Requirements Models as First Class Entities
in Model-Driven Web Engineering*

Nora Koch!:? and Sergej Kozuruba®

! Ludwig-Maximilians-Universitit Miinchen, Germany
> NTT DATA

Abstract. The relevance of a detailed and precise specification of the require-
ments is well known; it helps to achieve an agreement with the customer on soft-
ware functionality, user friendliness and priorities in the development process.
However, in practice, modeling of requirements is avoided in many projects, in
particular in the Web domain, mainly due to short time-to-market. The objective
of this work is to make requirements modeling more attractive providing a win-
win situation. On the one hand such models are used to improve the developer-
customer communication and on the other hand to generate draft design models,
which can be used in further steps of a model-driven development approach, and
therefore reduce the developers’ efforts. We concretize the approach presenting
a domain specific modeling language defined as an extension of the UML-based
Web Engineering (UWE) profile and a set of model transformations defined to
generate the content, navigation and presentation models of web applications.
A social network application is used to illustrate UWE requirements and design
models.

1 Introduction

The first steps in a software development project comprise the elicitation, specification
and validation of requirements of the new web system to be built. This is also valid
in reengineering projects. Mainly elicitation but also the other two activities require
intensive communication with the customer in order to reach an agreement on function-
ality, technologies and priorities. For the specification, different techniques, methods
and tools have been developed, such as building models of the application. The more
accurate the models produced in this early phase of the software development life cycle
(SDLC), the less error-prone the code of the software. This relationship between the
quality of the requirements specification and the implemented system has been ana-
lyzed and confirmed several times [9]. However, more often than not, only sketches of
models are produced and the implementation phase is started too early. Even if require-
ments are specified, they are often partially ignored by developers. Generally, the time
invested in the requirements specification is seen as partially wasted.

In this work we focus on web software and show how to move developers’ efforts
from the design to the requirements phase of the SDLC. This objective is achieved

* This work has been partially sponsored by the EU project ASCENS, FP7 257414, the EU-NoE
project NESSoS, GA 256980, and the DFG project MAEWA 11, WI 841/7-2.

M. Grossniklaus and M. Wimmer (Eds.): ICWE 2012 Workshops, LNCS 7703, pp. 1581691 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Requirements Models as First Class Entities 159

through two changes in the development process: (1) Building annotated requirements
models (more effort) and (2) Generating the design models from the requirements mod-
els in a semi-automatic way (less effort). Note that our goal is not the automatic gen-
eration of the complete application (proved to also have severe limitations), but instead
to use model-driven engineering (MDE) to ease developers’ work in several steps, to
manage the complexity of web applications, and scalability aspects in the development.
The benefits are better requirements models improving the communication between
customers and developers, supporting the decision process and resulting in more stable
web applications. In our previous work [5] we presented the results of a detailed as-
sessment of the application of our approach showing that the effort reduction reached
is calculated to be between 26% and 77%.

We present a domain specific modeling language (DSML), which provides the anno-
tations needed to enrich standard requirements models with web features and to reduce
model-complexity. The models specified with the DSML are used in the model trans-
formations of the MDE process to generate the design models of the web applications.
Although the approach is generic and the idea of a DSML in an early development phase
of web applications could be applied for any model-driven approach, we selected the
UML-based Web Engineering (UWE) [6] to illustrate the approach, and as an example
we use a social media application, called Linkbook.

The remainder of this paper is structured as follows: Section [2] gives an overview
of UWE modeling features focusing on requirements models. In Sect. 8] we present
the model-to-model transformations showing how draft models are generated. Section
describes the tools that support the model-driven process. Finally, Sect. [5] discusses
related work and in Sect. |6l we give an outlook on future steps in the use of our model-
driven development approach.

2 Modeling Requirements of Web Applications

The specification of web applications focus on building a model of the functional re-
quirements. For the modeling task, different languages can be used, such as BPMN
[10], UML [L1] or a DSML, such as the Navigation Development Technique (NDT)
[3] or the UML-based Web Engineering (UWE) [6]] approach. We selected the latter to
exemplify our approach.

