
 

Towards Agile Model-Driven Web Engineering *1 

José Matías Rivero1,2, Julián Grigera1, Gustavo Rossi1,2, Esteban Robles Luna1,3, 
Nora Koch4,5 

 
1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina 

{mrivero, julian.grigera, gustavo, esteban.robles}@lifia.info.unlp.edu.ar 
2 Also at Conicet 

3 Also at CIC 
4 Ludwig-Maximilians-Universität München,  

5 Cirquent GmbH, Germany 
kochn@pst.ifi.lmu.de 

Abstract. The increasing growth of the Web field has promoted the develop-
ment of a plethora of Model-Driven Web Engineering (MDWE) approaches. 
These methodologies share a top-down approach: they start by modeling appli-
cation content, then they define a navigational schema, and finally refine the 
latter to obtain presentation and rich behavior specifications. Such approach 
makes it difficult to acquire quick feedback from customers. Conversely, agile 
methods follow a non-structured, implementation-centered process building 
software prototypes to get immediate feedback. In this work we propose an 
agile approach to MDWE methodologies (called Mockup-Driven Development, 
or MockupDD) by inverting the development process: we start from user inter-
face mockups that facilitate the generation of software prototypes and models, 
then we enrich them and apply heuristics in order to obtain software specifica-
tions at different abstraction levels. As a result, we get an agile prototype-based 
iterative process, with advantages of a MDWE one. 

Keywords: Mockups, User Interface, Agile, Web Engineering, MDD 

1   Introduction  

During the last 20 years, many Model-Driven Web Engineering (MDWE) methodol-
ogies have been defined to improve the development process of web applications 
approaches [1-4]. These methodologies share a common top-down approach [5] and 
construct web applications by describing a set of models at different levels of abstrac-
tion: 

• Content (or Domain) Model: defining domain objects and their relation-
ships. 

• Hypertext (or Navigation) Model: defining navigation nodes and links that 
publish and manipulate information specified by objects in the Content 
Model. 

                                                           
1 This work is an extended version of the paper “Improving Agility in Model-Driven 

Web Engineering”, published in CEUR, Vol. 734 



 

• Presentation Model: refining the Hypertext Model with concrete user inter-
face presentation features like pages, concrete widgets, layout, etc. 

This process is generally top-down, delivering a final web application through a 
process of (sometimes automatic) model transformations which maps the previously 
described models into other models or a specific technology. 

Agile methodologies, on the other hand, promote early and constant interaction 
with customers to assert that the software built complies with their requirements, by 
constantly delivering prototypes developed in short periods of time; application proto-
types are then used as some kind of common language between developers and final 
users to assert captured requirements and to discover new ones. Agile approaches 
argue that software specifications must emerge naturally, enhancing former proto-
types along the development until the final application is obtained. 

To summarize, while MDWE methodologies facilitate software specification por-
tability, abstraction and productivity, they fail in providing agile interaction with 
customers because concrete results are obtained too late. On the other hand, while this 
feature is clearly provided by agile methodologies, they are heavily based on direct 
implementation and thus fail to provide abstraction, portability and productivity 
through automatic code-generation.  

In this paper we propose an hybrid model-based agile methodology – called Mock-
up-Driven Development (MockupDD) – aiming to extract the best of both worlds, i.e. 
a process driven by the active participation of users and customers, and a classical 
approach following the phases of analysis, design and implementation assisted with 
the use of models in all stages. Our approach starts by the requirement analysis, i.e. 
defining mockups (ideally together with the customers) to agree upon the applica-
tion’s functionality, similar to Harel’s behavioral programming approach [6]. Then, 
mockups are translated to an abstract user interface model that can be directly derived 
to specific MDWE presentation models or technology-dependent UI prototypes. By 
tagging mockups and presentation models we add navigation features, and based on 
the navigation specification, we use heuristics to infer content models. Thus, we are 
starting the requirement specifications with objects that are perceivable by customers 
(UI structure elements), easing requirements gathering and traceability [7]. 

Therefore, since we start with presentation models obtained from mockups and 
then construct or obtain upper (i.e. abstract) models, we are inverting the traditional 
MDWE process, yielding to a more agile, yet truly model-based approach. While we 
exemplify with the UML-based Web Engineering (UWE) [3], MockupDD can be 
applied to any MDWE approach. 

