
software engineering for
self-aware, self-adaptive,

self-expressive, open-ended,
highly parallel, collective and

interactive distributed systems

Requirements Engineering for Self-Adaptive Systems

Languages for Autonomic Systems

Modeling Self-Awareness and Adaptation

Verification Techniques for Self-Aware Systems

Knowledge Representation and Reasoning

Monitoring, Awareness & Self-Adaptation

Engineering Ensembles

Case Studies

ascens in numbers

02

04

08

13

16

19

22

27

32

ascens meeting – Limerick, Ireland – July 2012

At runtime, the more autonomy a system exhibits, the less obvious
that autonomic behavior appears to outside observers. Thus to be sure
about the correct functioning of such systems it is necessary to support
their development through appropriate methods and tools which can
guarantee not only that an autonomic system really does what it is
supposed to do, but also that important constraints of the environment
are never violated.

The IST-FET Integrated Project ascens has developed a novel
comprehensive approach to engineer autonomic self-adaptive systems
– so-called ensembles – which is both, pragmatic and formal.

Pragmatic orientation means building autonomic systems that do
practical things, like autonomic robot swarms performing rescue
operations, autonomic cloud computing platforms transforming
numerous small computers into a supercomputing environment, or
autonomic e-mobility supporting ensembles of cooperative e-vehicles.

ascens offers a range of foundational theories and methods that
support modeling, formal reasoning, validation and verification of
complex controlled systems, monitoring and dynamic adaptation of
autonomic systems, both at design and at runtime. Furthermore, the
ensemble development life cycle includes a third feedback loop that
enables design changes based on the system‘s and environment‘s
awareness obtained during runtime.

autonomic service-component ensembles

Martin Wirsing
Coordinator
wirsing@pst.ifi.lmu.de

Ludwig-Maximilians-
Universität München

www.ascens-ist.eu

02

Requirements Engineering for
Self-Adaptive Systems

Lero - University of Limerick

ESA ESTEC, the European
Space Research and
Technology Centre

Emil Vassev
emil.vassev@lero.ie

www.ascens-ist.eu/are

Autonomic self-adaptive systems extend regular software-intensive
systems upstream with special self-managing objectives (or self-*
objectives) that provide autonomy features in the form of a system‘s
ability to automatically discover, diagnose, and cope with various
problems. This ability depends on a system’s degree of autonomicity,
quality and quantity of knowledge, awareness and monitoring
capabilities, and quality characteristics such as adaptability, dynamicity,
robustness, resilience, and mobility.

ARE starts with the creation of a goals model that represents system
objectives and their inter-relationships. In the next phase, we work on
each one of the goals along with elicited environmental constraints to
come up with self-* objectives providing autonomy requirements for
achieving these goals. The autonomy requirements are derived in the
form of goal-supportive and alternative self-* objectives, along with
required capabilities and quality characteristics. Finally, we specify the
autonomy requirements with KnowLang, a framework dedicated to
knowledge representation for self-adaptive systems.

ARE - Autonomy Requirements Engineering

SOTA - State of the Affairs
SOTA is a method for specifying requirements by tracing the evolution
of an ensemble’s “state of affairs” over time. In SOTA, the state space
of an ensemble contains all parameters “Qi” that may affect its behavior
or capabilities. At each instance, the ensemble occupies a single point
in this state space; the ensemble‘s activity over time is therefore
expressed by a trajectory through the state space.

Requirements are specified as goals which correspond to regions of
the state space that the ensemble’s trajectory must eventually reach
(achieve goals “Gpost”), regions in which it must stay throughout the
execution (maintain goals “Gmaintain”) or regions that it must avoid
(avoid goals). A goal becomes active when its precondition “Gpre”
is encountered; this may happen only once or repeatedly during the
ensemble‘s lifetime.

Università degli Studi di
Modena e Reggio Emilia

Franco Zambonelli
franco.zambonelli@unimore.it
www.ascens-ist.eu/sota

Gpost

Gpre

Q1

Q2

Q3

Gm
ain

ta
in

03

IRM - Invariant Refinement Method
IRM is a requirements-oriented design method that facilitates modeling
of ensemble-based systems. The main idea of IRM is to capture the
high-level goals and requirements in terms of invariants (graphically
represented as rounded rectangles), which describe the desired
state of the system-to-be at every time instance. Invariants are to be
maintained by the coordination of the different system components
(graphically represented as rectangles).

As a design decision, top-level invariants are iteratively decomposed
into more concrete sub-invariants, forming a decomposition graph with
traceability of design decisions.

The decomposition process ends when the leaf invariants represent
a detailed design of the system implementation – either in terms of
local component behavior, corresponding to a component process
(denoted by the “P” decoration of the invariant), or in terms of
component interaction, corresponding to an ensemble (denoted by an
“X” decoration).

Charles University of Prague

Tomáš Bureš
bures@d3s.mff.cuni.cz

www.ascens-ist.eu/irm

Ludwig-Maximilians-
Universität München

Matthias Hölzl
hoelzl@pst.ifi.lmu.de

www.ascens-ist.eu/gem

GEM - General Ensemble Model
GEM is a mathematical formalization of the SOTA approach that gives
precise semantics to SOTA models and provides means of specifying
model properties in various logics, such as the higher-order logic of the
Prototype Verification System (PVS) or temporal logics.

GEM enables developers to analyze requirements models using
mathematical techniques. For example, a SOTA/GEM model may be
used to derive an adaptation strategy for a swarm of robots operating
in an adversarial environment by applying concepts from evolutionary
game theory.

Vehicle meet its
calendar

Vehicle has an up-to-date
and feasible plan

Plan feasibility w.r.t. battery
level is checkedPlan is kept updated

Driver follows the route
of the plan

Battery sufficiency w.r.t.
plan is checked

Plan is kept computed w.r.t.
availability & feasibility

X
Availability of relevant

parking is kept updated

Vehicle

calendar
position
plannedRoute
planFeasibility
availabilities
batteryLevel

Parking

position
availability

04

Languages for Autonomic
Systems

IMT Advanced Studies
Lucca

Università degli Studi di
Firenze

Rocco De Nicola
rocco.denicola@imtlucca.it

www.ascens-ist.eu/scel

SCEL - Service Component Ensemble Language
SCEL is a formal language that takes a holistic approach to programming
autonomic computing systems. In SCEL, systems are structured as
ensembles of autonomic components.

The language provides programmers with a complete set of linguistic
abstractions for programming the behavior of components and the
formation of ensembles, and for controlling the interaction among
them. These abstractions permit autonomic systems to be described
in terms of behaviors, knowledge and aggregations, by complying with
specific policies, and to support programming context-awareness, self-
awareness and adaptation.

Each SCEL component is equipped with an interface, consisting
of a collection of attributes describing its features (e.g., identity,
functionalities, spatial coordinates, group memberships, trust level,
response time, etc.).

Attributes are used by components to dynamically organize themselves
into ensembles. Specifically, components can single out communication
partners by using predicates over their attributes, thus permitting a
sort of attribute-based communication. Therefore, SCEL ensembles
are not rigid fixed networks, but rather highly flexible structures where
components’ linkages are dynamically established.

