
Assessment of Effort Reduction due to Model-to-Model
Transformations in the Web Domain?

Nora Koch1,2, Alexander Knapp3, and Sergej Kozuruba1

1Ludwig-Maximilians-Universität München, Germany 2NTT DATA, Germany
3Universität Augsburg, Germany

Abstract. Model-driven engineering (MDE) approaches provide the well-known
advantage of software development at a higher level of abstraction. However, in
the web engineering domain such approaches still encounter difficulties mainly
due to applications that are continuously evolving and the heterogeneity of web
technologies. Instead of fully automated generation, we look at MDE as assist-
ing the web engineer in different phases of the software development life cycle.
In particular, we use model-to-model transformations to support the generation
of model sketches of the different concerns from a requirements specification. In
this work, we present a metric to measure the effort reduction that results from ap-
plying this kind of model-driven approach. We use the metric to evaluate models
of six web applications in the context of UML-based Web Engineering (UWE).

1 Introduction

Requirements models should be the result of an intensive communication with the cus-
tomer and provide the representation of the business decisions related to the application
to be developed. The more accurate the models produced in this early development
phase, the less error-prone are the models and the code generated later. This relation-
ship between the quality of the requirements specification and the implemented system
has been analyzed and confirmed several times [4]. However, in practice, many projects
start too soon with the technical design and the implementation. Even if requirements
are specified, they are often partially ignored. The time invested in the requirements
specification is very often seen as partially wasted. Therefore it is important to improve
the use of the requirements specification in further development steps and to obtain as
much information as possible for the so-called design models. In this work, we assess
the utility of modeling the requirements and use these models in a model-driven devel-
opment process (MDD) instead of manual modeling in all stages. We define a metric for
measuring the effort reduction due to automatic generation of models against manual
creation. Such an effort reduction would represent a measurable benefit for web pro-
ductivity [4, Ch. 3]. We propose an assessment strategy that consists of the creation and
generation of models, their comparison and calculation of the effort reduction indicator.

We have built the models of six web applications using UWE (UML-based Web En-
gineering [3]); these applications are a simple address book, a movie database, a music
? This work has been partially sponsored by the EU project ASCENS, FP7 257414, the EU-NoE

project NESSoS, GA 256980, and the DFG project MAEWA II, WI 841/7-2.

portal, a social network, a publication management system and the UWE website. Our
assessment approach analyzes the model elements and aggregates them for the differ-
ent concern models. Although the requirements models were rather sketchy (estimated
degree of details of 53%), the benefit, i.e. the effort reduction reached by having drawn
and used them in the MDD process is calculated to be between 26% and 77%. We have
tested as well the robustness of our metric and reasoned about the scalability. An em-
pirical evaluation performed by a set of web engineers is planned for the corroboration
of our metric. However, in this work, our focus is on the definition of the assessment
strategy and to show the plausibility of the approach.
Related Work. Several model-driven web engineering methods were presented during
the last decade [5]. Valderas and Pelechano [7] present a detailed analysis of the MDD
characteristics of the most relevant methods. Only some of them include explicitly a
requirements phase. OOHDM, UWE and WebML defined proprietary notations for the
requirements offering only partial MDD tool support. The most complete though rather
complex approach is presented by Object-Oriented Web Solutions (OOWS [7]). The re-
quirements analysis phase is also the focus of the Navigational Development Technique
(NDT [2]); the approach of textual templates, however, is less appropriate for the speci-
fication of navigational aspects of web applications. More recently, the Mockup-driven
development process (MockupDD [6]) was defined which enables smooth transforma-
tions into e.g. UWE navigation and presentation models.

Software effort models help project managers to take decisions on methods, tech-
niques, and tools. Mendes et al. [4, Ch. 2] present techniques for effort estimates in web
software development, but do not particularly analyze the effort reduction implied by an
MDD process. Another approach consists in calculating productivity based on size and
effort aggregating different size measures that characterize web applications [4, Ch. 3].