2   Related Work 

User Interface (UI) Mockup tools like Balsamiq2, Pencil3 or Mockingbird4 suit well 
in agile methodologies [8-10], since they provide a quick and easy way of capturing 

                                                           
2  Balsamiq - http://balsamiq.com/, last visited 3/9/2011 
3  Pencil Project - http://pencil.evolus.vn/en-US/Home.aspx, last visited 3/9/2011 



 

interaction requirements. Usually, mockups are defined in companion with other 
specifications like use cases [11, 12], user stories [13] or informal annotations [14]. 
Also, mockups have been introduced in the context of model-driven development 
(MDD) approaches as can be appreciated in the use of UI sketches in the context of 
the ConcurTaskTrees [15] to express interaction requirements and in the definition of 
a language that introduces storyboards over user interfaces composed through a spe-
cific user interface widget set [16]. Finally, the result of statistical studies [17] con-
ducted over inexperienced software engineers asserted that mockups effectively in-
creases and eases software comprehension. 

In most cases, however, mockups themselves are not considered as models and 
they are usually thrown away after requirement modeling. Thus, mockups are not 
used as important drivers of the development process although they contain precise 
information about the users’ needs. In our previous work [18], we introduced the idea 
of translating mockups constructed with prototyping tools like Balsamiq to a common 
presentation language in order to preserve and reuse them as truly software specifica-
tions. While this approach facilitates both a “quick and dirty” way of user interface 
construction with intense customer participation and a fast method to generate high 
quality UI from models (something that is not currently supported by well known 
MDWE approaches), it lacks the capacity of defining non-presentational features. As 
a consequence, mockups (and final UIs generated from them) can be used as a com-
mon language to gather further non-presentational requirements but these require-
ments must be coded by hand, missing the agility provided by automatic code genera-
tion in the context of a model-driven process. Here we go a step further and propose 
not only mockup reusing but the specification of advanced features like navigation 
and content through the application of a set of lightweight enrichments directly over 
them. This makes our approach easily understandable for all stakeholders, in particu-
lar customers and end users with the goal to involve them in all steps of the develop-
ment process.  

3   MockupDD Process 

In this section we will introduce the MockupDD Process technically. First, we will 
show how mockups are refined and then translated into presentation models.  

Then we will describe how similar refinements are applied in order to obtain navi-
gation models. Finally, we introduce the heuristics applied to derive content models. 
In all the phases of our process we have chosen to use the UWE methodology because 
it is representative of an important group of methods, it is based on UML and it has 
tool support. An overview of the whole process can be observed in Figure 1. 

 

                                                                                                                                           
4 Websites wireframing: Mockingbird - https://gomockingbird.com, last visited 

3/9/2011 



 

 
Figure 1. Mockup-Driven Development (MockupDD) process. 

3.1 From Mockups to Presentation Models 

MockupDD starts the development process by creating UI mockups with a mockup 
tool. As we have shown in a previous work [18], the resulting mockup files can be 
parsed and translated to an abstract UI model called SUI model (Structural UI Model) 
that can be in turn translated to presentation models of modern MDWE methodolo-
gies through a simple mapping. In Figure 2, SUI metamodel is introduced and the 
mapping of its elements to UWE Presentation model is shown. 

 

 

Figure 2. SUI metamodel and UWE mapping 

Since mockup tools represent a user interface prototype as a set of unsorted wid-
gets [18], we apply a sequence of different processors that analyzes mockup source 
structure and outputs the corresponding SUI model. Mockup source processing is 
done in a pipeline workflow. First, a set of widgets is obtained and validated from a 



 

mockup source file using a Mockup Parser and a Validator respectively. Then, widget 
composition and repetition is detected with the help of Hierarchies and Repetition 
Detectors analyzing the widget set obtained in the previous step. Finally, optimum 
layout for CompositeWidgets is inferred using a Layout Inferer. A graphical represen-
tation of the whole process can be observed in Figure 3. 
 

 

Figure 3. Mockup processing workflow from original mockup source file until reaching final 
SUI models. 

3.2 The tagging approach 

Structural UI models obtained from mockup source through the aforementioned 
processing represent only the structural view of a web application. In order to add 
different software features over the existing user interface specification we define the 
concept of a tag. A tag defines a simple but precise specification that is applied over a 
concrete SUI element and is formed by a name and zero or more textual parameters. 
Every tag can be applied only over a particular subclass of Widget and represents a 
hint that can result in the derivation of particular MDWE model concepts. Moreover, 
tags are grouped into tag sets that can be combined to construct more complex speci-
fication. With the tagging approach we propose a simple, incremental and agile me-
thod to model features over previously defined user interface structure (SUI models). 

