A Life Cycle for the Development of Autonomic
Systems: The e-Mobility Showcase

Tomas Bures!, Rocco De Nicola2, Ilias Gerostathopoulosl, Nicklas Hoch?, Michal Kit!,
Nora Koch?, Giacoma Valentina Monreale®, Ugo Montanari®, Rosario Puglieseﬁ, Nikola Serbedzija7,
Martin Wirsing4, Franco Zambonelli®
!Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic
2IMT Institute for Advanced Studies Lucca, Italy
3Corporate Research Group, Volkswagen AG, Wolfsburg, Germany
4Ludwig-Maximilians-Universitit Miinchen, Germany °Dipartimento di Informatica, Universita di Pisa, Italy
SUniversita di Firenze, Italy “Fraunhofer FOKUS Berlin, Germany ®Universita di Modena e Reggio Emilia, Italy

Abstract—Component ensembles are a promising way of build-
ing self-aware autonomic adaptive systems. This approach has
been promoted by the EU project ASCENS, which develops the
core idea of ensembles by providing rigorous semantics as well as
models and methods for the whole development life cycle of an
ensemble-based system. These methods specifically address adap-
tation, self-awareness, self-optimization, and continuous system
evolution. In this paper, we demonstrate the key concepts and
benefits of the ASCENS approach in the context of intelligent
navigation of electric vehicles (e-Mobility), which itself is one of
the three key case studies of the project.

I. INTRODUCTION

The development of massively distributed and highly dy-
namic systems which interact with and control the physical
world is one of the major challenges in software engineer-
ing [1]. This is because the dynamicity of these systems
and the not well foreseeable context brought by the external
physical environment demand that software operating in these
systems is highly self-aware, autonomic and adaptive. While
self-awareness and adaptivity has been relatively well mastered
in case of small-scale localized control (especially in the field
of control systems), it is still a major problem for large-
scale distributed systems, which are open-ended and dynamic
(meaning that components of the system may freely appear and
disappear as well as change their communication partners).

Within the EU project ASCENS! an approach based on
ensembles of components is pursued. Contrary to classical
component-based software engineering, it features important
concepts of knowledge and ensembles. The knowledge of a
component is a structured repository of facts with well-defined
relations. The facts in the knowledge change at runtime to
reflect the state of the component and its belief about its
environment, thus effectively addressing the self-awareness of
a component. The ensembles are dynamic goal-oriented com-
munication groups of components. The ensembles are formed
on demand to reflect intentions of components with respect

This work has been partially sponsored by the EU project ASCENS, FP7
257414.
Uhttp://www.ascens-ist.eu

to the current state of their environment. This way, ensembles
address the dynamicity and adaptivity of components.

In addition to providing basic concepts and their semantics,
ASCENS wraps this into a holistic ensemble development life
cycle (EDLC) framework, which covers the full development
life cycle and addresses design and development for adapta-
tion, self-awareness, self-optimization, and continuous system
evolution.

In this paper we take a practitioner’s approach and demon-
strate the application of the EDLC on the development of one
of the key ASCENS case-studies — the intelligent navigation
of electric vehicles (e-Mobility).

The paper is structured as follows: Section II describes the
e-Mobility case study and Section III outlines the EDLC and
describes a high-level strategy of applying it to e-Mobility.
Sections IV-IX demonstrate the particular EDCL steps ap-
plied. The evaluation and related work is presented in Sec-
tion X, while Section XI concludes the paper.

II. E-MOBILITY CASE STUDY

The e-Mobility scenario focuses on avoiding contingency
situation in an open-ended systems of interacting electric
vehicles. Such a scenario is highly dynamic. This stems mostly
from the fact that it includes unforseeable human user actions
which influence the availability of travel resources.