2 Assessment Strategy

Our assessment is defined in terms of reduction of modeling efforts, i.e., measuring to
which extent models of web software can be generated by transformations. We focus
on comparing the results of the automatic generation of design models of rich web
applications — just per mouse click — to the work the designer invests in modeling the
application from scratch. Both, the manual modeling and the model-driven development
processes use requirements models as source for building the design models.
Research Scope and Questions. The requirements models in our assessment are very
simple, i.e. without many details. They contain enough information to discuss the web
application with the customer, but abstract from details mainly required for the im-
plementation. Hence, these requirements models are insufficient for the generation of
complete design models and code. In fact, our goal is to analyze to which extent these
simple requirements models can provide substantial help in building design models.

Our empirical method was designed to answer the following questions: (Q1) How
much of the modeling effort can be reduced through automatic generation of design
models of web applications? (Q2) Is it worth for the designer to focus on the modeling
of the requirements in terms of effort reduction for design models? (Q3) How could web
specific modeling tools provide more assistance through partial model-driven support?

2

Table 1. Similarity scale with associated benefit

Kind (k) Description Benefit (b(k))
identical both model elements have exactly the same features 1

similar some features are identical; others are missing or erroneous 0.5

erroneous contains features not included in the original one −0.25

missing is not included in the model while the original is included 0

Table 2. Weights for UML model element types

UML model element type (t) Weight (w(t)) UML model element type (t) Weight (w(t))
Class 1 Action 1

Attribute 0.5 Object Node 0.75

Association/Dependency 0.5 Pin 0.5

Tag 0.25 Control/Object Flow 0.25

Property 0.75 Use Case 1

Table 3. Effort reduction indicators and scope factor

E(t) = (
∑m

k=1 G(k , t) · b(k))/M (t) effort reduction per model element type(1)

E(c) = (
∑n

t=1 E(t) · w(t))/
∑n

t=1 w(t) effort reduction per concern(2)

E = (
∑v

c=1 E(c))/v effort reduction for the application(3)

(4) s = (
∑n

t=1 R(t) · w(t))/(
∑n

t=1 M (t) · w(t)) scope factor

Assessment Process. The methodology for the assessment has as input the requirements
models of the application and consists of the following steps: (1a) manual creation of
the design models following the principle of separation of concerns, (1b) generation
of the basic design models using transformations; (2) comparison and classification of
the model elements of the manually created and automatically generated models; and
(3) calculation of the effort reduction indicator and interpretation of results.

The notation used for our case studies is the UML profile UWE, the tool is Magic-
Draw and the MagicUWE plugin with its model-to-model transformations. The require-
ments of the web applications are modeled with use case diagrams for the functional
system properties and activity diagrams for the navigational paths and processes. The
design models express the different aspects of content, navigation, presentation, and
processes of web applications. These design models are produced twice for our evalu-
ation: in step (1a) manually by the designer, in (1b) automatically by model-to-model
transformations from the requirement models (see Sect. 3).

In step (2) the generated model elements, such as classes, attributes, and actions are
compared to the manually designed model elements. We distinguish m = 4 kinds of
similarity k for generated model elements: identical , similar , erroneous , and missing
(see Tab. 1). The benefit factor b(k) of kind k tells how much the generation contributes
to the work of the web engineer. This ranges from b(identical) = 1, when nothing has
to be changed, to b(erroneous) = −0.25, when elements need to be removed.

