
Modeling Security Features of Web
Applications?

Marianne Busch1, Nora Koch1, and Santiago Suppan2

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstraße 67, 80538 München, Germany

{busch, kochn}@pst.ifi.lmu.de
2 Siemens AG, Germany

Otto-Hahn-Ring 6, 81739 München, Germany
santiago.suppan.ext@siemens.com

Abstract. Securing web applications is a difficult task not only, be-
cause it is hard to implement bulletproof techniques, but also because
web developers struggle to get an overview of how to avoid security flaws
in a concrete application. This is aggravated by the fact that the de-
scription of a web application’s security concept is often scattered over
lengthy requirements documents, if documented at all. In this chapter,
we extend the graphical, UML-based Web Engineering (UWE) language
to model security concepts within web applications, thus providing the
aforementioned overview. Our approach is applied to a case study of an
Energy Management System that provides a web interface for monitor-
ing energy consumption and for configuring appliances. Additionally, we
give an overview of how our approach contributes to the development of
secure web applications along the software development life cycle.

Keywords: UML-based web engineering, secure web engineering, web
applications, UML, security, Energy Management System, Smart Home

1 Introduction

The rising cybercrime as well as the growing awareness of data privacy due
to global surveillance disclosures implies an urgent need to secure web appli-
cations. Besides confidential connections and authentication, both data access
control and navigational access control are the most relevant security features in
this field. However, adding such security features to already implemented web
applications is an error-prone task.

Therefore, the goal is to include security features in early stages of the de-
velopment process of web applications, i.e., at requirements specification and
design modeling level. Secure web engineering approaches as ActionGUI [1] and
the UML-based Web Engineering (UWE) [2] have been developed, trying to
abstract from as many implementational details as possible.

? This work has been supported by the EU-NoE project NESSoS, GA 256980.

2 M. Busch, N. Koch, S. Suppan

The way that seems right for most modeling methods, raises questions when
dealing with design decisions related to more web-security specific concerns: How
should Cross-Site-Request-Forgery (CSRF) [3] be prevented, in order to avoid
end users to execute unintentionally malicious actions for an attacker, on a web
application in which they are currently authenticated? What should happen in
case the web application is under attack, e.g., under denial-of-service attack,
making the machine or network resource unavailable to its intended users?

So far, those questions tend to be answered in lengthy specification docu-
ments or they are just documented by the code itself. However, a straightfor-
ward understanding of the way how web security is managed for a certain web
application is crucial.

Our approach aims at addressing the answer to these questions at design
level, extending the set of modeling elements provided by the UWE language in
order to be able to express protection-specific security concerns. The challenge
is to find means for recording security-related design decisions for the web, while
maintaining the necessary abstraction a modeling language needs. Therefore,
we extend UWE’s UML profile to support modeling solutions that should be
deployed to shield a web application and its users against attacks. Such is the
aim of providing language elements to model features like CSRF prevention and
injection prevention or special behavior for the case that an application is under
attack.

In this chapter, we not only introduce the latest UWE extension along with
a case study about the web interface of an Energy Management System (EMS),
but also give an overview of how UWE’s security features, which have been de-
veloped within the EU project NESSoS [4], support the phases of the software
development life cycle (SDLC). This begins with the requirement and design
phase, where UWE enables security engineers to get an overview of the appli-
cation, but also serves as a notation for documentation. Aside from that, UWE
models can be used as input for tools that generate artifacts for the implemen-
tation. For the testing phase, two approaches are available, (1) for testing that
a user can only navigate the web application using a predefined path and (2)
a toolchain for testing access control policies generated from UWE models. For
the latter, the interested reader is referred to chapter [5].

The remainder of this chapter is structured as follows: In Sect. 2 we introduce
the EMS case study, which is our running example. Section 3 gives an overview
of security features that play a major role in the web and which are required
for our case study, before the UWE approach is introduced in Sect. 4. In Sect. 5
we describe our UWE extensions for protection-specific security concerns, by
applying them to the case study. Section 6 positions UWE in the SDLC. Finally,
we present related work in Sect. 7 and conclude in Sect. 8.

2 Case Study: Energy Management System

This section describes the Energy Management System (EMS) case study and in
particular the web application of the EMS that controls Smart Homes, which are

Modeling Security Features of Web Applications 3

households with interconnected appliances. We start by introducing Smart Home
components, continue by presenting actors and conclude by explaining concrete
functionality, before we go in the next section into more security-related details.

2.1 Components of Smart Homes

Figure 1 visualizes the entities in a Smart Home. Generally, the EMS is an in-
terface for the Smart Grid customer that visualizes consumption data. Concrete
instantiations can be realized by means of mature web application technology,
which provides several ways of advanced functionality, as for energy trading or
for regulating the current drain. Ideally, most appliances, as e.g., ovens, dish-
washers, washing machines or lamps are so-called Smart Appliances (SAs), which
means they contain a small embedded-system, that receives control commands
from the EMS and that informs the EMS about the current status. Addition-
ally, SAs can be controlled by pushing a button or by using an integrated touch
screen.

