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Abstract. Collective autonomic systems (CAS) are adaptive, open-
ended, highly parallel, interactive and distributed software systems. They
consist of many collaborative entities that manage their own knowledge
and processes. CAS present many engineering challenges, such as aware-
ness of the environmental situation, performing suitable and adequate
adaptations in response to environmental changes, or preserving adap-
tations over system updates and modifications. Recent research has pro-
posed initial solutions to some of these challenges, but many of the diffi-
cult questions remain unanswered and will open up a rich field of future
research.

In an attempt to initiate a discussion about the structure of this
emerging research area, we present eight engineering principles that we
consider promising candidates for relevant future research, and shortly
address their possible foundations. Our discussion is based on a develop-
ment life cycle (EDLC) for autonomic systems. Going beyond the tradi-
tional iterative development process, the EDLC proposes three control
loops for system design, runtime adaptation, as well as feedback between
design- and runtime. Some of our principles concern the whole develop-
ment process, while others focus on a particular control loop.

Keywords: Autonomic systems · Awareness · Adaptation · System
development life cycle · Control loops · Engineering principles

1 Introduction

Software increasingly models, controls and monitors massively distributed
dynamic systems. Systems often operate in highly variable, even unpredictable,
open-ended environments. They are based on dynamically forming ensem-
bles: sets of parallel, interactive and distributed components able to form
groups dynamically and on-demand while pursuing specific goals in chang-
ing environments. Each component manages its knowledge and processes (see
Fig. 1). Changing requirements, technologies or environmental conditions moti-
vate ensembles that can autonomously adapt without requiring redeployment or
interruption of system operation. We call ensembles with these abilities Collec-
tive Autonomic Systems (CAS).
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Fig. 1. Two overlapping ensembles [44]

An early vision of autonomic computing was published by Kephart and Chess
in 2003 [42]. This work focuses on the self-* properties of autonomic systems,
such as self-management, self-optimization and self-protection. The authors dis-
cuss a set of scientific challenges, such as learning and optimization theory, and
automated statistical modeling.

In 2009 a Dagstuhl seminar group [16] presented the state-of-the-art and
research challenges for engineering self-adaptive software systems. Specifically,
the roadmap focus on development methods, techniques, and tools that are
required to support the systematic development of complex software systems
with dynamic self-adaptive behaviour. An updated version of the roadmap was
published in 2011 [2].

Recent research has proposed initial solutions to some of these challenges
from the engineering point of view, e.g. [66]. There are, however, still many open
questions like the interplay of static and dynamic knowledge and the building of
societies of systems that require well-founded research in the near future.

In this work we present eight engineering principles that we consider promis-
ing candidates for relevant future research, and shortly address their possible
foundations. These principles are:

P1 Use probabilistic goal- and utility-based techniques
P2 Characterize the adaptation space and design the awareness mechanism
P3 Exploit interaction
P4 Perform reasoning, learning and planning
P5 Consider the interplay of static and dynamic knowledge
P6 Enable evolutionary feedback
P7 Perform simulation and analysis throughout the system life cycle
P8 Consider societies of systems

We base our discussion on a development life cycle for autonomic systems
(EDLC) [32]. In addition to traditional iterative development, the EDLC pro-
poses a control loop for runtime adaptation, as well as feedback between design-
and runtime. Some of our principles focus on a particular control loop while
others concern the whole system life cycle.
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The paper is organized as follows: In Sect. 2 we present a running example
and in Sect. 3 we provide an overview of the EDLC. In Sects. 4 to 7 we discuss
the proposed engineering principles. Section 8 concludes.

2 The Robot Rescue Scenario

Collective autonomic systems have many potential application areas stressing
different aspects of collective adaptation and autonomicity. One domain that
places particularly high demands on systems to adapt autonomously to changes
in their environment, to continuously adjust task priorities, and even to fulfill
requirements that were unknown when the system was deployed is the area of
disaster relief and rescue operations.

We will illustrate the principles we propose with the following disaster relief
example which is presented in more detail in [30]: An industrial complex has been
damaged; workers have been trapped in several buildings and need to be rescued
and spills of various chemicals need to be contained and cleaned up. It is expected
that some damaged parts of the complex will collapse while the rescue operation
is in progress; the rescue team has to take the effects of additional deterioration
of the environment into account. In particular, the rescuers should avoid actions
that damage the environment in a way that might impair the success of the
rescue mission and, if this is beneficial for the progress of the rescue mission,
stabilize parts of the environment that are in danger of collapsing.

Having a swarm of autonomous robots capable of performing these kinds of
rescue missions would allow humans to stay clear of the dangerous parts of the
environment. In some cases it is possible to have remotely controlled robots per-
form part of the work, but this is often not feasible since buildings, chemicals or
radiation may interfere with both wired and wireless remote controls. Therefore,
robots that can perform autonomously would be the most suitable solution.