Finally, in step (3) the effort reduction indicator is calculated for model types and
aggregated for each concern and for the application; see Tab. 3. The indicator E (t) for a
model element type t , like class, attribute, etc., is the sum of the number of the generated

3

elements G(k , t) of a similarity kind k and of the type t weighted with the benefit
factor b(k) and divided by the corresponding number of manually generated model
elements M (t) (Tab. 3(1)). The effort reduction indicator E (c) for a concern c, such as
content, navigation, process, and presentation, is calculated as a linear additive weighted
formula of the effort reduction indicator E (t) of the n individual model element types
(Tab. 3(2)). The weight w(t) in Tab. 2 expresses the relevance a model element type t
has for the designer. For example, classes are first-class citizens and attributes are not, as
they belong to classes. The effort reduction indicator E for the entire web application
is given by the average over all v concerns that are modeled for the web application
(Tab. 3(3)). We assume that for the designer all concerns have the same relevance.

With E we provide an estimation of the amount of spared effort when we focus on
modeling requirements of a web application and partially generate the design models.
We need, however, to complete these draft models with some additional effort in order
to achieve the same objective as when modeling the different concerns manually. In
terms of project productivity each activity in the development process has a measurable,
positive cost, with exception of the automated model transformations (we neglect the
implementation costs of the transformations as they are reusable for many projects).

Until now, we only assumed that the same requirements model were used for both
the manual and the automatically generated design models, but disregarded the quality
of the requirements model. We introduce a scope factor that gives a very rough estima-
tion of the degree of detail to which the requirements are modeled. This scope factor is
calculated as the ratio between the linear additive weighted expression of the number
of requirements elements R(t) of a model element type t and the number of design
elements M (t) (Tab. 3(4)). We use it to normalize the values obtained for the effort
reduction of a web application making different web applications comparable.

3 Model-based Development of Web Applications in UWE

The assessment strategy for effort reduction in MDD is independent of the approach
for developing web applications; only support for modeling the requirements and the
different design concerns is required. In this work, we use the UML-based Web Engi-
neering (UWE [3]) notation, method, and tool support for evaluating the strategy. The
UWE notation is defined as a UML profile. The cornerstones of the UWE method are
the principle of separation of concerns and the model-driven approach. As UWE tool
we use the MagicUWE plugin implemented for MagicDraw [1].

We illustrate the modeling process and the results of the model transformations in
UWE by a web-based social network application for sharing favorite web links with
friends: Linkbook is accessible to guests and registered users, providing logging in/out
and (un)registering functionality. The homepage shows a list of favorite links grouped
by categories and offers search facilities for links and user comments. Registered users
can comment links and switch to their personal view for managing their links. Network
functionality is offered by a list of friends, giving access to the friends’ favorites.
Requirements Modeling. In UWE, a web application’s functional requirements are cap-
tured by use cases and activities. Figure 1(a) depicts a subset of the Linkbook use cases.
The UWE profile supports web-specific annotations by stereotypes for use cases, like

4

(a) Functional requirements modeled with use cases (excerpt)

(b) MagicUWE tool with requirements workflow for CreateCategory

(c) Presentation elements: manually modeled (M , left) and automatically generated (G , right)

Fig. 1. Linkbook example in MagicUWE

�browsing� (, pure navigation) and �processing� (, workflow functionality). Use
cases in packages inherit the stereotype of the package.

Each �processing� use case is refined by a workflow using UML activity diagrams,
for CreateCategory see Fig. 1(b) (lower right). The workflow specifies the process ac-
tions, input/output information with pins or objects, decisions, and rich user interface
features. Web-specific annotations can be added to actions, like �displayAction� () for
the explicit presentation of elements, �userAction� () for asking the user for input, or
�systemAction� () indicating the processing of data.

5

Creating Design Models. The UWE method for the design phase follows the principle
of “separation of concerns”: A content model represents the domain concepts and the
relationships between them. A navigation model is used to represent navigable nodes
and the links between nodes. A presentation model provides an abstract view on the
user interface (UI). A process model contains the workflows of the processes which are
invoked from certain navigation nodes.