Technically, we assume in the case-study that travels are
initiated by personal activities. A journey is thus defined as a
sequence of trips, with each trip being initiated by a single
activity. Trips may consist of multiple stages. A stage can
be executed in different travel modes such as walking mode
or driving mode. For example, consider a user that leaves
for work in the morning. Work is the activity that initiates
travel. The first trip contains a walking stage from home to the
vehicle’s parking lot, a driving stage from the parking lot at
home to the one at work and lastly a walking stage to the office.
The working time at the office is considered to be the activity
duration. Throughout that time the vehicle is parked at the car
park. If it has access to a charging station, it may recharge.
After work the user continues his journey. The number of
consecutive trips follows from the number of activities.

(©2013 IEEE. Personal use of this material is permitted. Permi$sion from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.



In this scenario the main components are the user, the
electric vehicle, the parking lot and charging station. Parking
lot and charging station are commonly referred to as infras-
tructure components. Component temporarily form ensembles.
These ensembles include (i) collection of charging stations, (ii)
collection of parking lots, (iii) collection of users and electric
vehicles and (iv) collection of at least one user, one electric
vehicle and one infrastructure component, etc.

Throughout runtime, contingency situations may occur.
Components and ensembles require self-adaptive actions to re-
solve these situations. Examples of contingency situations that
need to be resolved by the electric vehicle component include
(i) unavailability of a reserved parking lot, (ii) unavailability
of a reserved charging station, (iii) falling below minimum
battery energy level and (iv) missing a scheduled arrival time.
Examples of contingency situations that need to be handled
by the parking lot or charging station component include (i)
early or late arrival of a vehicle at a parking lot or charging
station, (ii) early or late departure of a vehicle from a parking
lot or charging station, (iii) missed initiation of a scheduled
charging action and (iv) deviation from the expected power
profile during charging.

III. APPLYING EDLC TO E-MOBILITY — BIG PICTURE

Within the scope of the ASCENS project we propose a
“double-wheel” ensemble development life cycle (EDLC) — see
Fig. 1 — for autonomic systems such as the e-Mobility. The
aim is to provide a conceptual framework that covers the main
aspects of the engineering process required for such systems.
The “first wheel” is used for representing the phases that are
performed offline, which are mainly those related to design.
The “second wheel” focus on the phases related to online
activities that are performed at runtime. Both are connected
by the transitions deployment and feedback from design to
runtime, and vice versa, respectively. This software life cycle is
designed to specifically support the development of ensembles
characterized by their complexity and self-* properties, such
as self-awareness, self-expression and self-adaptation.

The offline activities are grouped into requirements en-
gineering, modeling and programming, and verification and
validation phases. In addition to model functional and non-
functional requirements as in traditional requirements engi-
neering, the focus is on modeling aspects of self-adaptation
and self-awareness. These specific requirements need to be
validated and verified as well.

The online activities comprise monitoring, awareness and
self-adaptation. Monitoring consists on the observation of the
environment and the behavior of the systems. Reasoning on
the collected data is also a key aspect. Finally, adaptation
is performed in order to change the system according to
the knowledge acquired during monitoring and the reasoning
performed by the awareness engine.

In this paper we describe how we have applied the EDLC
on the e-Mobility case study. In the spirit of EDLC, we have
employed several interrelated methods developed in ASCENS
to address the application life cycle of the e-Mobility. In
particular, we start with the specification of requirements and

k@r,;\ Feedback I|
a, My,
LT

Gf/b 3

£ ), .'¢°°
g & % & %
IS <3 S
Lé &% )
SES . a,@\ . %
& & Design Runtime %
<@
e/
Mode“"‘ .
P ogram™ 2 || Deployment Mo”‘toring
Figure 1. Ensembles Development Life Cycle (EDLC).

their reflection in the operation space of the system and
system’s self-awareness (described in Section IV). Following
the requirements specification, we focus on the high-level
architectural design, both in terms of adaptation patterns (Sec-
tion V) and in goals decomposable into individual components
and ensembles (Section VI). Next, emphasis is put on low-
level design of component activities. For that, we employ the
SCEL language, which is specifically intended for ensemble-
based description of communication and coordination-oriented
concerns (Section VII). Along with SCEL we also employ
(Section VIII) the SCLP (soft-constraints logic programming),
which provides a natural way of describing optimization re-
lated tasks, which are very frequent in self-adaptive systems.
The final step is the implementation of components and the
deployment of the system (Section IX), for which we use a
dedicated ensemble-based component model and component
runtime (called DEECo).