Knowledge

Policies

Interface

Behaviors

The solid semantic grounding of SCEL lays the basis for developing
logics, tools and methodologies for formally reasoning about system
behavior in order to establish qualitative and quantitative properties of
both the individual components and their ensembles.

05

ISTI CNR

IMT Advanced Studies
Lucca

Università degli Studi di
Firenze

Diego Latella
diego.latella@isti.cnr.it

www.ascens-ist.eu/stocs

StocS - Stochastic SCEL
StocS extends SCEL by modeling the durations of action executions
as random variables with negative exponential distributions, thus
obtaining continuous-time Markov chains as the underlying semantics
model. The behavioral semantics underlying StocS is the so-called
Network-Oriented one, where the distributed nature of action execution
is addressed explicitly.

Our stochastic variants adopt the same language syntax of SCEL, or
restrictions thereof, but denote different underlying stochastic models
with different levels of granularity.

Other stochastic variants of SCEL are addressed in the context of the
Quanticol EU Project. Such extensions are important for the analysis
of the performance aspects of ensemble-based systems. Providing
suitable Markovian semantics for predicate-based ensemble languages
poses a number of design challenges regarding the temporal ordering
of multicast and information request actions that differ considerably
from traditional process algebras.

Università degli Studi di
Firenze

Michele Loreti
michele.loreti@unifi.it

www.ascens-ist.eu/jresp

jRESP - Runtime Environment for SCEL Programs
The jRESP framework provides an API that permits SCEL’s linguistic
constructs for controlling the computation and interaction of autonomic
components to be used in Java programs, and for defining the
architecture of autonomic and adaptive systems and ensembles.

jRESP also provides specific components that can be used to simulate
SCEL programs. The screenshot shows a simulation run of a robotics
scenario: A set of landmarks (blue squares in the picture) randomly walk
to find a victim (depicted as a red circle). When the victim is found all
the landmarks dynamically create an ensemble that allow the workers
(green squares in the picture) to reach the victim and rescue it.

The jRESP simulation environment integrates a statistical model-
checker that can be used to estimate the probability of reaching
specific goals. The result of such a model checking analysis is shown
below: The probability to save the victim within t time units is studied
when the number of landmarks varies from 10 to 100.

Disaster scenario

06

FACPL - Formal Access Control Policy
Language
The FACPL language is the basis of a user-friendly, feasible and effective
approach for developing, operating and maintaining policy-based
autonomic systems. The language permits the expression of high-level
policies regulating various aspects of a computer system, e.g., access
control, resource usage and adaptation. It has a compact and intuitive
syntax and is endowed with a denotational semantics providing a full
formal account of the security model.

FACPL specifications are hierarchically structured in terms of FACPL
elements, i.e., rules, policies and policy sets. These elements specify
a name, the effect of a positive evaluation (i.e., permit or deny), target
and conditions for applicability, the algorithm for combining the results
of the evaluation of the contained elements, and a set of obligations,
i.e., supplemental actions as for example updating a log file, sending a
message, setting an attribute.

IMT Advanced Studies
Lucca

Università degli Studi di
Firenze

Rosario Pugliese
rosario.pugliese@unifi.it

www.ascens-ist.eu/facpl

The evaluation of a request with respect to a FACPL element triggers
the processing of the element. If the element‘s target does not match
the request, the element does not apply.

Otherwise, in case of policies and policy sets, the processing proceeds
by recursively evaluating the enclosed elements and by composing
their resulting decisions through the specified combining algorithm; in
the case of rules, the processing proceeds by evaluating the condition,
if present, and by returning the rule’s effect as a decision. The final
decision is then established on the basis of the result of obligation
discharge.

07

< / >

XML

XACML
policies

IMT Advanced Studies
Lucca

Università degli Studi di
Firenze

Andrea Margheri
andrea.margheri@unifi.it

www.ascens-ist.eu/facpl

FACPL Supporting Tools
FACPL is equipped with a powerful Integrated Development
Environment (IDE) and a Java library, supporting policy developers
and system administrators in the tasks of specifying, validating and
enforcing policies specified in FACPL.

Policy developers can use the IDE, in the form of an Eclipse plugin, for
specifying the desired policies in FACPL syntax, by taking advantage of
the supporting features provided by the environment. Then, according
to the rules defining the language’s semantics, the IDE automatically
produces a set of Java classes implementing the FACPL policies.

The Java FACPL library provides the compile- and run-time support for
validating and enforcing the generated Java policies in real systems.
Furthermore, the toolchain offers full interoperability with the well-
established XACML standard for access control systems.

FACPL Integration in SCEL
The SCEL language is designed according to the principle of separation
of concerns, thus decoupling functional aspects from management
ones. The latter aspects are regulated by policies, which provide
a refinement process of components behavior to guarantee the
accomplishment of specific tasks or satisfaction of specific properties.
To enhance flexibility and better support self-management in different
application domains, SCEL is parametric with respect to the policy
language.

The FACPL policy language has then been integrated into SCEL to
provide a complete language for programming and policing autonomic
systems. In the resulting language, it is possible, for example, to define
policies implementing adaptation strategies by exploiting specific
actions that are produced at runtime as an effect of policy evaluation.
These actions are executed as part of components’ behaviors to
enforce system adaptation.

Furthermore, policies can depend on the values of components’
attributes (reflecting the status of components and their environment)
and can be dynamically replaced to better react to system changes.

IMT Advanced Studies
Lucca

Università degli Studi di
Firenze

Francesco Tiezzi
francesco.tiezzi@imtlucca.it

www.ascens-ist.eu/pl4scel

JAR

JAVA

Xtend

Translation
rules

< / >

XML

XACML
policies

FACPL
library

FACPL
policies

Policy
developer FACPL IDE

<<generates>>

<<interacts>>

<<generates>>

<<generates>>

FACPL
CODE

<<uses>>
<<uses>>

08

Reconfigurable and Dynamic Connectors
Component-based design relies on the separation of concerns
between coordination and computation: components are equipped
with a set of ports and connectors that impose suitable constraints on
the communications over the ports. The evolution of an ensemble can
be seen as if played in rounds: at each round, the components try to
interact through their ports and the connectors allow/disallow some of
the interactions, informing the components about the decision.

Due to the high dynamism of autonomic component ensembles,
connectors need to be empowered with mechanisms for resource-
and network-awareness, as well as adaptation, reflection and
reconfigurability.

The theoretical foundations and expressive power of several classes of
connectors with different degrees of dynamism have been investigated,
focusing on BIP systems and Petri nets with boundaries. In particular,
novel flavors of reconfigurable and dynamic connectors have been
defined, where it is possible to model and analyze systems whose set
of allowed interactions can change at runtime, and where the creation/
elimination of ports and interactions is also supported.

For example, a dynamic BIP system with one server and two clients
(see top figure) evolves to a configuration in which one of the client and
the server have established some dedicated ports for interacting (see
bottom figure).