Data
Electricity

SA: solar cell

EMS: Energy
Management

System

SA: TV

SA: vehicle
charging

20°C

SA: thermostat

SA: washer

Smart Meter

Internet

energy supplier
server

SA Smart Appliance

power plant

Fig. 1. Entities in the Smart Home (adapted from [6])

For a household, exactly one EMS and one Smart Meter are installed locally,
in a place where they are protected from physical tampering. The Smart Meter
is responsible for monitoring the amount of energy that is sold or bought. As the
EMS is connected to the web, remote access to its web application allows users

4 M. Busch, N. Koch, S. Suppan

to interact with the EMS and to monitor energy consumption from outside their
homes.

A possibility to control energy consumption more globally is Demand Side
Management. It envisions to adapt the consumption level according to messages
sent by energy providers. For example, in situations when lots of energy is needed
in an area, the energy provider notifies all Energy Management Systems. Con-
sequently, the EMS can send command messages to SAs in order to turn them
off. The concrete behavior when receiving a Demand Side Management message
can be controlled by user defined policies in the EMS.

2.2 Actors

According to [7], the prosumer (producer / consumer) is the end customer, who
is consuming energy as well as producing energy, e.g., by using photovoltaic or
wind energy as decentralized energy resources. Prosumers are also able to store
energy, for instance in the batteries of the electric vehicle and to resell the energy
later to the so called microgrid3 when the prices are higher. We also refer to the
prosumer simply as “(private) user” or “customer”.

Figure 2 depicts a UML use case diagram, which gives an overview of the
actors in our case study and the main functionalities of the EMS. On the left,
the private user is shown. Users can create and configure other users, e.g., under-
aged family members can be allowed to sign into the EMS web application and to
see their energy consumption, but they should not be able to trigger electricity
vending or purchasing functions. On the right, the Meter Point Operator (MPO)
is depicted, who is responsible for installing, maintaining or replacing the EMS
as well as the Smart Meter. The tasks of the MPO are not considered in our
case study.

Fig. 2. Requirements overview (UML use case diagram)

3 The term microgrid [8] refers to areas where small communities trade local energy,
in addition to the energy supply provided by professional energy suppliers.

Modeling Security Features of Web Applications 5

2.3 Functionality

The main functionality of the EMS is shown in Fig. 2: a user can buy or sell
energy, control local energy consumption by configuring SAs, install plugins to
automate tasks or manage other users. These use cases are described in more
detail in the following:

Local Energy Control. As more and more Smart Appliances will be added to the
home network, their heterogeneous functionality has to be made available to the
customer. The EMS web application can present, in a uniform way, a coherent
view to the user in the form of a portal, presenting information that the EMS
has collected from diverse sources (appliances or external servers). SAs, even
new ones that were non-existent when the web application was programmed and
deployed, offer their services through a standard interface to the EMS (cf. lower
half of Fig. 3, use case InteractWithSA, depicted in bold font because it might
be used relatively often). Hereby, auto-configuration (in the sense of plug-and-
play support) is important, as many customers may not become acquainted with
the full potential of the EMS. This case applies particularly to senior citizens.

Fig. 3. Requirements of local energy control (UML use case diagram)

Easy access to real-time information supports the users, e.g., to pay at-
tention to their energy consumption, as depicted at the top of Fig. 3. Addi-
tionally, automatic peak load management provides smart planning for reduc-
ing energy consumption. This Smart Planning feature (cf. Configure Smart

Planning Policy) can be enriched by plugins, which have to be installed sepa-
rately. Plugins might also be allowed to access the local usage history from SAs.

6 M. Busch, N. Koch, S. Suppan

This way they can base their plan on previous user’s behavior. For example, hy-
dronic heating might be reduced automatically at times where usually no great
quantity of hot water is needed.

Energy Trading. Selling and buying energy is a critical task, if the user wants the
system to perform a trade automatically. Consequently, policies have to ensure
that the system acts in the interest of the prosumer. The recommendation / trade
system can also be enriched by plugins, offering so called value added services.
A value added service, such as a price comparing third party service (e.g., when
and who is offering the best conditions for green energy?) functions as follows:
The third party provides a plugin which obtains current market prices from the
third party’s server. The plugin compares prices and consumption data locally.
The result of the comparison can either be a visual notification in the EMS or a
process is started to renegotiate Energy Supplier contracts, if the prosumer has
defined a policy that allows the process to negotiate automatically. In the latter
case, a notification is sent to the user after the (un-)successful provider change.

Plugin Management. As mentioned before, a key functionality is the interplay
of the EMS and value added services. Third parties can offer plugins that can
be deployed into the EMS to provide further functionality. Plugins are limited,
sandboxed algorithms that can enhance the EMS at two predefined interfaces:
the interface for smart planning (see local energy control) and/or the interface
for energy trading.

Fundamentally, the customer will access the EMS as the central administra-
tion point. No process should demand direct interaction between the customer
and an external third party service (provided as a website or otherwise). Users
can only search for plugins, (un)install or update them (if not done automati-
cally) or access a privacy dashboard for plugins. The dashboard allows the user
to restrict the personal information a certain plugin can access and the functions
a plugin can execute.

User Management. Prosumers can allow other persons to log into the web appli-
cation. However, not all users have to have the same rights. More details about
access control and other security features are given in the next section.

In this work, we focus on the EMS. The interested reader is referred to [9,
example section / EMS] for all use case diagrams. Additionally, more compre-
hensive descriptions of general Smart Grid functional requirements can be found
in [10,11].