UWE comprises a notation, a method and tool support. The notation is de-
fined as a UML profile [11], i.e. using the extension mechanism provided by
the UML itself, which allows for the refinement of UML in a strictly additive
manner by stereotypes, tag definitions and constraints, providing the required ad-
ditional annotations. The cornerstones of the UWE method are the principle of
separation of concerns and a model-driven approach. As UWE tool we use the
MagicUWE plugin implemented for MagicDraw (see Sect.) and the UWE4JSF
eclipse plugin for the code generation.

Case Study. To illustrate the modeling features of the DSML and the results of the
model transformations, we selected the Linkbook rich internet application. This is a
social network platform to share favorite web pages with friends, similarly to other so-
cial networks that enable the sharing of posts or pictures. The network distinguishes

160 N. Koch and S. Kozuruba

between two kinds of users, guests and registered users, and provides the usual func-
tionality for logging in and out, as well as for registering. The homepage of the appli-
cation shows a list of favorites website entries (referred to in the diagrams as link infos)
grouped by categories, and offers search facilities over the available link info and the
user comments. Registered users also have the option to comment link infos and switch
to their personal view where they can add new entries as well as sort or remove entries
from the list of favorites. The network functionality is provided by managing the list of
friends providing access to the list of favorites of all friends.

Fig. [l depicts a subset of the use cases of the Linkbook application. It illustrates the
use of the UWE profile to annotate UML model elements supplying them with specific
web semantics, e.g. distinguishing between <browsing> ([1) and <processing> () use
cases. The former represents pure navigation; the latter, workflow functionality. Exam-
ples for these two types of use cases — browsing and processing — are BrowsingLinkInfo
and AddFriend, respectively. We introduce groupings of functionality using UML pack-
ages, for example, the packages Authentication and New. All of the model elements
contained in the package adopt the stereotype of the package, which is then the only
one that needs to be made explicit.

package Requirements | @ Use Cases U

LinkBook =]

Browse Linkinfos []

extension points
Change Settings

Change
BrowsesSettings

] View LinkDetails [7]
~ extension points

Add Favorite
Add Comment
Add Image

View UserDetails [7]

I
Authentication i i
= el o olnts I\ extonds
I -
«extend» \ «extend! \

| \

D g | e
u New \ >
\ | {guard= \activeUser!=null" }
>
iy
\
\

/ Add Comment
~ Add Favorite
User

Create Linkinfo 5

extension points
«extendy No matching Category

Create Category 3

Fig. 1. Linkbook: Functional requirements modeled with use cases (excerpt)

Requirements Models as First Class Entities 161

Each use case can be refined by a detailed description or a graphical representation
of the workflow associated to it. UML activity diagrams can be used for the visual
representation as shown in Fig. 2] for the CreateLinkinfo workflow. Here we also use
different stereotypes of the UWE profile to enrich the semantic of the activity diagram
with web specific concepts. The objective is to specify:

the actions which are part of the workflow, i.e. ShowForm, EnterData, sub-workflow
CreateCategory and SaveLininfo in our example;
input and output information, given by pins (like name, address, description, cate-

gory) or objects (linkinfo);

decisions (not present in this example);

features regarding the richness of the user interface, like the tag live validation for
the input fields name and address;

kind of visualization, e.g. the tag lightbox for the action ShowForm; and

type of user-system interaction, indicating additional semantics such as validation
and confirmation of the user input by the tag validated for EnterData and the tag

confirmed for SaveLinklnfo.

activity Create Linkinfo[j'_‘_i’] Create Linkinfo U

ShowForm
{lightbox,
type = form }

|

EnterData
{validated}

_r

B e name

%» nagif SaveLinkInfo o»
addresi
| category,

™ lliveValidation)

kg address
as . S
{liveValidation}

e descriptions
{type = custom }

L Category
PR {type = selection }
s : Create Category o |

{type = button }

th

.