In this paper we introduce navigation tags that enrich SUI models in order to de-
rive navigation models. The UI mockup (shown in Figure 4.a) depicts the home page 
of a music catalogue application (we will call it Music Portal) containing a header, a 
list of featured albums, an album search box and its corresponding search result. Fig-
ure 4.b shows the corresponding UWE presentation model that can be obtained apply-
ing the previously introduced SUI-to-UWE presentation widget mapping. The Repeti-
tion Detector processor discovers similar widgets at equal positions and then gene-
rates a Repetition containing both album lists in the mockup, which are further 
translated into UWE’s IteratedPresentationGroups. By default, generic ids for 
controls are generated (like Panel1, TextInput1 or Image1), but they can be refined 
using the Name tag (denoted with N:); these ids are important since they are used to 
name further MDWE elements. The tagged mockup and resulting UWE presentation 
model are shown in Figure 4. 

 



 

 
(a) Home page mockup 

 

 
(b) Generated UWE presentation model after applying naming tags 

Figure 4. Deriving an UWE presentation model from a mockup.  

3.3 Deriving Navigational Models 

After deriving presentation models, a naive approach to start generating navigation 
models could be defining one UWE NavigationNode (the UWE navigation concept 
for defining nodes) for each mockup. However, the UWE metamodel defines several 
navigation elements: 

• NavigationClass, represents a generic navigable element in the hypertext 
structure, 



 

• Menu, that is used to handle alternative navigation paths, 
• Query, that is used to retrieve content from a data source, and 
• Index, that allows selecting one content class instance from a set of instances 

that have been compiled during previous navigation. 
Additionally, UWE links between navigation elements are expressed through Na-

vigationLink instances. 
Since we cannot directly infer which UWE navigation element must be used in a 

mockup as some alternatives are possible (for example, the content of a single mock-
up may include an UWE NavigationClass, a Menu and a Query), we have defined a 
second tag set: the UWE navigation tag set. This set contains a tag for every UWE 
navigation element. Figure 5 shows the resulting tagged mockup and the conse-
quences of tag application in derived UWE navigation model. 

 

 
(a) Resulting tagged mockup 

 

 

(c) Navigation model generated with tags (b) Navigation model generated 
without tags 

Figure 5. Initial mockup with UWE navigation tags applied and the resulting navigation model. 

 
The UWE navigation tags introduced are the following: 

• Home: defines that the NavigationClass related to the mockup is the home of 
the navigation model. 



 

• Node(<nodeId>): Assigns an id to the NavigationClass related to the mock-
up in order to be referenced as the destination of one or more navigation 
(Link) tags. 

• Link(<nodeId>): Specifies a navigation link to another NavigationClass. A 
corresponding Node tag with the same <nodeId> must be specified in order to 
correctly derive the navigation. 

• Query(<elementId>) and Index(<elementId>) define a Query involving 
elements of type <elementId> and the Index in which the results of the 
Query are shown. 

• Menu specifies that the panel over which it is applied is a set of links, a so-
called UWE Menu. 

 

 

 

(a) Home page and album details mockups, prop-
erty tagged with UWE navigation tags  

(b) Resulting navigation generated 
from mockups in (a) 

Figure 6. Final version of tagged mockups and generated UWE models. 

When clicking on an album’s title in the home page, an UI of the album details will 
be shown. After being defined, the mockup implementing the added functionality can 
be joined to the existing model through the aforementioned processing and further 
tagging, maybe in a new iteration. The big picture of the application being modeled 
can be observed in Figure 6 in which the complete tagged mockups and UWE model 
generated are depicted. The navigation link between the two existing mockups (SUI 



 

models in fact) is expressed through the Link(Album) and Node(Album) tags in home 
page and album mockups, respectively. 

Some of the transformation rules that we defined (and implicitly applied in the 
previous example) are schematized in Figure 7. 

3.4 Towards a Content Model 

Once we have obtained the UWE navigation model, a first version of the content 
model can be derived by applying some inference rules graphically described in Fig-
ure 8. These rules were designed by studying many examples of UWE navigation and 
content models and discovering recurrent patterns in them. 

UWE navigation element names (previously generated using naming and UWE 
navigation tags) are used to derive the names of the content elements. The resulting 
UWE content model after the application of the introduced rules over the UWE navi-
gation model of Figure 6.b is shown in Figure 9). 

 

 

Figure 7. Transformation rules applied over tagged SUI models to derive UWE features. 