IV. REQUIREMENTS ENGINEERING WITH SOTA

Requirements engineering is of paramount importance to
understand the adaptation needs of a system-to-be [3]. In the
area of adaptive systems, and more in general of open-ended
systems, the most appropriate approach is to adopt a goal-
oriented requirements engineering one, and accordingly model
requirements in terms of goals [4].

A goal represents a desirable state of the affairs that an
entity, let it be a software component or an ensemble, aims
to achieve. The idea of goal-oriented modeling of require-
ments naturally matches goal-oriented and intentional entities,
such as organizations and multi-agent systems. However, self-
adaptation too is naturally perceivable as an “intentional”
quality. In fact, a self-adaptive component/ensemble should be
engineered not simply to “achieve” a functionality or state of
the affairs, but rather to “strive to achieve” such functionality,
i.e., be able to take self-adaptive decisions and actions so
as to preserve its capability of achieving despite unexpected
contingencies and environmental changes.

Within the ASCENS development life cycle, SOTA [5]
proposes itself as an extension of existing goal-oriented re-
quirements engineering approaches that integrates elements of
dynamical systems modeling, so as to account for the general
needs of dynamic self-adaptive systems and components.

SOTA, which stems for “state of the affairs”, models the
entities of a self-adaptive system as if they were immersed in
n-dimensional space S, each of the n dimensions representing



a specific aspect of the current situation of the entity/ensemble
and of its operational environment. As the entity executes,
its position in S changes either due to its specific actions
or because of the dynamics of environment. Thus, system
evolution can be seen as movements in S.

The activity of requirements engineering for self-adaptive
systems in SOTA requires identifying the dimensions of the
SOTA space, which means modeling the relevant information
that the different components and ensembles of a system have
to collect to become aware of their location in such space. In
e-mobility, the space S includes the spatial dimensions related
to the street map, but also dimensions related to the current
traffic conditions, the battery conditions, etc.

Once the SOTA space is defined, a goal in SOTA can
be expressed in terms of a specific state of the affairs to
aim for, that is, a specific point or a specific area in S
which the component or ensemble should try to reach in its
evolution, in spite of external contingencies that can move
the trajectory farther from the goal. For instance, a goal
for a vehicle could imply reaching a position in the SOTA
space that, for the dimensions representing the spatial location,
trivially represents the final destination and for the dimension
representing the battery condition may represent a charging
level ensuring safe return.

V. FRrRoM SOTA 1O HIGH-LEVEL DESIGN WITH
ADAPTATION PATTERNS

The SOTA modeling approach is very useful to understand
and model the functional and adaptation requirements, and to
check the correctness of such specifications (as described in
[5]). However, when a designer considers the actual design
of the system, it is important to identify which architectural
schemes need to be chosen for the individual components and
ensembles.

To this end, in previous work [6], we defined a taxon-
omy of architectural patterns for adaptive components and
ensembles of components. This taxonomy has the twofold
goal of enabling reuse of existing experiences and providing
useful suggestions to a designer on selecting the most suitable
patterns to support adaptability.

At the center of our taxonomy is the idea that self-adaptivity
requires the presence (explicit or implicit) of a feedback loop
or control loop. A feedback loop is the part of the system that
allows for feedback and self-correction towards goal achieve-
ment, i.e., self-adjusting behavior in response to changes in
the system. Feedback loops provide a generic mechanism
for adaptation as they provide the means for inspecting and
analyzing the system at the component or ensemble level and
for reacting accordingly.