{confirmed} LinkiInfo

@

Fig. 2. Linkbook: Example of workflow represented as UML activity diagram

This CreateLinkinfo workflow depicts three different stereotyped actions: (1) «display-
Actions (EP), used to visualize explicit presentation of elements; (2) <userAction> (%)

162 N. Koch and S. Kozuruba

that defines a point in the process flow when the user is asked to input data; and the
(3) <systemAction> (0?) that indicates a step of the process flow where the application
is processing some data.

3 Transformations and Model Generation

In the previous section we described the source models of the transformations, i.e. the
requirements models. In this section we present the target, i.e. the design models and
the model transformations that generate design models from requirements specification.

Our modeling approach for the design phase follows the principle of “separation
of concerns” building separate models for views of the navigation, content, presen-
tation, processes, etc. in the same way other web development methods do, such as
OOHDM [14], OOHRIA [8], OOWS [15] and WebML [2], among others. The set of
model types is a highly flexible and modular modeling framework providing the basis
for the model-driven engineering (MDE) development process. Each model type has
clear aims:

Content. The content model represents the domain concepts and the relationships be-
tween them.

Navigation. The navigation model is used to represent navigable nodes and the links
between nodes.

Presentation. The presentation model provides an abstract view on the user interface
(UI) of a web application. It is a platform-independent specification without con-
sidering concrete aspects like colors, fonts, and position of UI elements.

Process. The process model visualizes the workflows of the processes which are in-
voked from certain navigation nodes.

Our MDE approach comprise the generation of draft models of each concern, i.e. initial
versions that require further refinement. In the following paragraphs we sketches the
main modeling elements for the main concerns and gives an overview to the model
transformations (informal description).

Content models are represented in UWE as plain UML class diagrams (see Fig.[B). A
first draft of a content model is obtained by a set of model-to-model transformations
using as source models the use cases and the corresponding workflows (graphically
represented as activity diagrams). These transformations are:

— Objects nodes that model the data used in the workflows are translated into content
classes using the name of the object note as the class name.

— If an action pin is connected to an object node directly or through an action, then it
can be assumed that this pin represents a property of the class modeled by the object
node. In that way, the name of the pin is used to determine whether an attribute or
association is created by comparing the name with existing content classes.

Figure[3]shows the content model of the Linkbook web application that results from the
above described transformations applied to the uses cases of Fig.[1l

Requirements Models as First Class Entities 163

package Content[Content Diagram U

Linkinfo Comment
Category -created -created
-id : Integer 1 -address : String 1 -language : String
-name : String -name : String -text : String
-descriptions [1..%] -rating : float
-Favorites | *
User P
Image -show IgnoredFavorites : boolean
o -show IgnoredFriends : boolean Message
Eat>Ung -searchOtherFavorites h title - String
-searchFriendFavorites fauinor ~text : String
-searchMyFavorites
-view Friends : Integer iz
-view Favorites : Integer -recipient
-languages : String [1..*]

-passw ord : String
-email : String
-name : String

Fig. 3. Linkbook: Generated content model

Navigation models describe the navigation structure of a web application using a set of
stereotyped classes defined for the web domain, such as navigation classes and links,
menus, etc. Figure 4] depicts a first approach to the Linkbook navigation model which
was generated based on the requirements models.

The following is a very brief overview of some modeling elements part of the UWE
profile. A <navigationClass> (visualized as [J) represents a navigable node of the hy-
pertext structure; a <navigationLink> shows a direct link between navigation classes.
Alternative navigation paths are handled by «menu> () and the so-called access prim-
itives are used to reach multiple instances of a navigation class (<index>, =), or to select
items (<query>, [@). Web applications frequently support business logic as well. An en-
try and/or exit points of the business processes is modeled by a <processClass> (2) in
the navigation model, the linkage between each other and to the navigation classes is
modeled by a <processLink=.

The model transformations from requirements (use cases and workflows) to the nav-
igation structure model encompass the following steps:

— Creation of <«<navigationClass>es for <browsing> use cases; <processing> use
cases are transformed into <processClass>es.