3 Secure Web Applications

This section introduces common security features, including those which are
special for web applications. Security features, detailed in the following, are:
authentication, panic mode, reauthentication, secure connections, authorization,
user zone concept, cross-site-request-forgery prevention, under attack mode and
SQL-injection prevention.

Modeling Security Features of Web Applications 7

Implementing coherent authentication is a challenge, as users must be able to
log-in to their EMS internally, from their home, and externally, using a mobile
device, or a public terminal. A two-factor authentication should be employed
to access sensitive information of the EMS. Two-factor authentication requires
a knowledge factor (“something only the user knows”) and either a possession
factor (“something only the user has”) or an inherence factor (“something only
the user is”) from the user for the authentication to succeed. For example, a
password has to be entered together with a code that the user’s smart phone
generates.

A feature rarely implemented in current web applications, is the panic mode.
When the panic mode is activated, the user interface will be displayed with rea-
sonable information generated by the EMS that does not reflect the users real
information. This is especially needed for coercion situations, where criminals
might physically force users to reveal information of themselves or to conclude
long-term contracts with certain parties. The panic mode also protects threat-
ened users by pretending to malfunction or to execute functions successfully
without any real impact. Therefore, users have to authenticate themselves with
predefined credentials which differ from the usual ones: using the same username
in combination with a panic mode password loads the alternative user interface.

Besides the first authentication, prosumers can be forced to reauthenticate
themselves. This is often the case after a certain time of inactivity (often re-
ferred to as “automatic logout” in online banking applications), but it is also
common for critical areas. For example, web shops often allow to store cookies
to keep the user authenticated while browsing their offers. However, if the last
authentication is older than a certain amount of time, the users have to reau-
thenticate themselves before being able to make a purchase. Regarding the EMS
plugin installation functions, the last authentication of a prosumer should not
be older than 10 minutes, a typical time threshold also used in online banking.
The timeout avoids a takeover of a session by another person who has access to
the prosumers browser.

All kinds of authentication are useless, if the login process can be eaves-
dropped. Secure connections, as e.g., HTTP Strict Transport Security (HSTS)
connections can be used to ensure the confidentiality, integrity and freshness of
all user’s request as well as of all response of the EMS. As encrypting a connec-
tion is a time consuming task, it is an important design decision which parts of
an application should be secured. In the case of Energy Management, security
weights more than speed, even if Demand Side Management and energy trading
are very time demanding [12]. Compromises in speed can have impact on eco-
nomic aspects, but compromises in security could mean a total blackout of the
power supply, producing high economic damages.

Apart from secure session management after authentication, a well imple-
mented authorization (access control) concept is needed to satisfy customer
needs. There are several roles to be considered, as family members might be
involved in the customization of the Smart Home.

8 M. Busch, N. Koch, S. Suppan

Many web applications require a user zone concept. If users are accessing the
EMS from the home area, they are permitted to access all prosumer managing
functions (depending on their roles). But if they are requesting access externally,
stricter policies have to be enforced, depending on the requester’s location, i.e.
the IP address of the requester’s device. To configure this policy, users inform
their MPO that they are on holiday and that a certain location is the source of
legitimate requests.

A telling example is an attack from a foreign country. An attacker that
is mimicking a user will, by policy enforcement, be denied to alter the Smart
Appliances’ behavior, if he is accessing the EMS remotely from a very far place.
This feature will not hold up against versatile attackers, as several proxies or even
computers that have been compromised by an attacker, could be available in the
desired geo-location. Still, this mechanism represents a filter against unambitious
attackers. There are several other mature attacks on web based technologies that
also could have an impact on the EMS, mostly related to so-called “common web
application vulnerabilities” [13]. As the EMS is remotely accessible by means of
a web client, there is room for session riding attacks. Depending on the user’s
browsing application, cross-site-request-forgery (abbreviated “CSRF”) might be
used by a malicious attacker to trigger actions without the user’s consent. For
example, an attacker could trick users into interacting with the web server of a
Smart Appliance by letting them call an address like:
http://EMSremoteIP.com/SmartApplianceName/SmartApplianceFunction

This request cannot be called by an unauthorized person due to the policy
enforcement inside the EMS, but it can be triggered by means of CSRF.

The under attack mode is a dynamic protection against attempts of com-
promising the EMS functionality, as the EMS reacts accordingly and reduces
the attackers possibilities. An example is the reduced functionality when un-
der denial of service attack. The EMS will try to reduce the number of allowed
connections and/or deny any connection from IPs that have exceeded a certain
number of requests in a certain time frame. Additionally, CAPTCHA-challenges
could be displayed to verify that the requester is a person and not merely a
program.

Another feature is the protection of the EMS database. The EMS database
should only accept statements that have been generated by the EMS itself. In
order to avoid SQL-injection attacks within generated statements, parameterized
queries should be used.

As announced in the introduction, some security features can be handled at
an abstract level, as e.g., authorization, whereas others are to be thought of at
the end of the design phase, as SQL-injection prevention. Note that we do not
claim to cover all possible web security features, although we try to cover the
most common ones.

Modeling Security Features of Web Applications 9

4 Overview of UML-based Web Engineering (UWE)

This section introduces the modeling language UML-based Web Engineering
(UWE) [9,2], which we use to model secure web applications.