The obtained UWE content models must be refined in order to specify class 
attributes. As UWE navigation models do not allow more refinement than the features 
already commented, this information should be taken from other models. Since in 
UWE every navigation concept is refined by a presentation specification (e.g., a Pre-

sentationGroup), and given that we have already derived these models from SUI 
specifications, we can use this link between models in order to obtain attributes from 
presentation structure. Rules using this link to infer attributes are graphically de-
scribed in Figure 10. 



 

 

 
Figure 8. Some content inference rules to generate UWE Content models from Navigation 
models.  

 

 

Figure 9. Inferred UWE content model derived through the application of the introduced rules.  

 



 

 
Figure 10. Attribute inference combining existent navigation and presentation specifications.  

4   Discussion 

In this paper we presented an approach that adds agility to existing MDWE methods 
and we show how it can be applied in the context of UWE. The main intent of our 
approach is to enable early and constant communication and interaction with end 
users, a key requirement in agile methodologies. This interaction is facilitated in the 
early stages of development through the usage of UI mockups as a common language 
to start the process and discuss requirements; later, during further steps we provide an 
automatic and fast prototype generation through mockup enrichment and processing 
with help of our model-driven tooling. Thus, the MockupDD approach changes the 
traditional MDWE workflow, using presentation models (initially UI mockups) as the 
starting artifact in the process, and facilitating the incremental and iterative introduc-
tion of features through atomic tags over existing models. Since user interface are 
elements perceived by final customers users, they can be involved early and during 
every iteration. 

Currently, since MockupDD is intended to provide an agile process to existing 
MDWE methodologies like UWE, WebML or OOHDM, it only allows specifying 



 

features which are present in these approaches, “inheriting” their applicability and 
limitations in different contexts. According to the current state of our research, many 
aspects of these methodologies can be generalized in a unified tag set while others 
must be refined with concrete tag sets, as explained in the following section. Addi-
tionally, the automatic derivation process commented in this paper may naturally lead 
to an imprecise content model, and some thoughtful design changes might be required 
in order to get to a definitive version. However, even when most design adjustments 
cannot be fully automated, they can be still predicted. For example, observing the 
examples in the previous section, an album class in the presentation model might 
translate into an album class with attributes such as artistName, when in fact the con-
tent model should have two separate classes for Album and Artist, related to each 
other. We have observed that many of these inaccurate derivations are usually recur-
rent, so the required adjustments can be documented (and applied with automatic 
assistance when possible) just like code refactorings [19].  

5   Conclusion and Further Work 

We have presented a mockup-based approach (MockupDD) pursuing an inversion of 
the traditional MDWE process. We decided to start our process with mockups be-
cause they are becoming a common tool in agile methodologies to interact and estab-
lish a shared view of requirements between customers and developers. Mockups are 
processed to structured UI models (called SUI) and with the help of the iterative in-
troduction of simple and precise refinements through the so-called tags they are easily 
derived to MDWE presentation and navigation models. Applying a set of inference 
rules, a first version of MDWE content models can be generated. We have shown the 
approach applied to an example using the UWE methodology. With our approach, we 
intend to provide an agile methodology based on UI mockups and lightweight specifi-
cations to obtain MDWE models, which offer advantages like automatic code genera-
tion (increasing software specification productivity) and a high level of abstraction 
(improving application portability) among others. 

Extending the proposed approach to other modern MDWE methodologies like 
WebML represents a fruitful work path. We are interested in defining a general and 
methodology-agnostic navigation tag set that will allow us to derive navigation mod-
els for a more comprehensive set of MDWE approaches. We are experimenting with 
the application of heuristics not only at model level as is proposed in this paper, but 
also directly at the SUIT (SUI plus Tags) level; a comparison of both strategies is 
depicted in Figure 11. In addition, we are currently working in discovering and cata-
loging more heuristics and researching about how to define minimum tag sets that 
provide the highest expressive power and flexibility while preserving the simplicity of 
the approach. 

Since obtained content models likely require to be refactorized, we are interested in 
developing heuristics to suggest refactoring alternatives to be applied over content 
specifications. Currently, experiments are being conducted to measure the differences 
found between MDWE models constructed entirely by hand from mockups and those 
generated automatically with the proposed tool. The delta found between those mod-



 

els will determine the definition of a catalogue of suggested refactorings and the heu-
ristics implied in the detection of potential bad smells in automatically generated 
models in order to assist the improvement of their quality. 