However, when it comes to choosing among a variety
of possible architectural schemes that can be employed for
feedback loops [6], it becomes clear that the specific character-
istics of goals identified in the requirements engineering phase
directly guides the choice of specific feedback loop patterns.
In particular, the choice of a specific pattern depends on how
(and to which extent) the components of the system have
component-specific goals with very different characteristics,

(1) Vehicle meets its
calendar

4) an up-to-date plan can alway:
be followed by the vehicle

(3) Driver follows the route
of the plan

6) Plan feasibility w.r.t.
attery level is checke

PLCS (2) Vehicle has an up-to-

date and feasible plan

position
availability

1{ route}
oSS
Vehicle

.7
1{ batteryLevel,

calendar

= — feasibility}
(/7) Availability of relevant (9) Batterv.sufflclency _- e
PLCSs is kept updated w.r.tplanis checked / route
7 |feasibilit
\ ) _ easibili 'y;

(8) Plan is kept computed
w.r.t. availability & feasibility

1{ route ,
availabilities,position}

e

batteryLevel

[ component O invariant @ Process | gy exchange ¢ L

invariant invariant
<x{k}> role with knowledge k A invariant refinement

Figure 2. E-Mobility system level graph — IRM method.

or rather they share the same ensemble-level goals or goals
with very similar characteristics.

As an example, the goal-oriented component pattern con-
siders autonomic components with internal control loops. Goal
oriented behavior is explicit in the actions determined by the
control loop, which can select actions to actively pursue goals
in an adaptive way. A pattern of this kind, in which the
feedback loop is embedded within the component, is suitable
for those components that have very specific goals, that no
other components share.

As another example, the autonomic service component pat-
tern is characterized by an explicit external feedback loop. That
is, the control loop is realized by “attaching” via appropriate
interfaces an external controller that turns a simple service
component into a component whose activities can be externally
controlled to make the component itself goal-oriented and
adaptive.

In a coordinated system for e-mobility, the e-vehicles of
a car-sharing company may all share the same basic adapta-
tion goals, thus making it suitable to model them as simple
components all sharing the same class of external controller.
Also, at the level of the fleet of e-vehicles, the presence of a
single stakeholder makes it possible to exploit a pattern of an
ensemble with a global control loop to orchestrate the overall
behavior of the fleet.

VI. HIGH-LEVEL DESIGN — ARCHITECTURE

In order to guide the design of an ensemble-based system
from high-level strategic goals, requirements and patterns
(described by SOTA) to their low-level realization in terms
of system architecture (components and ensembles) we use
the Invariant Refinement Method (IRM) [7].

The main idea of IRM is to capture the high-level system
goals and requirements in terms of interaction invariants.
In compliance to SOTA’s notion of “striving to achieve”,
invariants describe the desired state of the system-to-be at
every time instant. In general, invariants are to be maintained



by the coordination of the different system components. At
the design stage, by component we refer to a participant or
actor of the system-to-be. A special type of invariant, called
assumption, describes a condition that is expected to hold
about the environment; an assumption is not intended to be
maintained explicitly by the system-to-be.

As a design decision, identified top-level invariants are
decomposed into more concrete sub-invariants forming a de-
composition graph (Figure 2). The decomposition is essentially
a refinement, where the composition of the children exhibits all
the behavior expected from the parent and (potentially) some
more. By this decomposition, we strive to get to the level
of abstraction where the (leaf) invariants represent detailed
design of the particular system constituents — components,
component processes, and ensembles. Two special types of
invariants, namely the process invariants (denoted by “P”’) and
exchange invariants (denoted by “X”), are used to model the
low-level component computation (processes) and interaction
(ensembles), respectively.

A possible system-level graph corresponding to the simpli-
fied e-Mobility scenario is depicted in Figure 2. In this case,
the IRM design mainly captures the necessity to keep the
vehicle’s plan updated (invariant (5)) and to check whether the
current plan remains feasible with respect to measured battery
level (invariant (6)). The identified leaf invariants are easily
mappable to component activities, which are further formally
captured by SCEL or SCLP.