One of the cornerstones of the UWE language is the “separation of concerns”
principle using separate models for the different views of a web application, such
as the navigation and the presentation view. However, we can observe that se-
curity features are cross-cutting concerns which cannot be separated completely.
The views and corresponding UWE models are:

Requirements View defines (security) requirements of a project.
Content View contains the data structure used by the application.
Access Control View is given by a UWE Role Model and a Basic Rights

Model. The former describes the hierarchy of user groups to be used for
authorization and access control issues. It is usually part of a User Model,
which specifies basic structures, as e.g., that a user can take on certain roles
simultaneously. The latter defines the access control policies. It constrains
elements from the Content Model and from the Role Model.

Presentation View sketches the web application’s user interface.
Process View details the flow of actions to be executed.
Navigation View defines the navigation flow of the application and naviga-

tional access control policies. The former shows which possibilities of navi-
gation exist in a certain context. The latter specifies which roles are allowed
to navigate to a specific state and the action taken in case access cannot
be granted. In a web application such actions can be, e.g., to logout the
user and to redirect to the login form or just to display an error message.
Furthermore, secure connections between server and browser are modeled,
too.

The following table maps UWE views to security features that they can
express. We introduce concrete modeling elements for this security features in
the next section.

View Security Features
Content SQL-injection prevention, cross-site-request-

forgery prevention
Navigation authentication, reauthentication, secure con-

nections, under attack mode
Access Control authorization, under attack mode, user zone

concept
Process user zone concept, panic mode

For each view, an appropriate type of UML diagram is selected, e.g., a state
machine for the navigation model. The UWE approach defines a UML profile
that consists of a set of stereotypes, tag definitions, constraints and patterns for
modeling secure web applications. The profile can be downloaded from the UWE
website [9].

10 M. Busch, N. Koch, S. Suppan

Stereotypes can be applied to UML model elements (e.g. classes, states, de-
pendencies) and values can be assigned to tags. UML tags are always associated
to a stereotype and stereotypes can inherit tags from other stereotypes. In the
UWE profile, patterns are provided for modeling widely used elements, as e.g.,
different types of authentication mechanisms.

5 Designing Secure Web Applications with UWE

This section shows how to model security features with the most recently intro-
duced UWE profile elements. The main advantages of these specific modeling
elements for the modeler are on the one hand to promote the inclusion of security
aspects from the early phases of the development. On the other hand it enables
documentation and, due to brevity, a quick understanding of security features
that are or should be employed. The elements are introduced using our EMS
case study.

5.1 Content View

When modeling larger web systems, such as the EMS web application, it is useful
to divide the system into manageably small components. The main characteristic
of components is encapsulation, which means that components can only share
information using predefined interfaces. Encapsulation is advantageous, because
each component can be implemented and tested individually. Regarding model-
ing, components contribute to a clear structure, as the division of tasks within
an application becomes apparent. Consequently, it is easy to define appropriate
security properties for each part of a web application.

In the case of our EMS, a component EMScore is created, which contains
components that are built into the EMS system by default, as depicted in the
class diagram shown in Fig. 4. Smart Appliances (SAs) can communicate with
the EMS using the SA interface, shown on the lower left. According to the de-
scription in the previous section, plugins are also external components that can
enhance the smart planning or the trader / recommender. Some plugins might
provide both functionalities (as e.g., PluginA does).

The EMScore contains four internal components that correspond to the main
areas we identified in the requirements phase (cf. Fig. 2): local energy con-
trol, user management, energy trade system and plugin management. As can
be seen in Fig. 4, the user manager is used by all components, because the sys-
tem does not allow access without having granted permission first. The interface
PluginList publishes the list of installed plugins within the system so that
the user can advise the internal components to exchange the planing or trading
plugin.

As far as security is concerned, the UWE profile redefines the UML stereotype
�component� with the following tags:

csrfPrevention models how cross-site-request-forgery (CSRF) should be re-
pelled. The modeler can choose from the options presented at the OWASP

Modeling Security Features of Web Applications 11

Fig. 4. UWE: Content model

12 M. Busch, N. Koch, S. Suppan

CSRF Cheat Sheet4. For the EMS example the most common “Synchronizer
Token Pattern” is used, which includes a randomly generated challenge to-
ken to all server requests in a web page. An attacker cannot hope to guess a
valid token when sending the user a prepared URL.

injectionPrevention records how SQL injections (and others injection at-
tacks) are prevented. In most programming languages, SQL prepared state-
ments shield from SQL injection, but other solutions, as e.g., server-sided
stored procedures could also be used.

inputValidation explains how the component is shielded from unvalidated in-
put. The most secure way is to whitelist characters and not to accept any-
thing else. In a later phase of development, it could be useful to use this
tag for documenting the concrete technique which is used, e.g., a software
library.

Additionally to these security features, the UWE profile provides the tag
{usedInStates} to denote in which state of the application a certain component
is used. More about states can be found in Sect. 5.3. Note that it is the modelers’
decision which of the features offered by the UWE profile they like to use in
a diagram. In some scenarios, the modelers may decide to connect the UWE
Navigation model with the Content model using {usedInStates}, in others not.