Modeling Self-Awareness and
Adaptation

Università di Pisa

Universidad de Buenos
Aires

Roberto Bruni
bruni@di.unipi.it

www.ascens-ist.eu/rdc

(b) First Synchronisation

09

Università di Pisa

IMT Advanced Studies
Lucca

Andrea Corradini
andrea@di.unipi.it

www.ascens-ist.eu/maia

White-box Adaptation
A software system operating in unpredictable environments must be
adaptive, modifying its own behavior in response to changes in its
operating environment. Unfortunately, there is no agreed foundational
model for adaptation. This is due to the inherent difficulty of subsuming
both the external manifestations of adaptive systems (black-box
adaptation) and the internal mechanisms that realize adaptation (white-
box adaptation) in a coherent view.

In our conceptual, white-box-based, approach which requires the
identification of so-called “control data” (CD) within the system,
adaptation is defined as the runtime modification of such data. This
provides an unambiguous definition of adaptation, allowing us at the
same time to see the same system with different adaptation capabilities,
depending on the chosen perspective.

This idea has been formalized with a variant of a classical game
model for open systems, Interface Automata, yielding Adaptable
Interface Automata (AIA). The key feature of such automata is control
propositions, a subset of the atomic propositions labeling the states,
imposing a clear separation between the ordinary, functional behavior
and the adaptive one.

Control propositions are exploited in the analysis of adaptive systems,
focusing on various notions like adaptability, control loops, and control
synthesis. An implementation of AIAs in Maude, called MAIA, allows
one to specify AIAs, to draw them, and to perform operations such as
product, composition, decomposition and control synthesis.

MANAGED ELEMENT

The picture shows an “adaptation tower” where each control
component performs a Monitor-Analyze-Plan-Execute loop using
shared Knowledge (a MAPE-K loop), triggering adaptations of the
lower managed component through the modification of its control data.

CD

PA

KM E

CD

PA

KM E

CD

PA

KM E

CD

R

R

R

E
E

E

K
K

K

strategy

control

kernel

10

Università di Pisa

IMT Advanced Studies
Lucca

Andrea Vandin
a.vandin@soton.ac.uk

www.ascens-ist.eu/messi

MESSI - Design and Performance Evaluation of
Self-Assembly Strategies
The methodology instantiates the white-box approach for adaptation,
and has been developed to specify and analyze adaptive systems
in Rewriting Logic. Validation has been performed for self-assembly
strategies, a mechanism allowing groups of simple entities to act as a
single complex entity exhibiting emergent behaviors. Notable examples
include bacteria or insect swarms, modular and self-assembling robots,
and software components with dynamic coupling mechanisms.

The distinguishing features of this approach are:

• adaptation based on the notion of control data;

• a hierarchical architecture to modularize the design;

• computational reflection as the main adaptation mechanism;

• probabilistic rule-based specifications and quantitative verification
techniques to specify and analyze the adaptation logic.

The approach has been implemented in the Maude-based tool MESSI,
which allows us to easily model robotic self-assembly strategies
exploiting a predefined library of basic robotic controllers, debug and
validate them via animated simulations, and estimate their quantitative
properties via the statistical model checker MultiVeStA.

The picture concerns a scenario where robots self-assemble to cross
a hole; it shows three states of a simulation (top), and the expected
number of robots successfully crossing the hole with a varying of the
number of robots and of the assembly strategy.

robot

LED
hole

goal

11

Università di Pisa

Matteo Sammartino
sammarti@di.unipi.it

www.ascens-ist.eu/ncpi

NCPi - Network-Aware Process Calculi
NCPi is a proper extension of the pi-calculus with an explicit notion of
a network: network links and nodes are represented as names, in full
analogy with ordinary pi-calculus names, and observations are routing
paths through which data is transported. It provides a convenient
framework for modeling systems with programmable network
infrastructure, such as Peer-to-Peer (P2P) overlay networks.

NCPi comes in two versions, with different purposes: a basic one and
a concurrent one.

The basic version is closer to the pi-calculus, and it has been used
to investigate operational models with explicit network resource
allocation. Two classes of models have been considered: coalgebras
over presheaves and History-Dependent (HD-) automata. In particular,
we have given a well-behaved categorical model of network resource
allocation in a coalgebraic setting. Exploiting a standard categorical
equivalence, we have derived a History-Dependent (HD-)Automaton
from the coalgebra. HD-automata are nominal automata that, in many
cases, admit a minimal representative with finitely-many states, thus
suitable for verification. The mentioned categorical equivalence is very
general and in principle could be used for other resource-aware calculi.

The concurrent version has been introduced to describe more realistic
routing behavior. It has several additional features with respect to the
basic version, the most important one being the possibility of observing
multiple concurrent transmissions, which makes the semantics
compositional.

This concurrent version of NCPi has been used to model the P2P
architecture Pastry, which is part of Autonomic Cloud. In particular, some
components and operations of peers have been modelled: routing data
structures and their operations, reconfiguration due to joining peers
and the provision of routing functionalities to applications. Moreover, a
simple Distributed Hash Table has been modelled, where lookups are
represented as routing paths from the peer that has invoked the lookup
to the one responsible for the target key. A convergence property of
routing has been proved both at the peer level, to prove correctness of
the join procedure, and at the DHT level, to show that lookups always
reach their destinations.

12

Università di Pisa

Ugo Montanari
ugo@di.unipi.it

www.ascens-ist.eu/eae

Energy-Aware Ensembles for Regenerative
Power Production
The introduction of electric power production from renewable sources
requires a proactive role of prosumers (producers/consumers) - a kind
of ensemble. An efficient controller has been defined for delaying/
anticipating the production/consumption of a prosumer following the
real-time, distributed power market model proposed by the German
project DEZENT.

The market model determines how steep the cost curve should be
using a reinforcement learning technique. The controller capitalizes on
the (possibly very) different costs of the energy at different times of the
day by concentrating energy consumption/production at the cheapest/
most expensive times. The controller chooses the best energy profile
among those acceptable in terms of existing energy storage items.
They typically include batteries, but also biofuel consumption and
heating/cooling delays.

Extended experimental studies have been carried out based on the
project simulator and on the Java implementation of the optimal
controller. Parameters include the type of experiment (active or neutral,
i.e., placebo-like for comparison) and the scenario, i.e., if a request or
offer is predominant in the market.

In the first graphic, the two upper curves display the cost of energy
at different times on two consecutive days. They show the possible
variations due to the market model. The lowest curve shows the optimal
profile based on the cost of the first day. In the second graphic, it is
shown that, in spite of the difference in cost between the two days, the
profile computed in terms of the cost of the first day, when employed on
the second day, is remarkably cheaper that the neutral profile.

13

Verification Techniques for
Self-Aware Systems

UJF-Verimag

Saddek Bensalem
saddek.bensalem@imag.fr

Jacques Combaz
jacques.combaz@imag.fr

www.ascens-ist.eu/smcbip

SMC-BIP - Statistical Model-Checking
Swarm robotics systems usually operate under uncertain conditions
(unknown environment, failures, etc.) so that their behavior can only be
estimated quantitatively in terms of performance metrics (e.g., average
failure rate of the robots, expected energy consumption).