VII. MODELING COMPUTATIONAL ACTIVITIES: SCEL

To complement the high-level, architectural design, we have
proposed specific linguistic and programming abstractions
aiming at dealing with the challenges posed to language de-
signers by massively distributed and highly dynamic systems.
Our starting points have been the notions of autonomic compo-
nents (ACs) and autonomic-component ensembles (ACEs) that
are used to structure systems into independent and distributed
building blocks that interact and adapt in different ways. Based
on the notions of ACs and ACEs, we have introduced a
number of specific abstractions and linguistic constructs that
permit building up ACs, defining ACEs and programming their
behaviors and interactions. The proposed abstractions are the
basis of SCEL (Software Component Ensemble Language)
(81, [9].

ACs are entities with dedicated knowledge units and re-
sources that can cooperate while playing different roles. Each
AC is equipped with an interface, consisting of a set of
attributes, such as provided functionalities, spatial coordinates,
group memberships, trust level, response time, etc. Attributes
are used by the ACs to dynamically organize themselves into
ACEs.

Indeed, one of the main novelties of SCEL is the way
sets of partners are selected for interaction and thus how
ensembles are formed. Individual ACs not only can single
out communication partners by using their identities, but they
can also select partners by exploiting the attributes in the
interfaces of the individual ACs. Predicates over such attributes
are used to specify the targets of communication actions, thus

providing a sort of attribute-based communication. In this way,
the formation rule of ACEs is endogenous to ACs: members
of an ensemble are connected by the interdependency relations
defined through predicates.

Starting from the IRM model presented in Figure 2, we
can identify two kinds of SCEL components: PLCSs ad
Vehicles. A PLCS identifies a parking lot/charging station and
is characterized by a position and by its availability. These are
the attributes that are exposed in the component interface and
that respectively identify the location of the PLCS and the
number of available slots in the area. As expected, Vehicle
components identify cars involved in the scenario and will
expose in their interface a set of attributes describing the state
of the component (position, batterylevel,. . .). Attributes of both
PLCSs and Vehicles are obtained as the projection on the
interface of the local knowledge of each component.

The user associated to a vehicle is modeled by a process
that, according to the local Vehicle interface, will interact with
PLCSs in order to identify the next stop in the travel. This
task is largely simplified thanks to the use of attribute based
communication. Indeed, if poi is the next point-of-interest to
visit in the travel, then the next PLCS to use can be identified
by sending a reservation request to all the PLCSs components
that are close to poi up-to a given walking distance and that
can be reached with the current battery level.

However, when the battery level of a vehicle decreases under
a given threshold, the actual behaviour can be adapted so to
force the reservation of a PLCS that can be used to recharge
the battery and then continue with planned trip.

VIII. ADAPTATION VIA SOFT-CONSTRAINTS SOLVING

AND OPTIMIZATION

As a complement to SCEL specifically targeting intuitive
specification of optimization problems that frequently appear
in self-adaptive systems, we have used our approach on Soft
Constraint Logic Programming.

Constraint logic programming (CLP) [10] extends logic
programming (LP) by embedding constraints in it. However,
only classical constraints can be handled. So, in [11], a further
extension has been proposed to also handle soft constraints.
This has led to a high-level and flexible declarative pro-
gramming formalism, called Soft CLP (SCLP), allowing to
easily model and solve real-life problems. Roughly speaking,
SCLP programs are logic programs where logical constants
and operations are replaced by those of the semiring (a
structure representing the levels of satisfiability or the costs
of a constraint). Consequently, assignments of variables to the
items of the Herbrand universe yield the levels of satisfiability
or the costs of the constraints.

We have applied the SCLP framework [12] to the e-Mobility
travel optimization problem described in [13], by modelling
in Ciao [14]> two scenarios: the (i) trip; and (ii) journey
optimization problems. A solution to (i) finds the best trip
in terms of travel time and energy consumption, while (ii)
determines the optimal sequence of trips, guaranteeing that
the user reaches each appointment in time and that the state

2We would like to thank the Clip group for its technical support.



of charge of the electric vehicle never falls below a given
threshold.