5.2 Role and Access Control View

Figure 5 depicts the role model of the EMS. The stereotype �webUser� defines
the class that represents a user. It can later be referred to as caller when
defining access control. Per default, the DefaultUser plays all roles, although
this is not shown in the figure.

Fig. 5. UWE: Role model

Defining access control for web applications, has already been described in [2].
For our EMS application, Fig. 6 shows an excerpt. For example, someone with

4 OWASP CSRF Prevention Cheat Sheet. https://www.owasp.org/index.php/

Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

Modeling Security Features of Web Applications 13

the role UserManager is allowed to �delete� users, as long as the �authorization-
Constraint�, which has to be specified in OCL [14], is fulfilled. The constraint
defines that the user instance (referred to as self) is not equal to the caller

(referring to the �webUser� who executes this deletion). If the constraint would
not be given, users might delete their own accounts accidentally.

Fig. 6. UWE: Basic Rights model excerpt

Regarding our security requirements, the UWE Basic Rights model has to
be extended to enable the specification of different modes. Therefore, the tag
{noAccessInMode} is added. It allows to choose from a set of states in which the
application should not be available. Please note that these states do not refer to
navigational states, but general states of an application. When modeling with a
CASE tool as MagicDraw [15], the UWE profile with its typed tags makes sure
that the value for the tag can only be chosen from all available state elements.

As depicted at the bottom of Fig. 6, the EMS only allows to install plugins
when it is not under attack.

5.3 Navigation and Process View

User navigation is one of the most distinguished web features. Since 2011, UML
state charts are used in UWE to express the navigation possibilities a user has
within a certain state of the web application [2]. By default, all states in the

14 M. Busch, N. Koch, S. Suppan

UWE navigation model are thought to be stereotyped �navigationalNode�. The
{isHome} tag refers to the entry point of a web application (cf. Fig. 7).

The stereotype �integratedMenu� is defined to be a shortcut for show-
ing menus entries for all menus of Submachine States, in case the user is al-
lowed to access them. Submachine states contain a state machine by themselves,
so that more details can be shown in another diagram. Note that transitions
that start at the border of a state, leave the state and enter again when trig-
gered. Navigational access control can be specified using a rolesExpression as
“caller.roles.includes(PluginManager)”.

As shown on the left in Fig. 7, a UWE pattern is used for the specification of
2-step authentication. The UWE profile includes such kind of patterns to reduce
the amount of modeling effort. In case a pattern should be adapted, it can easily
be copied from the profile to the model.

Additionally, we decided to include more implementation specific details in
the navigation model, which are relevant in the late design phase. Thus, HTTP
Strict Transport Security (HSTS) is specified as web security policy mechanism
to ensure secure HTTPS connections for the whole web application, indicated
by the �session�-related tag {transmissionType=HSTS}.

Fig. 7. UWE: Navigation model overview

If needed, activity diagrams can be added to detail the process that is ex-
ecuted behind the scenes. For example, Fig. 8 depicts what happens internally
after the login was completed successfully. For our EMS, this gives a hint to

Modeling Security Features of Web Applications 15

implement the panic mode as well as the restricted access, when accessing the
EMS from a distant region.

Fig. 8. UWE: Process after successful login

Exemplarily, the submachine state diagram of the plugin management is
shown in Fig. 9. The stereotype �search� denotes that a search is done when
using the searchPlugins transition, as searching is a typical process in appli-
cations. The stereotype �collection� refers to a list of elements with the given
{itemType} tag from the Content model. For transitions, an underscore can be
used to denote an element of this type. In our example, the underscore is an
abbreviation for p : Plugin.

Fig. 9. UWE: Navigation model for plugin management

16 M. Busch, N. Koch, S. Suppan

The UWE profile provides a new tag called {reauth} for the stereotype �ses-
sion� to specify critical areas. In those areas, as e.g., for plugin management,
users have to reauthenticate themselves, except when the previous login is not
older than the given amount of time. In addition, the tag {noAccessInMode}
is specified for the stereotype �navigationalNode�. In our example, this pre-
vents navigating to the interface for (un)installing or updating plugins in the
UnderAttack mode.

All diagrams of our EMS case study can be found on the UWE web page [9,
example section / EMS]; the original model can be downloaded as MagicDraw
project or XMI file.

6 UWE in the Software Development Life Cycle

We consider an iterative Service Development Life Cycle (SDLC), consisting
of at least the phases: requirements, design, implementation, testing and de-
ployment [16]. In the following, we show how security-related UWE extensions
developed during the NESSoS project [4] can be positioned in this development
process.

In the requirements phase, use case diagrams and coarse-grained activity
diagrams record customer wishes. UWE enhances requirements models using
web-specific stereotypes, e.g., to denote use cases which require server-side pro-
cessing. However, the main focus of UWE is on the design phase, in which the
rest of the above-mentioned models are created or updated. To ease the design of
web applications with UWE within the CASE tool MagicDraw [15], the plugin
MagicUWE [17] has been developed. MagicUWE is presented in more detail in
chapter [5].

