally defined in
some modelling formalism. In Sensoria, the process algebra PEPA was used for
this purpose, along with eXtended Stochastic Probes (XSP) for the specification
of the passage of interest within the defined model. Both are detailed in chapter
“Evaluating Service Level Agreements using Observational Probes”.

The quantitative analysis of large-scale applications using discrete-state mod-
els is fundamentally hampered by the rapid growth of the state space as a func-
tion of the number of components in the system (state-space explosion). However,
service-oriented architectures often lie in the large-scale section of the application
landscape. Here, the fluid-flow interpretation of the stochastic process calculus
PEPA provides a very useful tool for the performance evaluation of large-scale
systems because the tractability of the numerical solution does not depend upon
the population levels of the system under study. Scaling performance analy-
sis using fluid-flow approximation is discussed in chapter “Scaling Performance
Analysis using Fluid-Flow Approximation”; a related method called passage-end
calculations is discussed in chapter “Passage-End Analysis for Analysing Robot
Movement”.

Finally, as in the previous section, Sensoria provides various tools perform-
ing quantitative analysis accompanying the methods and techniques laid out
in above. Chapter “Quantitative Analysis of Services” shows instances of exact
model checking of MarCaSPiS against the both state-aware and action-aware
logic SoSL, exact and statistical model checking of sCOWS against the state-
aware logic CSL, and querying of PEPA models by terms of the XSP language
that expresses both state-aware and action-aware stochastic probes.

5 Part III: Model-Driven Development, Tools, and
Validation

The third theme of the Sensoria project deals with the engineering aspects
of service-oriented system construction. It builds on both previous themes and
introduces the glue with brings all Sensoria methods and tools together and
wraps them in a validation cocoon.

The theme includes new model-based development techniques for refining
and transforming service specifications, novel techniques for deploying service
descriptions on different global computers, and methods for reengineering legacy
systems into service-oriented ones. These results form the cornerstone for the



12

practical usability of the Sensoria approach, and are complemented by realistic
case studies from industrial partners.

5.1 Model-Driven Development and Reverse-Engineering for
Service-Oriented Systems

In order to allow developers to use the qualitative and quantitative analysis of
services discussed in previous sections, Sensoria has created model transforma-
tion tools and concrete transformations for a) strengthening and streamlining the
connections between formal languages and high-level systems models, b) orches-
trating the experimentation and analysis process, and c) deploying well-managed
analysis on systems of increasing scale and complexity. Due to their complexity,
SOA systems also require advanced and diverse mechanisms for deployment and
runtime management. Sensoria has investigated such mechanisms and provides
a suite of tools and techniques for transforming SOA artefacts, deploying service-
oriented systems on global computers and for reengineering legacy systems into
services.

Model transformation serves as a key technology for the model-driven service
engineering approach suggested by Sensoria. To be effective for a day-by-day
use in the engineering process, Sensoria had to solve some common problems
(traceability, back-annotation, intuitive requirement definition, etc.) with model
transformation techniques. These problems, and the solutions provided by Sen-
soria, are introduced in chapter “Methodologies for Model-Driven Development
and Deployment: an Overview”, along with an end-to-end example for using
model-driven techniques for analysing services, and the tool support provided by
the project. Going into more detail, Sensoria has employed model transforma-
tion techniques which make use of precise mathematical foundations provided by
the paradigm of graph transformation. The unique challenges and solutions pro-
vided by the graph transformation paradigm are discussed in chapter “Advances
in Model Transformations by Graph Transformation: Specification, Analysis and
Execution”.

The ability to dynamically compose autonomous services for meeting the re-
quirements of different applications is one of the major advantages offered by
the service-oriented computing paradigm. A dynamic service composition im-
plies that services requesters can be dynamically bound to most appropriate
service providers that are currently available, in order to optimally satisfy the
service requirements. At the same time, the autonomy of services involved in a
composition means that the resulting composition may need to be adapted in
response to changes in the service capabilities or requirements. Naturally, the
infrastructure and technologies for providing runtime support for dynamic and
adaptive composition of services form the backbone of the above process. Within
Sensoria, the Dino approach has been developed, which provides comprehen-
sive support for all stages of a service composition life-cycle, namely: service
discovery, selection, binding, delivery, monitoring and adaptation. More on Dino
can be found in chapter “Runtime Support for Dynamic and Adaptive Service
Composition”.