— Tagged values of the use cases are transformed into equally named tags of the
generated classes.

— Relationships between use cases are translated into associations between cre-
ated navigation and process classes. The associations are stereotyped with <pro-
cessLink> if at least one related class is a <processClass> and <navigation-
Link> otherwise.

164 N. Koch and S. Kozuruba

package Navigation [|| Navigation Diagram U

Home
{isHome,
isLandmark}

HomeMenu E

> 2
{Logout SV {Unregister > % ViewPersonalData O
{guard = "activeUser!=null" ,
. >
‘Logm » F—lkegister DFi >

isLandmark}
>
|Createcategory » I(_|CreatsLinklnfo > %_

o

ViewUserDetails []
——
View UserDetailsMenu

=}

ChangeBrowseSettings |:| L AddFriend D‘
9

ViewPersonalDataMenu =

View LinkDetails]

ViewLinkDetailsMenu 5

RemoveFriend 3>

BrowseLinkInfos I:l

Addimage UpdateFavorite 3>

>
uard = "activeUser!=null" }

RemoveMessage 3>
Lg AddComment >

uard = "activeUser!=null" }

uard = "activeUser!=null" } RemoveFavorite 3>

UpdateFriend 3>

AddFavorite
Quard = "activeUser!=null" }

>

SendMessage 3>

ii v vaiv
I 2
I H Iu

Fig. 4. Linkbook: Generated navigation model

— A <menu> is introduced whenever a navigation class has several outgoing links.
The source of the links is changed to the «menu>, which is connected to the navi-
gation class by a composition.

— A navigation class can be created to serve as home of the application, if it has not
been modeled explicitly.

In addition, each process class included in the navigation specification can be mod-
eled as a detailed workflow in the form of a UML activity diagram (not included in
this work). It is the result of a refinement process that starts from the workflow of the
requirements model.

Presentation models are designed based on the information provided by the navigation
models and the information available in workflows of the requirements models, e.g.
rich UI features. A UML nested class diagram is selected as visualization technique.
The presentation model describes the basic structure of the user interface, i.e., which
UI elements (e.g. text, images, anchors, forms) are used to represent the navigation
nodes.

The basic presentation modeling elements are the <presentationGroup> which are
directly based on nodes from the navigation model, i.e. navigation classes, menus, ac-
cess primitives, and process classes. A presentation group (&) or a <form> () are used
to include a set of other Ul elements, like <text> (&), <textinputs> (&), <button> (),
<selection> (%), etc.

Requirements Models as First Class Entities 165

The top level elements of the presentation model are classes with the stereotype
<presentationGroup>. The second level of presentation elements consists of input and
output elements. The presentation model similarly to the navigation model requires a
main class, which is not modeled explicitly during the requirements specification. This
presentation group is named <Home> and contains all presentation groups created from
use cases inside a class <presentationAlternatives> and an anchor for every presentation

group.

package Presentation|[Presentation (excerpt) U

View UserDetails @] Register = Create Linkinfo =
: ShowFavorites] : ShowRegistration =2 : ShowForm E
{filter, {lightbox}
:ShowNews @ liveReport} R ————
- {liveValidati [:CreateCategory o
l :OpenWebsite — | l : OpenWebsite — ‘

:email

: OpenLinkDetails — {liveValidation}

: status @ : languages % :address
{multiple} {liveValidation}

:name
{liveValidation}

:name 23
{dragDrop} :password [:category%
N . {liveValidation}
: Show Details_[5] : totalRating [g] : descriptions

i

: AddFriend
‘type 2y
. o~
— |-
: ShowFriends : Confirm
. @] -
~
: ErrorMessage %

: status E‘ ‘ l : OpenUserDetails — |

:name 2%
{dragDrop}

cl

itype %

Fig. 5. Linkbook: Presentation model generated by transformations (excerpt)

The following model transformations are defined to transform requirements (use
cases and workflows) into a presentation model:

Creation of <presentationGroup>es for <browsing> use cases; <processing> use
cases are transformed into <inputForm:s.