This scenario illustrates many of the complexities of building collective auto-
nomic systems: The robot rescue swarm is a hybrid system; control has to be
distributed between the individual agents, it is often unclear which tasks the
ensemble of agents should perform and what actions individual agents should
take to further progress of the overall system. The environment is continuous,
stochastic, only partially observable, and highly dynamic. The presence of multi-
ple adaptive agents complicates many issues, since the effects of actions depend
on the adaptations of other agents in addition to the stochastic nature of the
environment, and since multiple agents may compete for the same resources,
even if they try to cooperate on an overall goal. Since agents may be damaged in
the cause of the rescue operation, the system also has to deal with “bad agents”.

3 The Development Life Cycle of Collective Autonomic
Systems

The development of collective autonomic systems goes beyond addressing the
classical phases of the software development life cycle like requirements elici-
tation, modeling, implementation and deployment. Engineering these complex
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systems has also to tackle aspects like awareness and self-adaptation, which have
to be considered from the beginning of the development process. This has already
been recognized by several authors, for example in the MAPE-K architecture [20]
or the life cycles proposed by Inverardi and Mori [36] or Brun et al. [11].

Influenced by these approaches, in previous work we proposed the ensemble
development life cycle (EDLC) for autonomic systems, which is based on control
loops for the design, runtime and evolution [32]. It can graphically be represented
as shown in Fig. 2. The left cycle represents the design loop and the right one
represents the runtime loop. Both loops are connected by a third evolutionary
loop, consisting of system deployment to runtime and feedback from runtime into
system design.

Fig. 2. Ensemble Development Life Cycle (EDLC)

During the design process, work at multiple levels of abstractions and details
has to be undertaken simultaneously, providing the basis for the runtime appli-
cation, which has to be able to monitor the own behaviour and the behaviour of
the environment, to reason on these observations, to trigger the learning process,
and to adapt to the changes according to the results of the carried out reasoning.
System design benefits from the runtime process, too, as feedback can be used
to reassess the (adaptation) requirements and the corresponding models.

In summary, we have identified three control loops and propose a software
development life cycle for collective autonomic systems based on these three
types of control loops: design, runtime and evolution.

Design. The offline phases comprise requirements engineering, modeling and pro-
gramming, and verification and validation. Models are usually built on top of the
elicited requirements, mainly following an iterative process, in which validation
and verification in early phases of the development are highly recommended, in
order to mitigate the impact of design errors. A relevant issue is then the use of
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modeling and implementation techniques for adaptive and awareness features.
Our aim is to focus on these distinguishing characteristics of collective autonomic
systems along the whole development cycle.

We emphasize the relevance of mathematically founded approaches to val-
idate and verify the properties of the CAS and predict the behaviour of such
complex software. This closes the cycle, providing feedback for checking the
requirements identified so far or improving the model or code.

Runtime. The online phases comprise monitoring and interaction, awareness
and self-adaptation. They consist of observing the running system and the envi-
ronment, reasoning on such observations, and using the results of the analysis
for adapting the system and computing data that can be used for feedback in
the offline activities.

Evolution. Transitions between online and offline phases can be performed as
often as needed throughout the system’s evolution feedback control loop, i.e.
data acquired during the runtime cycle are fed back (feedback) to the design
cycle to provide information for system redesign, verification and redeployment
(deployment).

EDLC and Engineering Principles. We outline the relation of our engineering
principles for CAS and the EDLC.

– Design loop: Principles P1 and P2 (use of goal- and utility-based techniques,
and characterization and design of adaptation and awareness mechanisms) are
mainly applicable in the design loop. They are discussed in Sect. 4.

– Runtime loop: Principles P3 and P4 (the interaction between agents, the sys-
tem and the environment, as well as reasoning, learning, and planning) are
typical for the runtime loop. They are discussed in Sect. 5.

– Evolution loop: Principles P5 and P6 (interplay of static and dynamic knowl-
edge, and the evolutionary feedback) support the evolution loop. They are
discussed in Sect. 6.

– All loops: Principles P7 and P8 (simulation and analysis throughout the sys-
tem life cycle, and consideration of societies of systems) are applicable to all
phases of the EDLC. They are discussed in Sect. 7.

The Engineering Principles in the Running Example. We briefly illustrate here
how the principles apply to our running example.