Statistical-model checking (SMC) is a “verification-inspired” approach
that performs quantitative analysis of a system. Like model-checking,
it uses formally-defined models from which it explores the reachable
states. In contrast to standard model-checking, SMC does not require
exhaustive computation of the reachable states to conclude about a
given property. It answers quantitative questions based on partial
state-space coverage, and evaluates confidence in such results based
on stochastic models. SMC tools usually stop the analysis when the
desired degree of confidence (provided as an input parameter) is
reached.

The statistical model-checking tool SMC-BIP has been applied to a
swarm robotics scenario in which marXbot robots are deployed in
a given arena to find victims. The stochastic model built for such a
scenario includes a faithful model of the sensing capabilities of the
marXbot. By using SMC-BIP, the performance of different algorithms
used for implementing individual robot behavior can be compared
which has proven to be very helpful for optimizing solutions to the
scenario.

(a) straight (b) random
(c) random + scanner

(a) landmarking (b) landmarking + communication

14

Charles University of Prague

Jan Kofron
jan.kofron@d3s.mff.cuni.cz

www.ascens-ist.eu/gmc

GMC - Gimple Model Checker
GMC is an explicit model checker for the C and C++ languages. It is
built upon the Gimplex++ representation of source code, an extension
of the intermediate representation being used in the GCC project; the
intermediate representation is called Gimple — that is where the GMC
name stems from.

GMC is able to check the sources in C and the C++ language given that
they do not contain calls to unsupported library functions. It supports
verification of multi-threaded programs.

Even though support for POSIX threads is implemented, GMC
provides general support for threading libraries, restricting the support
incorporated to providing mapping of the thread functions (create
thread, thread join, wait, ...) to the real function names in the form of
a text file. GMC can verify that in any thread interleaving, no deadlock
appears and no assertion stated in the code is violated.

UJF-Verimag

Saddek Bensalem
saddek.bensalem@imag.fr

www.ascens-ist.eu/compver

Compositional Verification
Formal verification corresponds to establishing a proof that a given
system satisfies properties characterizing its correctness. It considers a
(formal) model describing all possible system behaviors, and a means of
proving correctness for all of them. To cope with the inherent complexity
of such a task, it is always beneficial to perform verification at design
time on high-level models, and to generate correct-by-construction
implementations from those models.

Compositional verification is also a means to address state-space
explosion and complexity in general. It relies on the characterization of
local properties of the system, which avoids monolithic verification of
the composed system. Such properties are then combined efficiently to
establish global properties. In addition, it can be applied incrementally;
i.e., if components are added to a system, the verification process re-
uses properties already established for existing components.

For timed systems, verification is even more difficult since components’
behavior and their correctness depend also on time. The major problem
when verifying timed systems compositionally is capturing the relations
between the local timing of the components induced by components’
synchronizations.

Compositional verification has been successfully applied to a non-trivial
coordination protocol for cooperating robots. It has been shown that
the proposed protocol is safe for a subset of values of its parameters.

15

MultiVeStA - Statistical Model Checking for
Discrete Event Simulators
MultiVeStA is an efficient statistical analysis tool which can be easily
integrated with existing discrete event simulators, enriching them
with distributed Statistical Model Checking capabilities. MultiVeStA
offers: a clean way to integrate discrete event simulators; a language
(MultiQuaTEx) to compactly express many systems properties at
once; the efficient estimation of the expected values of a MultiQuaTEx
expression with respect to an user-specified confidence interval; the
plot of the results in a minimal GUI; a client-server architecture to
distribute simulations.

MultiVeStA extends the VeStA and PVeStA tools, and has been used to
analyze SCEL specifications of collision-avoidance robotic scenarios;
self-assembling robotic scenarios; volunteer cloud scenarios;
reputation-based cloud scenarios; crowd-steering scenarios; public
transportation systems.

IMT Advanced Studies
Lucca

University of Southampton

Andrea Vandin
a.vandin@soton.ac.uk

www.ascens-ist.eu/
multivesta

The picture refers to the collision-avoidance robotic scenario, consisting
of a group of robots moving in an arena. The top part of the picture
depicts six intermediate states with nine random walker robots (the
white circles), and an informed one (the black circle), which perceives
the position of robots in its surrounding environment and selects the
best direction to minimize collisions with other robots.

Two kind of informed robots are considered, with smaller and wider
perception ranges. As expected, the plot in the bottom part of the picture
shows that random walkers (green plot) perform more collisions than
informed robots (red and pink plots for smaller and wider perception
range), and a wider perception range allows for a reduction in collisions.

16

Knowledge Representation and
Reasoning

Lero - University of Limerick

Emil Vassev
emil.vassev@lero.ie

www.ascens-ist.eu/
knowlang

KnowLang - Knowledge Representation
Language
KnowLang is a formal specification language providing a comprehensive
specification model that addresses the problem of knowledge
representation for self-adaptive systems. The complexity of the problem
necessitates the use of a specification model where knowledge can be
presented at different levels of abstraction and grouped by following
both hierarchical and functional patterns. The language imposes a
multi-tier specification model where a knowledge base (KB) composed
of layers of ontologies, operators, and inference primitives is specified.

KnowLang specifies self-* objectives through special policies associated
with goals, situations, actions, metrics, etc. The self-* objectives define
knowledge about what the system should do when particular situations
arise when pursuing a system goal.

KnowLang policies are specified as individual concepts providing
behavior (often concurrent). A policy has a goal, policy situations,
policy-situation relations, and policy conditions mapped to policy
actions where the evaluation of the conditions may eventually (with
some degree of probability) imply the realization of actions. Policy
situations may trigger (or imply) a policy in compliance with the policy-
situation relations. The self-adaptive behavior requires relations to be
specified to connect policies with situations over an optional probability
distribution where a policy might be related to multiple situations and
vice versa.

KB

Knowledges
Corpuses

KB Operators

Inference
Primitives

Domain
Ontology

Logical
Framework

Ask

Tell

Inter-ontology
Operators

Contexts

Metaconcepts

Concept Trees

Objekt Trees

Relations

Predicates

Ambient Trees

Domain Facts

Domain Rules

Domain Constraints

Concepts

Explicit Concepts

Objects

Situations

Groups

Policies

Actions

Events

Metrics

Errors

Goals

17

Lero - University of Limerick

Emil Vassev
emil.vassev@lero.ie

www.ascens-ist.eu/
knowlangr

KnowLang Reasoner
The KnowLang Reasoner supports reasoning about self-adaptive
behavior and provides a KR (knowledge representation) gateway via a
set of special ASK and TELL Operators.

The reasoner operates in the KR Context, a context formed by the
represented knowledge and outlined by the KB (knowledge base). The
TELL Operators feed the KR Context with important information driven
by errors, executed actions, new sensory data, etc. This helps the
reasoner to update the KB with recent changes in both the system and
the execution environment.

The system uses ASK Operators to receive recommended behavior
where knowledge is used against the perception of the world in
order to generate appropriate actions in compliance to some goals
and beliefs. In addition, ASK Operators may provide the system with
awareness-based conclusions about the current state of the system or
the environment, and ideally with behavior models for self-adaptation.

monitoring

recognition

learning

assessment

learning

projection

change tracking

converting raw data to KR Symbols

filtering

event triggering & and raw data passing

raw data gathering via sensors & interaction

As part of the KnowLang Reasoner, we have developed a structured
mechanism implementing awareness by taking into consideration
different stages of the awareness process. This mechanism is built over
a complex chain of functions pipelining the stages of the awareness
process such as: raw data gathering; data passing; filtering; conversion;
assessment; projection; and learning.