One of the main advantages of models built using UWE is to get an overview
of the web application and to quickly provide an impression of what is impor-
tant in the different views on it. This is especially needed when new developers
join an existing project, because clean documentation serves as a basis for a
concise introduction that helps to avoid misunderstandings. Being clear about
the conceptual structure of an application is of major importance when securing
a web application, as a single misconception or thoughtlessness can lead to a
vulnerability. If exploited, this vulnerability might then cause privacy violation
for customers, reputation damage of a company or financial damage right up
to bankruptcy or lawsuit. Providing an overview of a web application is also
valuable for documentation and for discussions between modelers and software
developers in order to reduce misunderstandings at the transition between design
and implementation.

Constraints as “customers can only submit their order after they have se-
lected a credit card to pay with” can be inferred from UWE Navigational State
models. How to extract so called Secure Navigation Paths (SNPs) and how to
use them for the generation of a monitor that shields the web application from
illicit access sequences, is described in [18]. Prototypical tool support can be
downloaded from [9].

Modeling Security Features of Web Applications 17

Within the NESSoS project not only the web modeling approach UWE has
been improved, but also ActionGUI has been developed further, which strives
to implementing the whole application logic from models (cf. Sect. 7). Due to
ActionGUI’s different focus, it has been interesting to consider a model-to-model
transformation from UWE to ActionGUI, as described in [19].

In the implementation phase code is written, based on the models. Tool sup-
port is preferable, but as can be expected, code generation is only possible where
detailed information is given in the models. Therefore, modelers have to balance
the need for abstraction against the need for detailed information. Consequently,
UWE does not aim to generate complete web applications, as it turned out to
overload models and the maintenance for a code generator like UWE2JSF [20]
became unreasonable high, in order to keep up with the rapid development of
web features. Nonetheless, it has proven to be helpful to transform some parts
of the UWE models to code or other implementation-related artifacts. An ex-
ample is the specification of role based access control (RBAC) rules. The model
to text transformation language XPand [21] is used to transform UWE Basic
Right models to XACML [22] and to code snippets. For the latter, a prototypic
transformation of the data structure, roles and RBAC rules to Apache Wicket
with Apache Shiro and Hibernate has been implemented [23].

Exporting XACML policies, which can include RBAC policies from the Basic
Rights model as well as from the navigational states model, is implemented in
a tool called UWE2XACML. In [24], Busch et al. explain how XACML can be
transformed to FACPL [25], a formal policy language with the advantage of
fully specified semantics. The transformation comprises several tools, which are
integrated in the Service Development Environment (SDE) [26,16]. The SDE is
a tool workbench, which allows to build tool chains of tools that are integrated,
i.e. that provide a wrapper for the SDE.

As far as the testing phase of the SDLC is concerned, UWE’s Basic Rights
model can be the starting point for generating test cases by using a tool chain,
as described in chapter [5]. The advantage is that policies are modeled at a high
level of abstraction so they are easy to understand and to maintain, whereas
policies written in XACML tend to become lengthy and error-prone so that
thorough testing is mandatory.

In addition to enforcing Secure Navigation Paths by monitors (as introduced
above), the modeled paths can also be used for automatic testing to check that
a web application correctly prohibits attempts to break out of the predefined
navigation structure [18].

7 Related Work

This section introduces related work for the Energy Management System (EMS)
case study and approaches for secure web engineering.

Energy Management Systems. The EMS is a component of a Smart Grid. Unfor-
tunately, literature [11,27,28] does not offer a coherent view of the components

18 M. Busch, N. Koch, S. Suppan

of a Smart Grid. For our case study, we rely on the components as described
in [6,29].

In [11], the Energy Management System is described as a consumption dis-
play unit, which is regarded as an optional device that helps advanced metering
infrastructure (AMI) objectives, i.e., Demand Side Management events. For sus-
tainable energy supply, Demand Side Management has to be considered as a key
technology. Furthermore, the Energy Management System supports the user in
interacting with the Smart Home, which is another key to the successful accep-
tance of the Smart Grid. This requires to manifest the EMS as a crucial part of
the Smart Grid.

The Energy@Home Project5 illustrates Smart Meter and Home Energy Man-
agement implementations. The overall description matches with our case study,
but it does not give any insight on security or privacy.

The OpenNode Project [27] emphasizes research on electrical distribution
grid operation. The prosumer endpoint is mentioned, but it does left out any
details on the required end point functionality. From a holistic point of view, the
OpenNode architecture is complementary with our view of Smart Homes and
the proposed EMS functionality depicted in this chapter.

The British Department of Energy and Climate Change give in their technical
reports in [28] detailed functional requirements on the Smart Home including
technical and functional descriptions of the Energy Management System (“In
Home Display”) in the report. The report’s functional requirements are equiva-
lent to the functionality from our case study. Security requirements on the other
hand are referenced, but clearly not in the report’s scope.

Secure web application modeling. Existing approaches are briefly introduced in
the following, adapted from [30].

ActionGUI [1] is an approach for generating complete, but simplified, data-
centric web applications from models. It provides an OCL specification of all
functionalities, so that navigation is only modeled implicitly by OCL constraints.
In general, ActionGUI abstracts less from an implementation than UWE does.