A navigation model consists of navigation classes for the navigable nodes and pro-
cess classes for accessing business processes. Alternative navigation paths are handled
by menus, multiple instances of navigation paths by indexes, menus, and queries. The
basic presentation modeling elements are the �presentationGroup� which are directly
based on nodes from the navigation model, i.e. navigation classes, menus, access primi-
tives, and process classes. A presentation group () or a �form� () are used to include
a set of other UI elements, like �textInput� () or �selection� (). Figure 1(c) (left)
shows the presentation model for the process AddComment which is related to the �pro-
cessing� use case with the same name.
Generating Design Models. On the right side of Fig. 1(c) the presentation model of
the same AddComment form is shown, but this one was automatically generated by
model-to-model transformations. A set of model transformations is defined in Mag-
icUWE with the goal to benefit from the efforts invested in the requirements models
and produce initial versions of all design models, i.e., content, navigation, process, and
presentation (see Fig. 1(b)). To describe in detail each of these transformations is out
of the scope of this work. For the requirements-to-presentation transformation mainly
information from the requirements workflow with its action stereotypes is used, like
�userAction� asking the user for input.

4 Evaluation Results

Once the modeling part of the process described in Sect. 2 is completed, the evaluation
of the MDD approach can be started (steps 2 and 3). We first provide details on how the
effort reduction calculations are applied to the Linkbook, then we present the assessment
results for a set of six web applications and discuss the robustness of our findings.1

Assessing Effort Reduction for Linkbook. A counting of model elements of both design
models resulting from the requirements, the manually crafted and the generated model,
is performed for each concern. The generated elements are classified into the kinds of
of Tab. 1. For example, the excerpt of the manually crafted presentation models of Link-
book shown in Fig. 1(c) contains 10 model elements (1 class, 4 properties and 5 tags);
the generated counterpart contains 7 model elements (1 class, 6 properties and 1 tag);
there is no identical element, 4 similar and 3 erroneous . Table 4 presents the results
of the counting and categorization of all model elements of the presentation concern.
These modeling elements are the presentation group (including those that inherit from
it, like input form), the interactive elements (like button, input text, selection), and the
output properties (such as text, images).

1 Further details on the example applications (Address Book, Music Portal, Movie Database,
Publication Management System and the UWE website) as well as download links of their
models can be found at the UWE website: http://uwe.pst.ifi.lmu.de.

6

Table 4. Linkbook application: Effort reduction indicators for the presentation concern

Linkbook Manually Generated Effort reduction
modeled Identical Similar Erroneous indicator (E)

Presentation Groups (Class) 38 13 15 12 0.46

Interactive Elements (Property) 54 32 18 26 0.64

Output Elements (Property) 25 17 8 11 0.73

Presentation Model 0.59

Table 5. Overview on Assessment Results

Web application Content Navigation Presentation Process E Scope E normalized
Address Book 0.56 0.45 0.51 0.66 0.54 0.75 0.39

Linkbook 0.45 0.57 0.59 0.63 0.56 0.84 0.35

Movie DB 0.25 0.30 0.10 0.33 0.25 0.51 0.26

Music Portal 0.59 0.52 0.46 0.78 0.59 0.41 0.77

Publications MS 0.13 0.33 0.25 0.17 0.22 0.36 0.33

UWE Website 0.40 0.01 0.53 0.78 0.43 0.32 0.72

Average 0.53 0.47

Table 6. Statistics on Linkbook models

Model Class Use Action Attribute Assoc./ Pin Property Contr./Obj. Object Tag Weighted
Case Depend. Flow Node Average

Req. 0 22 93 0 15 131 0 179 16 93 63.06

Design 80 0 46 33 70 57 135 120 19 114 75.11

The last column of Tab. 4 shows the values of the effort reduction indicators calcu-
lated using the equations in Tab. 3: E (t) for each model element type t and the effort
reduction indicator E (c) for the entire presentation concern, which is 59%. The effort
reduction indicators for the content, navigation and process concerns are computed sim-
ilarly (see second row of Tab. 5). The effort reduction indicator E for the entire web
application Linkbook is 56%. As additional modeling effort required after the execution
of the model transformation 48 model elements have to be built.