For awareness-based conclusions, the KnowLang Reasoner implements
a Pyramid of Awareness mechanism forming the mechanism that
converts raw data (facts, measures, raw events, etc.) into conclusions,
problem prediction and eventually may trigger learning.

The different pyramid levels represent awareness functions that
can be grouped into four function groups monitoring, recognition,
assessment, and learning, all structured in a special awareness control
loop. Aggregation can be included as a subtask at any function level.
The learning functionality is implemented as probability redistribution in
both policies and situations.

18

Ludwig-Maximilians-
Universität München

Matthias Hölzl
hoelzl@pst.ifi.lmu.de

www.ascens-ist.eu/iliad

Iliad & Poem - Learning & Reasoning at Runtime
Some behaviors of ensembles operating in open-ended, changing
environments cannot be completely specified during their design.
Instead, the ensemble has to learn from experience and reason about
novel situations as they arise. Using this approach, initial behaviors are
learned by the ensemble from simulations of likely environments during
design time; at runtime these behaviors are improved as the ensemble
learns how its actual environment differs from expectations.

Iliad is a framework for this style of learning and reasoning. It supports
deep learning and hierarchical reinforcement learning, predicate-logic
reasoning with integrated support for constraint processing, inference
in Bayesian networks, and heuristic planning.

Iliad’s input language is called Poem. In Poem, programmers can
leave choices of actions or values partially unspecified and indicate
which learning or reasoning mechanisms should resolve the non-
determinism of each choice. Therefore developers can either establish
fixed behaviors, indicate design-time preferences or simply state the
possible actions. Iliad will optimize these choices either by reasoning
or by learning from feedback provided by the environment. Given
sufficient knowledge or training, the actions determined by Iliad will
converge to those with the highest expected value for the environment
in which the ensemble is operating.

For example, in the rescue scenario, robots may combine map-based
navigation planning with learning and reasoning about the environment to
update inaccurate design-time assumptions with data gained at run time.
This often leads to significantly better initial performance when compared
to solutions solely based on learning; but even if the initial knowledge
is highly inaccurate the learning mechanism will cause the behavior to
improve as the robots obtain information about their environment at run
time. In the depicted example, the design data was randomly initialized;
in spite of this the performance of the system approached the optimal
performance after a relatively short time.

Iliad can either be used as a knowledge repository for SCEL or as a stand-
alone reasoner. Poem code can also be generated from executable parts
of SOTA/GEM specifications written in the Prototype Verification System
(PVS) specification language.

19

Charles University of Prague

Petr Tůma
petr.tuma@d3s.mff.cuni.cz

www.ascens-ist.eu/spl

Monitoring, Awareness and Self-
Adaptation

SPL - Stochastic Performance Logic
SPL is a many-sorted first-order logic designed to reason about ob-
served performance using intuitive expressions such as “A is faster than
B on workload X”. The logic relies on a sample-based interpretation,
where the individual performance relations are evaluated using sta-
tistical hypothesis testing on collected measurements. The relations
are evaluated in the context of a particular workload, parametrized by
settings such as input data size.

Both declarative annotations and explicit evaluation are used to
connect the logical formulas to code in application development and
execution - as is the case in the examples of adaptive components and
connectors. In both cases, code is associated with expressions that
capture assumptions about performance and therefore help interpret
the observed performance in the light of the available adaptation steps.
These steps can include code adaptation identified by the IRM as part of
the standard application execution, as well as manual code adaptation
that the IRM delegates back to the ensemble development process.

application component
provided and required
interfaces

framework component
provided and required
interfaces

framework
object
instance

connector between
component interfaces

SPL is implemented in prototypes that use automated code instrumen-
tation through the Domain-Specific Language for Bytecode Instrumen-
tation tool (DISL) to monitor the application. These prototypes demonstrate
the use of the formalism in the testing domain, where assumptions about
the application and environment performance made in the early stages of
the development life cycle can be checked through testing.

instrumented
component

adaptive
component

if spl.eval () ...

self-aware
component

...

...

m
on

ito
rin

g

SPL formula object
instantiated in

adaptive component

co
m

p
on

en
t

fr
am

ew
or

k
ru

nt
im

e

SPL formula object
instantiated by

component
framework
in adaptive
connector

trend
tracking

data model

evaluates formula

evaluates
formula

fetches data

fetches data

fetches data

fetches data

realizes adaptive connector

M

M

M

M

M

20

Università degli Studi di
Modena e Reggio Emilia

Nicola Bicocchi
nicola.bicocchi@unimore.it

www.ascens-ist.eu/sap

Self-Awareness Platform
The Self-Awareness Platform is a self-aware and reconfigurable
architecture for context awareness. It is a Java-based, lightweight and
self-* framework whose purpose is to simplify experimental prototyping
of context-aware applications to better understand the whole concept
of context-awareness and its applicability in ubiquitous computing. In
particular, programmers are allowed to completely decouple application
logic from context understanding.

The framework allows speedy selection of data sources, connecting
them to general purpose classifiers, and providing applications with
contextual information encoded in a structured way.

Furthermore, the framework is highly dynamic and reconfigurable;
modules can be loaded, unloaded and reconfigured at runtime using
state-based automata. Specifically, depending on their function they
can be hosted in three different layers, namely sensor, classification
and awareness layers, and provide structured labels to applications.

Experiments have shown that the approach is effective in improving:

• energy efficiency on constrained devices

• classification precision and recall in several applications

• improving software engineering of pervasive applications

App NApp 1

Location_1 Location_2

Location_3 Location_4 Speed Activity_1

Vehicle

Talking

GPS Accelerometer Microphone

Sensor Layer

Classification Layer

Awareness Layer

Applications

Information
Fusion

Control
Component

Reconfiguration
Strategies

Situational
Information

Classifiers
Operation

Information

Sensors
Operation

Information

Reconfiguration
Strategies

FSA

S1 S2

S3 S4

21

Fokus - Fraunhofer
Gesellschaft

Dhaminda Abeywickrama
dhaminda.abeywickrama@
gmail.com

www.ascens-ist.eu/avis

AVis - Awareness Visualizer Plug-in
The Awareness Visualizer plug-in facilitates

• the monitoring of changes to awareness data of an autonomic
system executed in the jRESP runtime environment

• the visualization of adaptation at runtime using a graph-like
representation

A key benefit here is to provide feedback to the engineer about the
behavior of the complex awareness mechanism used, thus helping the
decision-making process. This feedback can also improve any offline
activities on the redesign of the system, verification and redeployment.

The AVis plug-in has been implemented as an Eclipse rich client
application with GEF capabilities to support visualization. There are
three main components in the plug-in – Model, View and Controller.

The Model is the data portion of the plug-in containing plain old java
objects (POJOs) created for the monitored awareness attributes.
These are instantiated at runtime using the knowledge attributes in
the interface of a node in jRESP. The Observer-observable pattern
in Java is employed for listening and notifying the state of the POJO
awareness objects in the AVis plug-in when the corresponding state of
the attributes in the node’s interface is updated.