An <inputForms is also created for each <displayAction>.

Elements of type «displayPin> and «interactionPin> are translated as presentation
properties part of the <inputForm=s that were generated for the «displayAction>;
the stereotype of the presentation class is computed from the type tag.

Tags (with exception of type), mainly used for modeling RIA features, are added to
the corresponding input elements.

166 N. Koch and S. Kozuruba

— An action of type «systemAction> with a tagged value confirmed set to true is trans-
lated into two classes of stereotype <button> named OK and Cancel; an action of
type <userAction> with a tagged value validated set to true is translated to a class
of stereotype <text> to show the errors of the validation.

Fig. [5 shows an excerpt of the presentation model including the presentation groups
ViewUserDetails, Register and CreateLinkinfo that were automatically generated by the
model-to-model transformations defined above. The first presentation group is related
to the <navigation> use case and the other two to the <processing> use cases with the
same name.

4 Tools Supporting the Model-Driven Engineering Process

UWE models can be designed using all UML development environments that enable
the use of (almost all) profiles and mainly those offering visual modeling facilities.
However, the frequent use of stereotypes and tagged values as well as certain domain-
specific modeling characteristics suggested the idea of a tool supporting frequently used
features of UWE. Conversely to the development of a proprietary tool, the goal is to
extend existing CASE tools in order to benefit from UML compliance.

The following tools were developed as plugins of available UML development en-
vironments to support the UWE approach : ArgoUWE is based on ArgoUML, Mag-
icUWE extends MagicDraw [1]] and the TopUWE-plugin has been developed for Top-
Cased. The first and third tool have the advantage of being based on open-source
projects; the second one builds on a commercial tool whose new releases always con-
sider UML improvements. The implementation of new features in ArgoUWE was dis-
continued as ArgoUML was not migrated to UML2. Currently, the second plugin pro-
vides full support and the third one is work in progress.

We therefore started to define a set of model transformations in MagicUWE to benefit
from the efforts invested in the requirements models and to produce initial versions of
all design models, i.e. content, navigation and presentation models (see Fig. [6). The set
of transformations implemented are:

requirements to content,
requirements to navigation,
requirements to process, and
requirements to presentation.

The goal of these plugins are the computer aided design of web applications using the
UWE approach. They offer to the designer, in addition to the use of the UWE profile, aid
for the selection of the model elements, transformations for the automatic generation of
sketches of models (see transformations options in Fig. [6)) or the refinement of certain
parts (aspects) of the models. Thus, the UML CASE tools are customized to the specific
modeling domain of web software by specific plugins. Code generation is supported by
the UWEA4JSF tool [[7]].