Finally, other approaches that propose enriching user interfaces in some way are 
Portlets and Mashups. While the former represent pluggable user interface elements 
that can be added to a portal page, the second propose to include and combine exter-
nal services injecting one or more (in this case) UI components into a page. Mock-
upDD propose to discover MDWE elements stereotyping existing user interface ele-
ments. However, an interesting branch of our research includes easing Mashup build-
ing through specific tag sets oriented to include user interface components of external 
services (e.g., Facebook buttons or comments). Also, we are considering the modula-
rization and further reuse of common elements between mockups (something similar 
to the Portlet approach). 

 

 

Figure 11. Comparison of the approach presented in this paper (a) and an alternative approach 
that is being evaluated (b). 

Acknowledgments. This work has been partially sponsored by the EU project 
ASCENS FP7 257414, and the DFG project MAEWA II, WI 841/7-2. 

 



 

References 

1. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A 
Modeling Language for Designing Web Sites. Computer Networks and 
ISDN Systems, 33(1-6), pp. 137-157 (2000) 

2. Gómez, J. and Cachero, C.: OO-H Method: Extending UML to Model Web 
Interfaces (2003). In: Information Modeling For internet Applications, pp. 
144-173, P. van Bommel, Ed. IGI Publishing, Hershey, PA (2003) 

3. Koch, N., Knapp, A.. Zhang G., Baumeister, H.: UML-Based Web Engineer-
ing, An Approach Based On Standards. In: Web Engineering, Modelling and 
Implementing Web Applications, pp. 157-191. Springer (2008) 

4. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications us-
ing OOHDM. In: Web Engineering, Modelling and Implementing Web Ap-
plications, Springer, pp. 109-155 (2008) 

5. Wimmer M., Schauerhuber, A., Schwinger, W., Kargl, H.: On the Integration 
of Web Modeling Languages: Preliminary Results and Future Challenges. 
In: Proc. of the 3nd Int. Workshop on Model-Driven Web Engineering 
(MDWE'07), CEUR-WS (2007) 

6. Harel, D.: Some Thoughts on Behavioral Programming. In: Applications and 
Theory of Petri Nets. Springer Berlin Heidelberg (2010) 

7. Seyff, N., Graf, F., Maiden, N.: End-user requirements blogging with iRe-
quire. In: 32nd ACM/IEEE International Conference on Software Engineer-
ing - ICSE ’10. ACM Press, New York, New York, USA (2010) 

8. Noble J., Biddle, R., & Martin, A.: The XP Customer Role in Practice: Three 
Studies. In: Agile Development Conference, pp. 42-54. IEEE Computer So-
ciety (2004) 

9. Ferreira J., Noble J., & Biddle R.: Agile Development Iterations and UI De-
sign. In: AGILE 2007 Conference, Washington, DC: IEEE Computer Socie-
ty, pp. 50-58 (2007) 

10. Ton, H.: A Strategy for Balancing Business Value and Story Size. In: Agile 
2007 Conference. Washington, DC: IEEE Computer Society, pp. 279-284 
(2007) 

11. Kulak, D. & Guiney, E.: Use Cases: Requirements in Context. Addison-
Wesley (2004) 

12. Homrighausen, A., Six, H., & Winter, M.: Round-Trip Prototyping Based on 
Integrated Functional and User Interface Requirements Specifications. In: 
Requirements Engineering, 7(1), pp. 34-45 (2002) 

13. Cohn, M.: User Stories Applied: for Agile Software Development. Addison-
Wesley (2004) 

14. Moore, J. M.: Communicating Requirements Using End-User GUI Construc-
tions with Argumentation. In: 18th IEEE International Conference on Auto-
mated Software Engineering, pp. 360-363, IEEE Computer Society (2003) 

15. Panach, J. I., España, S., Pederiva, I., & Pastor, O.: Capturing Interaction 
Requirements in a Model Transformation Technology Based on MDA. Jour-
nal of Universal Computer Science, 14(9), pp. 1480-1495 (2008) 



 

16. Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Inter-
face Specifications. In: 6th IEEE International Requirements Engineering 
Conference, pp. 327-328. IEEE Computer Society, (2008) 

17. Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.: On the 
effectiveness of screen mockups in requirements engineering. In: 2010 
ACM-IEEE International Symposium on Empirical Software Engineering 
and Measurement, ACM Press, New York, USA (2010) 

18. Rivero, J. M., Rossi, G., Grigera, J., Burella, J., Robles Luna, E., Gordillo, S. 
E.: From Mockups to User Interface Models: An Extensible Model Driven 
Approach. In: 10th International Conference on Web Engineering, pp. 13-24. 
Springer (2010) 

19. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley Professional (1999) 