The View part draws the graph where the model is represented as
nodes and connections in the graph. The Controller binds the model to
the view, and for this, it listens for model changes and updates the view.

Disaster scenario in jRESP (left) and the AVis plug-in (right).

22

Ludwig-Maximilians-
Universität München

Nora Koch
kochn@pst.ifi.lmu.de

www.ascens-ist.eu/edlc

EDLC - Ensembles Development Life Cycle
The EDLC is a conceptual framework for autonomic systems that goes
beyond addressing the classical phases of software development (like
requirements elicitation, implementation and testing) as it also tackles
aspects such as self-awareness, self-adaptation and self-expression.
Such properties have to be considered from the early design phases
to capture how the system should be adapted and how the system
and environment should be observed in order to make awareness and
adaptation possible at runtime.

Design activities comprise requirements engineering, modeling
& programming, and verification & validation phases, which are
performed offline. Runtime issues focus on activities performed online,
such as monitoring, awareness and self-adaptation of ensemble-based
software systems. Software deployment and the system feedback
provide the connections between the online and offline activities.

The life cycle is represented as a “double-wheel” with two “arrows”
between the wheels, providing three different feedback control loops:

• at design time which enables continuous improvement of models
and code using the results of verification and validation and
allowing for changing requirements;

• at runtime that implements self-adaptation based on awareness
about the system and its environment;

• from the runtime back to improve the design with mechanisms
that change architectural models and specification according to
the runtime behavior of the continuously evolving system.

All ascens methods, tools and platforms focus at least on one EDLC
phase, some of them on two or more, and several can be used in a tool
chain – complementing each other – for the development of self-aware
and self-adaptive systems.

Engineering Ensembles

23

Charles University of Prague

Tomáš Bureš
bures@d3s.mff.cuni.cz

www.ascens-ist.eu/deeco

DEECo - Dependable Emergent Ensembles of
Components
DEECo is a component framework where both component and
ensemble are first class concepts. Each component constitutes state,
referred to as knowledge, and behavior, expressed in terms of a set
of processes. To achieve component interaction, components are
dynamically composed into ensembles.

Membership of a component in an ensemble is declaratively expressed
in terms of the membership condition, defined on component interfaces,
which provide a partial view of component knowledge. Members of an
ensemble interact in terms of implicit knowledge exchange, which is
handled by the execution environment.

In DEECo, a component operates autonomously, based solely on
its own knowledge, which is implicitly updated depending on the
ensembles the component belongs to at a particular moment. A single
component can be involved in several ensembles at the same time.

In order to bring the DEECo concepts closer to regular software
development for evaluation and experimentation, its execution
environment (jDEECo) has been created in Java. The DEECo concepts
(components and ensembles) are mapped to Java via an internal
domain-specific language realized by Java annotations. The core
responsibility of the runtime environment – execution of knowledge
exchange – is implemented in two ways: via distributed tuple-space
middleware or via periodic broadcast, supporting deployment on
mobile ad-hoc networks (MANETs).

24

Ludwig-Maximilians-
Universität München

Annabelle Klarl
klarl@pst.ifi.lmu.de

www.ascens-ist.eu/helena

Helena Modeling Approach
The Helena approach is a formal modeling technique for ensembles
that is centered around the notion of roles. Ensembles are built on
top of a component-based platform as goal-oriented communicating
groups of components. The functionality of each group is described in
terms of roles which a component may dynamically adopt. Therefore,
components can freely join and leave ensembles without breaking the
overall functionality of the collaboration as long as another component
takes over the abandoned role.

Components also dynamically adapt to new situations by changing
their roles or by concurrently playing several roles (maybe in different
ensembles) at the same time.

For example to retrieve a file from a peer-to-peer network storing files,
such an ensemble is dynamically formed on top of the basic peer-to-
peer platform. Peers need to adopt three different roles to first request
the address of a provider from the network (via routing the request
through the network) and then to request the file directly from the
provider.

Ensembles can be executed with our Java framework jHelena, which
transfers the role concept to object-oriented programming and follows
the rigorous semantics of Helena models. Helena models can be
described either graphically in a UML-like notation or in a domain-
specific language fully integrated into the Eclipse Development
Environment. A code generator transforms those models to jHelena
code for execution.

All project partners

Matthias Hölzl
hoelzl@pst.ifi.lmu.de

www.ascens-ist.eu/patterns

Pattern Catalog
ascens provides a wealth of results for all phases of the development
process. These research results are published in the scientific literature
and documented in the ascens user guides and tutorials. However,
for developers not intimately familiar with the entire body of the
project’s work it may sometimes be difficult to see which techniques
are appropriate for a concrete development problem they are facing, or
even that a technique addressing their specific problem exists.

Our catalog of design and development patterns addresses various
problems faced by developers, gives solutions based on techniques
developed by the ascens project, or sometimes well-known solutions
that are applicable to ascens topics but where the applicability may
not be obvious, and details the trade-offs that the solution implies.

The pattern catalog allows developers to easily find and evaluate which
techniques are appropriate for their specific design situation.

To simplify the use of the pattern catalog, we have developed the
ascens Pattern Explorer (Apex), a web application that allows full-
text search across all pattern descriptions in addition to links between
patterns.

25

Università degli Studi di
Modena e Reggio Emilia

Franco Zanbonelli
franco.zambonelli@unimore.it

Mariachiara Puviani
mariachiara.puviani@
unimore.it

www.ascens-ist.eu/adapatt

Architectural Adaptation Patterns
Patterns are able to describe generic solutions for a recurring design
problem, so their use in designing self-adaptive systems is very
relevant. Moreover, an adaptive architectural pattern is a conceptual
scheme that describes a specific adaptation mechanism: it specifies
how the component/system architecture can express adaptation.

Feedback loops provide the generic mechanism for adaptation and
make it possible to create flexible runtime solutions. It consists of the
continuous monitoring of the system and the application of corrections
in order to approach the goal. Moreover it allows a system to become
self-aware with respect to the quality of its operations, and pro-active if
should there be any problems.

When developing an intelligent distributed system that needs to be
adaptive, the use of an appropriate pattern that will enact adaptivity
will help developers in their work. The pattern permits the developer
to be guided to make the system exhibit a required behavior, even
when unexpected situations occur. Moreover, a very important task
for developing an appropriately performing self-adaptive system is to
understand which pattern to choose.

The following taxonomy table arranges adaptation patterns in different
levels:

• the single component level – first row;

• the ensemble level where the environment is considered as the
means of adaptation (e.g., a bio-inspired system) – second row;

• the ensemble level where adaptation is delegated to an external
agent called an Autonomic Manager (AM) that manages all the other
agents (e.g., a centralized system with regard to the adaptation
aspects) – third row;

• the ensemble level where adaptation is delegated to the agents
themselves though their direct communication of adaptation
mechanisms – fourth row.

26

Università degli Studi di
Modena e Reggio Emilia

Victor Noël
victor.noel@irit.fr

Franco Zambonelli
franco.zambonelli@unimore.it

www.ascens-ist.eu/sasoe

SASOE - Design Guidelines and Strategy for
Engineering Emergence
These guidelines and strategy aim to guide engineers designing self-
adaptive, self-organising ensembles exhibiting emergence (SASOE),
as for example in the victims rescuing scenario of the ascens swarm
robotic case study.