13

Many companies and organisations have already invested heavily in their
IT infrastructure in the past. The migration of such legacy systems towards
service-oriented architectures is therefore of particular importance. Sensoria
has developed a general methodology for software reengineering. This method
has been instantiated to allow service components to be extracted from legacy
applications. Chapter “Legacy Transformations for Extracting Service Compo-
nents” describes a systematic way of addressing such reengineering projects with
a high degree of automation while being largely independent of the programming
language.

Developing service-oriented software involves dealing with multiple languages,
platforms, artefacts, and tools. The tasks carried out during development are
varied, ranging from modelling to implementation, from analysis to testing. For
many of these tasks, the Sensoria project has provided tools aiding develop-
ers in their work. To enable developers to find, use, and combine these tools,
Sensoria provides a tool integration platform, the Sensoria Development En-
vironment (SDE), which a) gives an overview of available tools and their area of
application, b) allows developers to use tools in a homogeneous way, re-arranging
tool functionality as required, and c) enables users to stay on a chosen level of
abstraction, hiding formal details as much as possible. The SDE is described in
detail in chapter “The Sensoria Development Environment”.

5.2 Case Studies and Patterns

The research in the Sensoria project has been based on a series of realistic
case studies, which have been used for feeding and steering the research process,
discussing and communicating ideas among partners, and finally disseminating
research results to and getting feedback from the research community at large,
both in industry and academia.

The immediately following chapter “Introduction to the Sensoria Case Stud-
ies” will introduce the case studies used within the project. Having in mind the
relevance that these areas have in society and the economy, three case studies
have been extensively used in Sensoria during the whole project. Two of the
case studies come from industrial applications in automotive, telecommunication
and finance domains, and one comes from an academic application for distributed
e-learning and course management. After the Sensoria notations have been in-
troduced, chapter “Specification and Implementation of Demonstrators for the
Case Studies” goes into more detail about the case studies.

Chapter “ Sensoria Results Applied to the Case Studies” provides a concise
overview of the exploitation of Sensoria results in all of our case studies. In
addition to this overview, chapter “Analysing Robot Movement Using the Sen-
soria Methods” provides an in-depth review of Sensoria methods applied to
the robot case study, while chapter “The Sensoria Approach Applied to the Fi-
nance Case Study” provides an in-depth view of the Sensoria approach applied
to the finance case study.

Finally, the Sensoria project contributes to existing software development
processes and methodologies by providing patterns for common tasks and prob-



14

lems encountered when developing service-oriented software systems. Chapter
“ Sensoria Development Patterns” discusses a pattern language for augment-
ing service engineering with formal analysis, transformation and dynamicity.
The pattern language is designed to help software developers choose appropri-
ate tools and techniques to develop service-oriented systems with support from
formal methods; the full pattern catalog spans the whole development process,
from the modeling stage to deployment activities. Chapter “Organizational Pat-
terns for Security and Dependability: From Design to Application” specifically
discusses security and dependability (S&D) patterns, which are of great help to
designers when developing service-oriented software systems.

6 Conclusion

In todays networked world, service-oriented computing and service-oriented ar-
chitectures are an accepted architectural style for creating massively distributed
network-based applications. The Sensoria project has contributed to this field
by addressing the foundations of modelling, transforming, analysing, and de-
ploying service-oriented artifacts as well as reengineering legacy systems. Sen-
soria has thereby created a novel comprehensive approach to the engineering
of service-oriented software systems where foundational theories, techniques and
methods are fully integrated in a pragmatic software engineering approach.

Sensoria has brought mathematically well-founded modelling technology
within the reach of service-oriented software designers and developers. By using
these techniques and tools, IT-dependent organisations can move to a higher
and more mature level of SOA software development. In particular, using the
Sensoria techniques can increase the quality of SOA applications, measured
both in qualitative and quantitative terms. As Sensoria methods are portable
to existing platforms, application of these methods is possible while keeping
existing investments.

Acknowledgements. This work has been supported by the EU FET-GC2 IP
project Sensoria (IST-2005-016004).