Comparing Effort Reductions of Multiple Applications. Table 5 gives an overview of
the effort reduction indicators for all six web applications of the assessment study. The
evaluation results show that the execution of the transformations and the resulting first
drafts of the different models for the content, navigation, presentation, and process con-
cerns imply an effort reduction between 22% and 59%, but irrespective of the amount
of effort that has been invested in the requirements modeling. To correct this bias, we
use the scope factor s of Tab. 3(4) based on a relationship between amount and type
of model elements used at requirements and design level; see next-to-last column of
Tab. 5. The scope factor is then applied to normalize the effort reduction indicator of
each application. The normalized values of E (last column) are comparable and are
situated in the range between 26% and 77% with an average effort reduction of 47%.

These results allow the following answers to the questions in Sect. 2: (Q1) The
modeling effort can be reduced in average by 47% if the degree of detail of the require-

7

ments models is estimated in 53%; assuming linearity this would imply that complete
requirements models (100%) would lead to an automatic generation of 88% of the de-
sign models. (Q2) The effort reduction values confirm that it is worth to invest in the
requirements modeling. (Q3) Tools should allow for separate execution of model trans-
formations for each concern enabling the modeler to select appropriate transformations.
Robustness of the Assessment. We recalculated the effort reduction indicator changing
the weights of model elements in Tab. 2. A modification of 0.25 for a navigation element
type changes the effort reduction indicator of the concern by max. 3%, in average only
2%. Similarly, in the presentation model changes of 0.25 in average only affect the
value of the indicator by 1%, max. 4%. Although these results sound encouraging, there
are still some difficulties to be solved. The most important methodological issue is the
regeneration of models after changes in the target models have been performed, i.e. how
to merge models and identify conflicts. A more technical and tool related problem is the
graphical representation of the diagrams corresponding to generated models.

5 Conclusions

We have presented an assessment process and a metric for measuring the effort reduc-
tion resulting from using model-transformations instead of manual creation of design
models based on the requirements models of web applications. The proposed assess-
ment strategy has been applied to six web applications, whose requirements have been
specified using the UWE approach. Our evaluation shows that the MDD approach re-
duced the effort in more than 45%, which could even be improved if the degree of detail
of the source models is increased. We plan to corroborate the results of our evaluation
with empirical data obtained by groups of students that will create the models and use
the same tool for generating these web applications.

References

1. M. Busch and N. Koch. MagicUWE — A CASE Tool Plugin for Modeling Web Applications.
In Proc. 9th Int. Conf. Web Engineering (ICWE’09), volume 5648 of Lect. Notes Comp. Sci.,
pages 505–508. Springer, 2009.

2. M. J. Escalona and G. Aragón. NDT. A Model-Driven Approach for Web Requirements.
IEEE Trans. Softw. Eng., 34(3):377–390, 2008.

3. N. Koch, A. Knapp, G. Zhang, and H. Baumeister. UML-Based Web Engineering: An Ap-
proach Based on Standards. In Olsina et al. [5], chapter 7, pages 157–191.

4. E. Mendes and N. Mosley, editors. Web Engineering. Springer, Berlin, 2006.
5. L. Olsina, O. Pastor, G. Rossi, and D. Schwabe, editors. Web Engineering: Modelling and

Implementing Web Applications. Springer, 2008.
6. J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, and N. Koch. Towards Agile Model-Driven Web

Engineering. In Proc. 23rd Int. Conf. Advanced Information Systems Engineering (CAiSE’11),
Lect. Notes. Bus. Inf. Proc. Springer, 2012. To appear.

7. P. Valderas and V. Pelechano. A Survey of Requirements Specification in Model-Driven De-
velopment of Web Applications. ACM Trans. Web, 5(2):10, 2011.

8