Requirements Models as First Class Entities 167

I T - - . o
Maglieraw UML Personal Editior ll.ndnp [DALMUNpaper

: File Edit View Layout Diagrams Options Tools =MagicUWE | Window Help RM-ODP

DERELDG H- 3-8 ED:\LM..P%@ Mew UWE Diagram

-

E@@@j@@ i Bad

¢ Software Architect = # Transformations F | B Requirements -» Content
‘E’E & | ETT QQ - .Navigaﬁon ¥ @“Prf [wi] Create Default Models R‘,ﬁ Requirements -= Navigation
- I =
- - < . R
Containment 2% S . . |8 RIAPatterns Options ¥ Requirements -> Process
Tl < (5] iy Ry R -
BBy -8 e Iy £ | Send project file back to the SDE... gl Requimment: o> Preceatanion
= | packs W CE Content -> Navigation
=3 Note o About MagicUWE =
T | g wp MNavigation -» Presentation
BH-Eg UML Standard Profile [1f e - PS:
ationCl 3 E 4. Navigation -> Process Structure
E-ER LWE Prafile [LWE Proff | =1 Anchor : ;"E"'g '“I':];s_ls’ | 1] = 4
[&] Contert A Contai w L : s 1 i b {N Navigation -» Process Flows
N guard = "activelsar=null", 3 : - -
[Mavigation A Depende... " isLandmarkg = 5
[Relations o B - .
(= FavoriteIndex C\ass Diagram | O enavigationLinks
e tiendFavoriteInds Edé;h L
- - Classs 3
[riendFriendIndex menus “process! o
e A i - zprocessLinks- -
[E tigndInde:: e PersonalMenu 4 Link EIEFIELInkinio § i by
B P Package = - ¥ aprocesstinks [, yalidateLink)
B Gener... ¥ Lt
B 7 i angvigationLinks
B / Assadi... = || > eprocesslinkd ..o
£ : sindexs - . . . 3 : i
[E Use Case Dia... |
6 __;_e_ st .. | eprocessClass: 3>
g ementati... |
[E o = O snavigationLink= F emEGRimgary
G Composite Str. ‘;‘ +validateCategory()
& | Information F...| ‘ni\flgfl;:;c!?ss’ D
ittty < inkDetails
[E =i i B
Profiling Mech... > ‘«précesslinks
- & ot MagicUWE - Kavis...| :
BN Mawinatinn Mianea [] navigatio

Fig. 6. MagicUWE: Tool support for modeling and transforming

5 Related Work

Several model-driven web engineering methods have been put forward during the last
decade, only some of them include explicitly requirements specification in their soft-
ware development process. The survey of Valderas and Pelechano [16] presents a de-
tailed analysis of the model-driven characteristics of the most relevant methods.
OOHDM defines a proprietary notation called user interaction diagrams used
to refine use cases. Only UIDs are used to derive conceptual models, but there is no
tool supporting the MDE process. Similarly, the previous version of UWE [4] that in-
cluded a notation for requirements specification called WebRE, did not provide tool
support for model transformations, but for the modeling as it is UML compliant. The
Web Modeling Language (WebML) is supported by WebRatio, a commercial tool that
is in use in many real projects. This implies a lot of experience in requirements speci-
fication, but the requirements models — use cases and textual specification — proposed
by WebML are not fully integrated in the automated generation of the web appli-
cations. The most complete approach is presented by Object-Oriented Web Solutions
(OOWS) [[16], which includes a task taxonomy, description of user tasks and system
data. The notations used are task trees and activity diagrams, and the MDE process is
fully supported by a graph-transformation-based tool. The drawback of this approach
is the complexity of the requirements model and the need of proprietary tool support
due to the use of a mix of techniques. The main focus of the Navigational Development
Technique (NDT) is the requirements analysis phase [3]. The NDT Suite has been de-
veloped to support this very detailed template-based approach. Although NDT is useful

168 N. Koch and S. Kozuruba

for the requirements elicitation, the approach of textual templates are less appropriate
for the specification of navigational aspects of web applications.

More recently, the Mockup-driven development process (MockupDD) of Rivero et
al. [13] was defined using user interface mockups. Digital mockups are constructed with
open-source mockup tools and afterwards enriched with annotations enabling smooth
transformations into e.g. UWE navigation and presentation models. The advantage of
the approach is the use of graphical user interface prototypes, easing communication
with customers and designers. But the use of more than one CASE tool requires the
export and import of models with the usual problem of visualizing these models.

6 Conclusions

We presented a model-driven engineering (MDE) approach that moves the focus of
modeling from a late to an early phase in the software development life cycle (SDLC),
i.e. from design to requirements. The approach consists of the specification of require-
ments models (source models)(1) using the UML-based Web Engineering domain spe-
cific modeling language(2), transforming these models to the target models (3), i.e. first
approaches of UWE design models (content, navigation, presentation).

The benefits of such an approach are that the developer can focus on requirements
modeling providing a better tool for discussions and agreements with the customer. On
the other hand the generation of basic design models provides an effort reduction of the
time consuming task of building these design models. Although the approach is generic
and the idea of a DSML in an early development phase of web applications could be
applied for any model-driven approach, we selected the UML-based Web Engineering
(UWE) [6] to illustrate the approach. As an example we use a social media Linkbook
application. Model transformations are tool supported in the CASE tool MagicUWE.