Besides optimizing trips and journeys of single users, that
we can call local problems, the e-Mobility case study aims at
solving global problems, involving large ensembles of vehicles.
For such large problems, solution is often unfeasible, with both
SCLP and more efficient tools. To tackle these, we propose
a coordination of declarative and procedural knowledge: the
global problem is decomposed into several local problems,
which can be separately solved by the SCLP implementation
(e.g. [14]), and whose parameters can be iteratively determined
by a programmable coordination strategy. The latter guarantees
a suboptimal, yet acceptable global solution.

Let us consider for example the parking optimization prob-
lem, which consists in finding the best parking lot for each
vehicle of an ensemble in terms of three factors: the distance
from the current location of the vehicle to the parking lot,
the distance from the parking lot to the appointment location
and the cost of the parking lot. Solving a global optimization
procedure which assigns the best parking lot to each vehicle of
the ensemble would be rather expensive, and also not flexible
(replanning could require lots of time). So we propose to
use SCLP to solve the local problems and some procedural
language to programme the orchestrator. In this setting, SCLP
is convenient since the orchestrator will be able to access much
more easily the parameters of its fact/clause-based declarative
implementation than an ordinary imperative module structure.

In particular, the orchestrator could be programmed using
an extension of SCEL or simply Java. The orchestrator, after
receiving the requests from the vehicles which want to park,
asks the SCLP tool to solve the local optimization problems,
determining the best parking lot for each vehicle. Then, it
verifies if the local solutions all together form an admissible
global solution, that is, if each parking lot is able to satisfy
the requests of the vehicles planning to park in it. If it is so,
the problem is solved, otherwise the orchestrator queries the
declarative knowledge again, but now by increasing the costs
of the parking lots which received too many requests. The
procedure is repeated, with suitable variations, until a global
solution is found. Notice that in this way the orchestrator
has a hypothetical, transactional behavior, with the options of
committing (a solution is found) or partially backtracking (on
the parkings which are overfull).

IX. IMPLEMENTATION AND DEPLOYMENT

Next steps in the EDLC, following the architectural design
and detailed specification of component activities, is imple-
mentation and deployment. For these steps, we employ our
DEECo (Dependable Emergent Ensembles of Components)
component model [15] to provide us with the relevant software
engineering abstractions that ease the programmers’ tasks.

A component in DEECo, features execution model based
on the MAPE-K autonomic loop [16]. In compliance with
SCEL, it consists of (i) well-defined knowledge, being a
set of knowledge items and (ii) processes that are executed
periodically in a soft real-time manner. The component concept
is complemented by the first-class ensemble concept. An en-
semble stands as the only communication mechanism between

1 component Vehicle features AvailabilityAggregator:

2 knowledge:

3 batteryLevel = 90%,

4 position = GPS(...),

5 calendar = [ POI(WORKPLACE, 9AM—1PM), POI(MALL, 2PM—3PM), ... ],
6 availabilities =[],

7 plan = { route = ROUTE(...), isFeasible = TRUE }

8 process computePlan:

9 in plan.isFeasible, in availabilities, in calendar, inout plan.route
10 function:

11 if (Iplan.isFeasible) plan.route <— planner(calendar, availabilities)
12 scheduling: periodic( 5000ms )

14 ensemble UpdateAvailabilityInformation:
15 coordinator: AvailabilityAggregator

16 member: AvailabilityAwareParkingLot
17 membership:

18 3 poi € coordinator.calendar:

19 distance(member.position, poi.position) < TRESHOLD &&

20 isAvailable(poi, member.availability)

21 knowledge exchange:

22 coordinator.availabilities <— { (m.id, m.availability) | m € members }

23 scheduling: periodic( 2500ms )

Figure 3. Examples of identified DEECo components & ensembles.