UMLsec [31] is an extension of UML with emphasis on secure protocols. It is
defined in form of a UML profile including stereotypes for concepts like authen-
ticity, freshness, secrecy and integrity, role-based access control, guarded access,
fair exchange, and secure information flow. In particular, the use of constraints
gives criteria to evaluate the security aspects of a system design, by referring to
a formal semantics of a simplified fragment of UML. UMLsec models, compared
to UWE models, are extremely detailed and therefore quickly become very com-
plex. Tool support is only partly adopted from UML1.4 to UML2. However, the
new tools6 have not been updated for almost two years.

SecureUML [32] is a UML-based modeling language for secure systems.
It provides modeling elements for role-based access control and the specifica-

5 Energy@Home. http://www.enel.com/en-GB/innovation/smart_grids/smart_

homes/smart_info/
6 UMLsec tools. http://carisma.umlsec.de

http://www.enel.com/en-GB/innovation/smart_grids/smart_homes/smart_info/
http://www.enel.com/en-GB/innovation/smart_grids/smart_homes/smart_info/
http://carisma.umlsec.de

Modeling Security Features of Web Applications 19

tion of authorization constraints. A SecureUML dialect has to be defined in
order to connect a system design modeling language as, e.g., ComponentUML
to the SecureUML metamodel, which is needed for the specification of all possi-
ble actions on the predefined resources. In our approach, we specify role-based
execution rights to methods in a basic rights model using dependencies instead
of the SecureUML association classes, which avoids the use of method names
with an access related return type. However, UWE’s basic rights models can
easily be transformed into a SecureUML representation.

A similar approach is UACML [33] which also comes with a UML-based
meta-metamodel for access control, which can be specialized into various meta-
models for, e.g., role-based access control (RBAC) or mandatory access control
(MAC). Conversely to UWE, the resulting diagrams of SecureUML and UACML
are overloaded, as SecureUML uses association classes instead of dependencies
and UACML does not introduce a separate model to specify user-role hierarchies.

Other approaches address modeling of security aspects of service-oriented
architectures (SOAs), such as the SECTET framework [34], UML4SOA [35],
and SecureSOA [36]. The first one proposes the use of sequence diagrams for the
representation of a set of security patterns, in UML4SOA security features are
modeled as non-functional properties using class diagrams, and the latter relies
on FMC block diagrams and BPMN notation.

8 Conclusion and future work

In summary, it can be stated that our approach for engineering secure web
applications using UWE contributes to the task of securing web applications.
Consequently, a long-term impact should be the reduction of security flaws and
of necessary security patches. As it is not easy to measure the long-term impact
of UWE, we at least can tell that UWE helps to get clear about which secu-
rity features are important for certain functions of concrete web applications.
In particular, UWE addresses security features starting in the early phases of
development.

For future work, we plan to include more web-specific security features and
to validate our approach by modeling further case studies. Additionally, we ex-
tend our approach to cover model validation. Therefore, we are working on a
textual version of UWE, called TextualUWE, which is based on a domain spe-
cific language. Our aim is to use functional Scala on TextualUWE to check for
inconsistencies in the models, as unreachable navigational states or contradic-
tory access control rules. Besides, it would also be interesting to investigate on
transferring UWE’s security concepts to other web modeling languages that have
not yet incorporated security features.

References

1. Basin, D., Clavel, M., Egea, M.: Automatic Generation of Smart, Security-Aware
GUI Models. In: Engineering Secure Software and Systems. Volume 5965 of LNCS.,
Springer (2010) 201–217

20 M. Busch, N. Koch, S. Suppan

2. Busch, M., Knapp, A., Koch, N.: Modeling Secure Navigation in Web Information
Systems. In Grabis, J., Kirikova, M., eds.: 10th International Conference on Busi-
ness Perspectives in Informatics Research. LNBIP, Springer Verlag (2011) 239–253

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request
forgery. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security. CCS ’08, New York, NY, USA, ACM (2008) 75–88

4. NESSoS: Network of Excellence on Engineering Secure Future Internet Software
Services and Systems. http://nessos-project.eu/ (2014)

5. Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F., Marchetti, E.: A Toolchain for
Designing and Testing Access Control Policies. In Lopez, J., Martinelli, F., eds.:
Advances in Engineering Secure Future Internet Services and Systems. Volume
LNCS 8431., Springer (2014)

6. Cuellar, J., Suppan, S.: A smart metering scenario (2013) https://securitylab.
disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:

erise_2013:erise2013-smartmeteering-description.pdf.
7. Cuellar, J.: NESSoS deliverable D11.4 – Pilot applications, evaluating NESSoS

solutions. to appear (2014)
8. Guerrero, J.M.: Microgrids: Integration of distributed energy resources into the

smart-grid. In: IEEE International Symposium on Industrial Electronics. (2010)
4281–4414

9. LMU. Web Engineering Group.: UWE Website. http://uwe.pst.ifi.lmu.de/

(2014)
10. Cubo, J., Cuellar, J., Fries, S., Mart́ın, J.A., Moyano, F., Fernández, G., Gago,

M.C.F., Pasic, A., Román, R., Dieguez, R.T., Vinagre, I.: Selection and docu-
mentation of the two major applicationcase studies. NESSoS deliverable D11.2
(2011)

11. Gómez, A., Tellechea, M., Rodŕıguez, C.: D1.1 Requirements of AMI. Technical
report, OPEN meter project (2009)

12. Bennett, C., Wicker, S.: Decreased time delay and security enhancement recom-
mendations for ami smart meter networks. In: Innovative Smart Grid Technologies
(ISGT). (2010) 1–6