An evaluation of the approach comparing automatic generated and manually created
design models was performed; the results are included in our previous work [5]. We plan
to corroborate the evaluation results with empirical data obtained by groups of students
that will manually create the design models. A future task would be the implementation
of the model transformations as plugin of an open source tool, probably TopCased.

References

1. Busch, M., Koch, N.: MagicUWE — A CASE Tool Plugin for Modeling Web Applications.
In: Gaedke, M., Grossniklaus, M., Diaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 505—
508. Springer, Heidelberg (2009)

2. Ceri, S., Brambilla, M., Fraternali, P.: The History of WebML: Lessons Learned from 10
Years of Model-Driven Development of Web Applications. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P.,, Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS,
vol. 5600, pp. 273-292. Springer, Heidelberg (2009)

3. Escalona, M.J., Aragén, G.: NDT. A Model-Driven Approach for Web Requirements. IEEE
Trans. Softw. Eng. 34(3), 377-390 (2008)

4. Escalona, M.J., Koch, N.: Metamodelling the Requirements of Web Systems. In: Rev.
Sel. Papers Int. Conf. Web Information Systems and Technologies (WEBIST 2005-2006).
LNBIP, vol. 1, pp. 267-280 (2007)

11.

12.

13.

14.

15.

16.

Requirements Models as First Class Entities 169

. Koch, N., Knapp, A., Kozuruba, S.: Assessment of Effort Reduction due to Model-to-Model

Transformations in the Web Domain. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 215-222. Springer, Heidelberg (2012)

. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering: An Ap-

proach Based on Standards. In: Olsina, et al. [12], ch. 7, pp. 157-191

. Kroiss, C., Koch, N., Knapp, A.: UWE4JSF: A Model-Driven Generation Approach for

Web Applications. In: Gaedke, M., Grossniklaus, M., Diaz, O. (eds.) ICWE 2009. LNCS,
vol. 5648, pp. 493-496. Springer, Heidelberg (2009)

. Melia, S., Gémez, J., Pérez, S., Diaz, O.: A Model-Driven Development for GWT-Based

Rich Internet Applications with OOH4RIA. In: Proc. 8th Int. Conf. Web Engineering ICWE
2008). LNCS, vol. 5648, pp. 13-23. Springer (2008)

. Mendes, E., Mosley, N. (eds.): Web Engineering. Springer, Berlin (2006)
. Object Management Group. Business Process Model and Notation, version 2.0. Specifica-

tion, OMG (January 2011), http://www.omg.org/spec/BPMN/2.0/

Object Management Group. Unified Modeling Language: Superstructure, version 2.4. Spec-
ification, OMG (August 2011),
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

Olsina, L., Pastor, O., Rossi, G., Schwabe, D. (eds.): Web Engineering: Modelling and Im-
plementing Web Applications. Human-Computer Interaction Series, vol. 12. Springer (2008)
Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Koch, N.: Towards Agile Model-Driven
Web Engineering. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 142-155.
Springer, Heidelberg (2012)

Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with OOHDM. In:
Olsina, et al. [12], ch. 6, pp. 109-155

Valderas, P., Fons, J., Pelechano, V.: From Web Requirements to Navigational Design —
A Transformational Approach. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS,
vol. 3579, pp. 506-511. Springer, Heidelberg (2005)

Valderas, P., Pelechano, V.: A Survey of Requirements Specification in Model-Driven Devel-
opment of Web Applications. ACM Trans. Web 5(2), 10 (2011)

0003206
Highlight
Dear Author,

We can't find the title with this volume number 5648.

Please check and update us.

Regards
Haja

	Requirements Models as First Class Entities in Model-Driven Web Engineering
	Introduction
	Modeling Requirements of Web Applications
	Transformations and Model Generation
	Tools Supporting the Model-Driven Engineering Process
	Related Work
	Conclusions