DEECo components. It specifies a membership condition,
according to which components are evaluated for participation.
The evaluation is based on the components’ knowledge (their
attributes in SCEL). An ensemble also specifies what is to
be communicated between the participants, that is, the ap-
propriate knowledge exchange function. Similar to component
processes, ensembles are invoked periodically in a soft real-
time manner. (See Figure 3 for an excerpts of components and
ensembles descriptions as found in the e-Mobility case study.)

In order to bring the above abstractions to practical use we
have used jDEECo® — our reification of DEECo component
model in Java. In jDEECo, components are intuitively repre-
sented as annotated Java classes, where component knowledge
is mapped to class fields and processes to class methods.
Similarly, appropriately annotated classes represent DEECo
ensembles.

Once the necessary components and ensembles are coded,
they are deployed in jJDEECo runtime framework, which takes
care of process and ensemble scheduling, as well as low-level
distributed knowledge manipulation.

X. EVALUATION AND RELATED WORK

Having described the application of EDLC to the e-Mobility
case study, we relate it in this section to other approaches
having the same aim and we describe benefits that we have ob-
served in performing the case study. In particular, we structure
this section along three main topics addressed in the case study,
namely (i) requirements engineering and architectural design,
(i) modeling of activities, (iii) programming and deployment.

As to requirements engineering and architectural design in
the area of autonomic systems, the most recognized approaches
are KAOS [17] and Tropos [18]. Similar to our approach, they
fall into the category of goal modeling and elaboration, espe-
cially in the area of agent-based systems. In our experience,

3http://github.com/d3scomp/JDEECo



Table 1. SUMMARY OF METHODS/TOOLS USED.
Requirements engineering: SOTA

High-level design: IRM
Process/activities modeling: SCEL

Adaptation/optimization modeling: ~ SCLP
Implementation/runtime: DEECo / jJDEECo

they provide a very solid ground for requirements engineering,
but fall short to an extent when continuous control with self-
adaptivity (as in the case of e-Mobility case study) is sought
for. For this reason, we have employed SOTA and IRM, which
are centered around the notion of continuously “striving to
achieve” and thus make the reasoning about a guided evolution
of a system easier.

As for the activity modeling, our approach builds on the
body of work carried out in coordination languages (e.g.,
KLAIM [19]) and process algebras. However, it extends it by
providing a tailored semantics to describe and reason about
cooperating groups of components (i.e. ensembles). In the
same vein, SCLP builds on the experience with constraint
solving, but adds the option of soft-constraints and integration
with SCEL. Indeed, in the e-Mobility case study, we found
the interplay of SCEL with SCLP very useful for description
of mutually related activities of interaction and coordination
among vehicles combined with finding a tradeoff between
local-global optimums (reflecting the need of harmonizing the
selfish and cooperative concerns of vehices in the case-study).

Finally, at the programming and deployment stage, our
approach has been backed up by DEECo component model
and its Java-based reification jDEECo. In this respect, it is
possible to find a plethora of component models and SOA-
based approaches (e.g. SCA, Fractal, OSGi). However, these
typically fall short in well-defined dynamicity (as captured by
the ensembles) as well as in autonomicity and self-adaptation
capabilities (as featured by the special design of components
as distributed MAPE-K based entities). Similar problems apply
even to the agent-based approaches with their Belief-Desire-
Intention model (e.g., JADE). On the other hand, the explicit
support of DEECo for ensembles and components — based on
knowledge and cyclic activities — proved to make the tran-
sition from SOTA/IRM-based design (together with activities
captured by SCEL/SCLP) to runtime very smooth.

XI. CONCLUSIONS AND FUTURE WORK

We have presented the EDLC framework for development
of self-aware autonomic adaptive systems applied to the e-
Mobility case study, a driving case-study in the ASCENS
FP7 project. We have particularly shown the offline processes
of EDLC, starting from requirements modeling and pattern
identification with SOTA, to refinement of system invariants
with IRM, ending in activity modeling with SCEL and SCLP
formalisms. We have also outlined the programming and
deployment phases using DEECo/jDEECo. The summary of
methods and tools used in provided in Table I.