13. OWASP Foundation: OWASP Top 10 – 2013 (2013) http://owasptop10.

googlecode.com/files/OWASPTop10-2013.pdf.
14. OMG.: OCL 2.0. http://www.omg.org/spec/OCL/2.0/ (2011)
15. No Magic Inc.: Magicdraw. http://www.magicdraw.com/ (2014)
16. Busch, M., Koch, N.: NESSoS Deliverable D2.3 – Second Release of the SDE for

Security-Related Tools. (2012)
17. Busch, M., Koch, N.: MagicUWE — A CASE Tool Plugin for Modeling Web

Applications. In: Proc. 9th Int. Conf. Web Engineering (ICWE’09). Volume 5648
of LNCS., Springer (2009) 505–508

18. Busch, M., Ochoa, M., Schwienbacher, R.: Modeling, Enforcing and Testing Se-
cure Navigation Paths for Web Applications. Technical Report 1301, Ludwig-
Maximilians-Universität München (2013)

19. Busch, M., Garćıa de Dios, M.A.: ActionUWE: Transformation of UWE to
ActionGUI Models. Technical report, Ludwig-Maximilians-Universität München
(2012) Number 1203.

20. Kroiß, C., Koch, N., Knapp, A.: UWE4JSF - A Model-Driven Generation Approach
for Web Applications. In Gaedke, M., Grossniklaus, M., Dı́az, O., eds.: Proc. 9th
Int. Conf. Web Engineering (ICWE’09). LNCS 5648, Springer Berlin (2009) 493–
496

http://nessos-project.eu/
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=research_activities:erise:erise_2013:erise2013-smartmeteering-description.pdf
http://uwe.pst.ifi.lmu.de/
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
http://owasptop10.googlecode.com/files/OWASP Top 10 - 2013.pdf
http://www.omg.org/spec/OCL/2.0/
http://www.magicdraw.com/

Modeling Security Features of Web Applications 21

21. Eclipse: XPand. http://wiki.eclipse.org/Xpand (2013)
22. OASIS: eXtensible Access Control Markup Language (XACML) Version

2.0. http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-
os.pdf (2005)

23. Wolf, K.: Sicherheitsbezogene Model-to-Code Transformation für Webanwendun-
gen (German) (2012) Bachelor Thesis.

24. Busch, M., Koch, N., Masi, M., Pugliese, R., Tiezzi, F.: Towards model-driven de-
velopment of access control policies for web applications. In: Model-Driven Security
Workshop in conjunction with MoDELS 2012, ACM Digital Library (2012)

25. Masi, M., Pugliese, R., Tiezzi, F.: Formalisation and Implementation of the
XACML Access Control Mechanism. In: ESSoS. LNCS 7159, Springer (2012)
60–74

26. SDE: Service Development Environment. http://www.nessos-project.eu/sde

(2014)
27. Soriano, R., Alberto, M., Collazo, J., Gonzales, I., Kupzo, F., Moreno, L., Lug-

maier, A., Lorenzo, J.: OpenNode. Open Architecture for Secondary Nodes of the
Electricity SmartGrid. In: 21st International Conference on Electricity Distribu-
tion. (2011)

28. Department of Energy and Climate Change: Smart Metering Implementation Pro-
gramme, Response to Prospectus Consultation, Overview Document. Technical
report, Office of Gas and Electricity Markets (2011)

29. Beckers, K., Fabender, S., Heisel, M., Suppan, S.: A threat analysis methodology
for smart home scenarios. In: SmartGridSec 14, Springer LNCS (2014)

30. Busch, M.: Secure Web Engineering supported by an Evaluation Framework. In:
Modelsward 2014, Scitepress (2014)

31. Jürjens, J.: Secure Systems Development with UML. Springer (2004) Tools and
further information: http://www.umlsec.de/.

32. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. In: Proc. 5th Int. Conf. Unified Modeling Lan-
guage (UML’02). Volume 2460 of LNCS., Springer (2002) 426–441

33. Slimani, N., Khambhammettu, H., Adi, K., Logrippo, L.: UACML: Unified Access
Control Modeling Language. In: NTMS 2011. (2011) 1–8

34. Hafner, M., Breu, R.: Security Engineering for Service-Oriented Architectures.
Springer (2008)

35. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-
functional Properties in the Model-Driven Development of Service-Oriented Sys-
tems. J. Softw. Syst. Model. 10(3) (2011) 287–311

36. Menzel, M., Meinel, C.: A Security Meta-model for Service-Oriented Architectures.
In: Proc. 2009 IEEE Int. Conf. Services Computing (SCC’09), IEEE (2009) 251–
259

http://wiki.eclipse.org/Xpand
http://www.nessos-project.eu/sde
http://www.umlsec.de/

	Modeling Security Features of Web Applications
	Introduction
	Case Study: Energy Management System
	Components of Smart Homes
	Actors
	Functionality

	Secure Web Applications
	Overview of UML-based Web Engineering (UWE)
	Designing Secure Web Applications with UWE
	Content View
	Role and Access Control View
	Navigation and Process View

	UWE in the Software Development Life Cycle
	Related Work
	Conclusion and future work