Engineering support is provided at the architectural level by rationalizing
and explaining how the decomposition of an ensemble in components
is related to the problem that has to be solved. In practice, this is useful
for documenting and understanding the design choices made by the
engineer; but more interestingly, this can be used as a strategy to follow
in order to make such choices. The main idea is to exploit the description
and the organization of the problem to be solved (i.e., the requirements
to answer and in which context) to drive the decomposition.

Using self-organization – to handle the complexity and dynamics of
the system environment and requirements – is a choice that is made
at the very beginning of the development. This implies that the design
activity must focus at the local micro-level of the components without
prejudging how the actual global macro-level function of the ensemble
is realized at runtime, making it emergent from an engineering point-
of-view.

The first design activity is to decompose the system by choosing
the components and how they relate to each other: the impact of
this choice is of high importance for the successful functioning of
the complete system. This decomposition activity is usually done
in an non-rationalized ad-hoc way: in response to that, we propose
these guidelines and strategy in order to enable engineers to produce
complex software of quality.

Problem

Underspecifiable
requirements

Other Requirements,
constraints and context

Engineer
SASOE Decompose

Design
self-organization

Designed SASOE
(micro-level)

Design constraints
of SASOE

Descomposition
and pre-solved

behavior

Self-organizing
behavior

Macro-level
behavior

has

has

exploits

implies

has

has

results inresults in

results in

conforms to

has

has

answer at design

answer at runtime

constrains
possibilities

Strategy

exhibits

supervenes
on

relies
only on

Engineering
Activity

Design (C&C)
Artefact

Requirements
of Constraints

Runtime
Behavior Strategy

Micro-level
behavior

27

Ludwig-Maximilians-
Universität München

Philip Mayer
mayer@pst.ifi.lmu.de

Zimory GmbH

José Velasco
velasco@zimory.com

www.ascens-ist.eu/cloud

A Decentralized and Resilient Autonomic Cloud
The cloud case study of ascens realizes a decentralized and resilient
autonomic cloud – a distributed software system able to execute
applications in the presence of a permanently changing network
and node infrastructure and thus difficulties such as leaving and
joining computers, fluctuating usage, and applications with different
requirements.

For the realization of this vision, ascens integrates cloud computing
with voluntary computing and peer-to-peer computing and relies on
nodes which are autonomic in their operation. In particular, nodes are
self-aware of changes in load (arising either from cloud applications
or from local applications external to the cloud) and in the network
structure (i.e., nodes coming and going), which calls for self-healing
properties.

Case Studies

To prevent data loss in cases where nodes drop out of the system,
redundant data storage has been added. Finally, executing applications
in such an environment requires a fail-over solution or self-adaptation
of the cloud to provide application execution resilience.

The ascens methods applied to the “autonomic cloud” endows
clouds with a more dynamic and open functionality while at the same
time maintaining the key benefits of a cloud as a reliable and flexible
approach for using third-party resources and services.

The case study is realized in a prototype implementation called the
“Science Cloud Platform” (SCP). The SCP is able to run on both
physical and virtual hosts; the latter by using an Infrastructure-as-a-
Service (IaaS) system such as the Zimory Cloud.

28

Université Libre de Bruxelles

Marco Dorigo
mdorigo@ulb.ac.be

École Polytechnique
Fédérale de Lausanne

Francesco Mondada
francesco.mondada@epfl.ch

www.ascens-ist.eu/swarms

Collective Swarm Behaviors
Large multi-robot systems (“robot ensembles” or “robot swarms”) have
the potential of displaying desirable properties, such as robustness
to individual failures through redundancy, and enhanced performance
through parallelism and cooperation. Realizing such potential is
challenging because of the lack of sound design methodologies. The
aim of the robotics case study is to apply the methods developed by
the partners of the ascens project to validate them and obtain novel,
more robust behaviors for robot ensembles.

Université Libre de Bruxelles

Carlo Pinciroli
carlo@pinciroli.net

www.ascens-ist.eu/argos

ARGoS - Autonomous Robots Go Swarming
ARGoS is an efficient, flexible, and accurate physics-based simulator
for large robot swarms. The third version of ARGoS is one of the results
of ascens. ARGoS is designed to be accurate, scalable, and flexible.

ARGoS can simulate thousands of robots in real-time on an average
computer. Its architecture is multi-threaded and completely modular.
Among its unique features, in ARGoS it is possible to partition the virtual
space into regions managed by different physics engines running in
parallel. ARGoS is open source software.

Mobsya

Michael Bonani
michael.bonani@mobsya.org

www.ascens-ist.eu/marxbot

Magnetic Gripper for Marxbot Modular Robot
For the swarm robotics cases study, a new robot module called
“magnetic gripper” has been developed. This module is designed to
allow a robot ensemble to manipulate objects and build structures.
To facilitate grasping, the gripper is based on a magnetic switch that
enables and disables a magnetic field.

The module has 3 degrees of freedom (lifting, tilting, and rotating with
respect to the robot base). The module has sensing capabilities through
1 force sensor on the arm, 10 distance sensors, 10 proximity sensors
and 2 microphones.

29

Charles University of
Prague

Tomáš Bureš
bures@d3s.mff.cuni.cz

Volkswagen AG

Nicklas Hoch
nicklas.hoch@volkswagen.de

www.ascens-ist.eu/sim

Volkswagen AG

Henry-Paul Bensler
henry.bensler@volkswagen.de

Nicklas Hoch
nicklas.hoch@volkswagen.de

www.ascens-ist.eu/
evehicles

Ensembles of Cooperative E-Vehicles
Individual motorized mobility encompasses drivers, vehicles and
infrastructure entities such as car parks, charging stations and roads.
In ascens, these entities are modelled as autonomic components
which have the ability to intelligently pursue a personal objective and
to interact with other components in order to achieve group-level
objectives.

A decentralized approach for the coordination of these autonomic
components gives rise to important software design challenges,
including (1) distributed reasoning design and (2) a system architecture
to efficiently handle knowledge distribution and manage different belief
states between the components.

ascens methods and tools (like simSOTA, SCEL, IRM) address these
software design challenges, thereby enabling an efficient coordination
of vehicles and infrastructure entities in a decentralized manner. The
ascens approach focuses on self-adaptation capabilities of the
vehicles in order to discretely handle failures and provide a seamless
travel experience to the customer.

Runtime Simulation
The e-Mobility case study uses the jDEECo environment to monitor
system states and handle self-awareness and self-adaptation actions
during system runtime. The jDEECo runtime environment employs
DEECo components, such as the “vehicle” component, and DEECo
ensembles such as the vehicle-PLCS (Parking Lot Charging Station)
ensemble, which optimizes the parking choices of an ensemble of
vehicles in reference to the capacity usage of the car parks.

JDEECo embeds the Multi-Agent Transport Simulation (MATSim),
which is an execution environment capturing the physical interaction of
drivers, vehicles and infrastructure components.