Due to space constraints and present work organization
we have focused on requirements analysis, modeling and
programming phases and deployment transaction of EDLC.
The further phases (i) verification and validation of functional

and non-functional properties at design and runtime and (ii)
system evolution, where historical data monitored at runtime
are used to improve the system design, are subject of the
current and future research.

REFERENCES

[11 I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly,
M. Kwiatkowska, J. Mcdermid, and R. Paige, “Large-scale complex
IT systems,” Commun. ACM, vol. 55, no. 7, pp. 71-77, Jul. 2012.

[2] S. Bensalem, T. Bures, J. Combaz, N. Koch, R. D. Nicola, M. Hdlzl,
M. Loreti, P. Tuma, M. Wirsing, and F. Zambonelli, “A Life Cycle for
the Development of Autonomic Systems,” 2013, submitted.

[3] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM TAAS, vol. 4, no. 2, pp. 1-42, 2009.

[4] J. Mylopoulos, L. Chung, and E. S. K. Yu, “From Object-Oriented to
Goal-Oriented Requirements Analysis,” Communications of the ACM,
vol. 42, no. 1, pp. 31-37, 1999.

[S] D. B. Abeywickrama and F. Zambonelli, “Model Checking Goal-
Oriented Requirements for Self-Adaptive Systems,” in Proc. of ECBS.
IEEE, Apr. 2012, pp. 33-42.

[6] G. Cabri, M. Puviani, and F. Zambonelli, “Towards a Taxonomy of
Adaptive Agent-based Collaboration Patterns for Autonomic Service
Ensembles,” in Proc. of CTS. 1EEE, May 2011, pp. 508-515.

[7]1 J. Keznikl, T. Bures, F. Plasil, I. Gerostathopoulos, P. Hnetynka, and
N. Hoch, “Design of Ensemble-Based Component Systems by Invariant
Refinement,” in Proc. of CBSE ’13. Vancouver, Canada: ACM, 2013.

[8] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi, “SCEL: a
Language for Autonomic Computing,” IMT Lucca, Tech. Rep., January
2013. [Online]. Available: http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf

[9] R. De Nicola, G. L. Ferrari, M. Loreti, and R. Pugliese, “A Language-
Based Approach to Autonomic Computing,” in Revised Selected Papers
of FMCO. Springer, 2011, pp. 25-48.

[10] J. Jaffar and J. L. Lassez, “Constraint Logic Programming,” in POPL.
ACM Press, 1987, pp. 111-119.

[11] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-Based Constraint
Logic Programming: Syntax and Semantics,” ACM TOPLAS, vol. 23,
no. 1, pp. 1-29, 2001.

[12] G. V. Monreale, U. Montanari, and N. Hoch, “Soft Constraint Logic
Programming for Electric Vehicle Travel Optimization,” CoRR, vol.
abs/1212.2056, 2012.

[13] N. Hoch, K. Zemmer, B. Werther, and R. Y. Siegwarty, “Electric
Vehicle Travel Optimization - Customer Satisfaction Despite Resource
Constraints,” in Proc. of IEEE IVS. 1EEE, 2012.

[14] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lépez-Garcia,
and G. Puebla, “The Ciao Prolog System. Reference manual,” School
of Computer Science, Technical University of Madrid (UPM), Tech.
Rep. CLIP3/97.1, 1997.

[15] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil, “DEECo — an Ensemble-Based Component System,” in Proc.
of CBSE ’13. Vancouver, Canada: ACM, 2013.

[16] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

[17] A. V. Lamsweerde, “Requirements Engineering: from Craft to Disci-
pline,” in SIGSOFT ’08/FSE-16. ACM, 2008, pp. 238-249.

[18] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An Agent-Oriented Software Development Methodology,”
Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203—
236, May 2004.

[19] R.De Nicola, G. Ferrari, and R. Pugliese, “KLAIM: A Kernel Language
for Agents Interaction and Mobility,” Software Engineering, IEEE
Transactions on, vol. 24, no. 5, pp. 315-330, 1998.