30

Università di Pisa

Ugo Montanari
ugo@di.unipi.it

www.ascens-ist.eu/hscsp

HSCSP - Hierarchical Soft Constraint
Satisfaction Problems
In the ascens e-mobility case study, the parking allocation problem
consists of finding the best parking lot for each vehicle. However, a
globally optimal solution may be very expensive to find. For this reason,
two approaches have been proposed, based on the coordination of
declarative and procedural knowledge.

The first approach consists of decomposing the original optimization
problem into local problems concerning its components. Each of
them is solved separately, using the soft constraint logic programming
framework. A coordination strategy, implemented by an orchestrator, is
then used to verify that the local solutions satisfy all global constraints.
If this is not so, parameters of the declarative implementation are
modified and a new feasible (not necessarily optimal) global solution
is computed.

A demonstrator has been implemented, using the CIAO logic
programming system for the declarative part, Java for the orchestrator
part, and the Google map system (for Pisa) to represent the maps, to
compute the best paths and to implement the visual interface.

The second approach consists of representing soft constraint
satisfaction problems as terms of an algebraic specification, similar
to a process calculus. These terms are then inductively evaluated
in a domain of cost functions, where operators are interpreted as
optimization steps.

Using a dynamic programming approach, optimization is then carried
out on these functions. The declarative aspects include heuristic
solutions of the secondary optimization problems and lower dimensional
approximations of the intermediate tables.

31

EDLC Phase Robotics Autonomic Cloud e-Mobility

Requirements

Engineering

SOTA (2)

Gem (3)

Poem (18)

ARE (2)

IRM (3)

IRM (3)

simSOTA (29)

Modeling &

Programming

SCEL (4)

jRESP (5)

FACPL (6-7)

AIA / MAIA (9)

MESSI (10)

Poem / Iliad (18)

ARGoS (28)

SASOE (26)

Adapt. Patterns (25)

Helena Roles (24)

SCEL (4)

FACPL (6-7)

NCPi (11)

KnowLang

Policies (16)

SCEL (4)

HSCSP (30)

Verification &

Validation

SMC-BIP (14)

jRESP Analysis (5)

Comp. Verif. (14)

MultiVeStA (15)

MESSI (10)

jRESP Analysis (5) jDEECo (23)

Deployment ARGoS (28)

Marxbot Magnetic

Gripper (28)

SPL (19)

SCP (27)

Zimory IaaS (27)

jDEECo (23)

MATSim /

Routeplanner (29)

Monitoring ARGoS (28) SCP (27)

Zimory IaaS (27)

SPL (19)

jDEECo (23)

DISL / SPL (19)

MatSim /

Visualization (29)

Awareness Poem (18)

AVIs Plug-in (21)

SCP (27) jDEECo (23)

SPL (19)

Self-

Adaptation

ARGoS (28)

AVIs Plug-in (21)

Iliad / Poem (18)

Zimory IaaS (27)

SCP (27)

jDEECo (23)

IRM (3)

Feedback Poem (18) SPL (19) MATSim (29)

All project partners

Nikola Šerbedžija

nikola.serbedzija@fokus.
fraunhofer.de

www.ascens-ist.eu/tools

Application of Methods, Languages & Tools to
Case Studies
The ascens project developed methods, languages and tools for all
phases of the ensemble development life cycle (EDLC). A rich problem
space of swarm robotics, cloud computing and e-mobility application
domains was used to test and refine the theoretical concepts in
pragmatic settings.

In the final project stage, all three major ascens cases studies were
developed and deployed according to the EDLC methodology. The
following table provides a cross-reference of the use of ascens
methods, languages and tools for each of the case studies and
ensemble development life cycle phases. The table is particularly useful
for identifying which tools could be used in specific phases of the EDLC.

(#): brochure page reference

32

 1.10.2010

31.03.2015

 11

4

2

7

81

21

20

75

30

56

311

6

13

58

215

19

109

8

154

27

57

7

1

100

2

ascens in numbers
Partners and Third Parties

 Universities

 Research organizations

 Companies

 Participating countries

Participants

 Researchers

 Associated researchers

 PhD students

Web presence

 Web pages

 Blog entries

 Links to ascens project site

Publications

 Books/ Proceedings

 Book contributions

 Articles in journals

 Papers in conferences and workshops

 Technical reports

 Joint publications

 Best paper awards

Presentations and tutorials

Software prototypes/products

Courses (based on project results)

Events

 Summer Schools (co-organized)

 ascens Spring School 2015

 Conferences/Workshops (co-organized)

 Fairs/Exhibitions (ICT 2013, CeBIT 2015)

ascens stand - ICT 2013 - Vilnius, Lithuania

All project partners

Nora Koch
kochn@pst.ifi.lmu.de

www.ascens-ist.eu

Authors

Henry
Bensler

Saddek
Bensalem

Jacques
Combaz

Nicola
Biococchi

Andrea
Corradini

Michael
Bonani

Tomáš
Bureš

Dhaminda
Abeywickrama

Roberto
Bruni

Rocco
De Nicola

Marco
Dorigo

Mike
Hinchey

Nicklas
Hoch

Matthias
Hölzl

Annabelle
Klarl

Nora
Koch

Jan
Kofron

Diego
Latella

Michele
Loreti

Philip
Mayer

Francesco
Mondada

Ugo
Montanari

Victor
Noël

Carlo
Pinciroli

Rosario
Pugliese

NIkola
Šerbedžija

Mariachiara
Puviani

Matteo
Sammartino

Francesco
Tiezzi

Petr
Tůma

Andrea
Vandin

Andrea
Margheri

Emil
Vassev

José
Velasco

Martin
Wirsing

Franco
Zambonelli

This project has received funding from the European Union’s Seventh Framework Programme for
research, technological development and demonstration under grant agreement no 257414. This
project is part of the Future and Emerging Technologies Proactive Initiative.

Ludwig-Maximilians-Universität München • Università di Pisa •

Università degli Studi di Firenze • Fraunhofer Gesellschaft • UJF-

Verimag • Università degli Studi di Modena e Reggio Emilia •

Université Libre de Bruxelles • École Polytechnique Fédérale

de Lausanne • Volkswagen AG • Lero - University of Limerick

• Zimory GmbH • IMT Advanced Studies Lucca • Mobsya •

Charles University of Prague

Istituto di Scienza e Tecnologie della Informazione “A. Faedo” •

National Center for Scientific Research • Institut Polytechnique de

Grenoble

Ludwig-Maximilians-Universität München

Institute for Informatics

Prof. Dr. Martin Wirsing

info@ascens-ist.eu

Tel +49 89 2180 9154

Fax +49 89 2180 9175

Rocco De Nicola • Roberto Bruni • Mike Hinchey • Franco

Zambonelli • Saddek Bensalem • Petr Tůma • Nicola Šerbedžija

• Matthias Hölzl • Nora Koch • Martin Wirsing

ascens Consortium

www.ascens-ist.eu

Nora Koch

kochn@pst.ifi.lmu.de

vpdesigns.de

info@vpdesigns.de

Partners

Third Parties

Project coordinator

Work package leaders

Published by

Text editor

Layout

www.ascens-ist.euautonomic service-component ensembles