We start in the design loop with the specification of requirements such as
localization and transport of victims using a goal-oriented approach [1,43]: Goals
are identified and subsequently refined. In the robot rescue scenario, initial goals
might state the number of victims that the robot swarm should be able to rescue
depending on properties of the high-level location graph; later this goal might
be detailed in terms of the detailed topography of the underlying map. It is
often not possible to guarantee that the system will reach its goals, therefore the
designers have to resort to probabilistic characterization. This leads to principle
P1: Use probabilistic goal- and utility-based techniques.
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During the requirements engineering phase, we also need to decide in which
environments the system can operate, and what kind of performance we want
to achieve in different environments. For example, we need be clear whether
the robot swarm is tailored to one particular site or whether it should be able
to operate in any site not exceeding a certain size; similarly we need to detail
with which kinds of obstacles, damage or environmental danger the swarm can
deal, whether it can operate in the presence of other robot rescue swarms or
human rescue personnel, etc. In more technical terms, we need to define the
adaptation space and the adaptation requirements, as expressed in principle P2:
Characterize the adaptation space and design the awareness mechanism.

Since in the rescue scenario a large number of robots may act simultane-
ously, direct communication is often not a feasible strategy. Instead the robots
could leave marks in the environment as sources of information for other agents,
resulting in stigmergic communication. This interaction with the environment
motivates principle P3: Exploit interaction.

In the dynamically changing environment in which the robots operate, it is
difficult to specify beforehand the precise behavior of the robots. For example,
victims will act on their own, continuously creating new situations for robots to
cope with. This yields principle P4: Perform reasoning, learning and planning.

Nevertheless, complex tasks require modeling before deployment, acquir-
ing runtime information and feeding back this information for further offline
improvement of the model. In fact, runtime machine learning can be very useful,
but its effectiveness is highly dependent on the quality of the model. However,
the quality of the model can only be assessed and improved with the use of
runtime data [30]. This is expressed in principle P5: Consider the interplay of
static and dynamic knowledge.

These models and behaviors learned while operating should be transfered
back to the design loop to be used in future iterations. This mutual influence of
design and runtime is captured in principle P6: Enable evolutionary feedback.

The principles motivated so far yield systems with highly emergent behav-
ior. Thus we propose principle P7: Perform simulation and analysis throughout
the system life cycle. This supports developers in better understanding the sys-
tem’s dynamics and error conditions. Simulation data can also be used to train
adaptive components of the system.

The open-ended environment and possible interaction with other systems
leads to principle P8: Consider societies of systems. For example, rescue teams
of multiple organizations may be deployed to the same disaster site without
previous knowledge of each other.

4 Design Loop

Two principles address design-time concerns that support runtime adapta-
tion and evolution: probabilistic goal- and utility-based techniques (P1), and
the characterization of the adaptation space and the design of the awareness
mechanism (P2).
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4.1 Use Probabilistic Goal- and Utility-Based Techniques

Motivation. Collective autonomic systems are typically built to satisfy complex
needs that cannot easily be addressed by more static, monolithic systems. Their
requirements consist of hard constraints that must not be violated by the system
and soft constraints that describe behaviors that should be optimized.

Hard constraints can be expressed as formulas in an appropriate logic that
describe properties of the system that should be maintained, avoided or reached
(c.f. goal-directed requirements acquisition [22]). A maintain constraint for a
robot in the rescue swarm might be to never run out of battery power; an
avoid constraint to never injure a rescue worker. Soft constraints are commonly
expressed as functions that the system should optimize (see e.g. [23, p. 365]), for
example the number of victims rescued by a robot. Most of the time, the soft
constraints in CAS describe multicriteria optimization problems. In our scenario,
rescuing as many victims as quickly as possible and avoiding damage to itself
are competing optimization objectives for individual robots.

Having multiple competing objectives is typical for any requirements spec-
ification, since trade-offs between, e.g., possible features, system performance
and size, and development time are common for most development tasks. But
for traditional systems these trade-offs can be resolved during design time and,
while the choices made to resolve them shape the resulting system, they don’t
have to be considered while the system is operating.

For CAS it is important to be more explicit about the competing require-
ments for several reasons, such as: 1. A flexible system requires the possibility to
weight different criteria according to situation and/or current requirements. This
weighting is enabled by explicit distinction of the different optimization criteria.
2. Goals and activities of different agents are intertwined and may lead to emerg-
ing phenomena that cannot be derived from properties of the individual agents
but only from the system as a whole. Consideration of these kinds of effects by
the agents themselves will become increasingly important as systems become
more autonomic and adaptive; doing so without an explicit representation of the
desired system properties is unlikely to yield favorable results.

We are typically concerned with the behavior of the whole system and not
just the software controlling the system, hence most constraints have to take
into account physical properties of system components and failure probabilites.
Purely goal-based specification can only establish very weak properties. A more
likely specification for a CAS would define a required quality of service, e.g., the
swarm has to rescue 80 % of the victims with a probability of 95 %.

Therefore, goal and utility-based techniques that explicitly represent the con-
straints and optimization choices a system faces are more important for CAS
than for traditional systems. Given these observations, the first principle we
propose is:

Principle P1. Requirements specifications for CAS should be expressed in terms
of probabilistic goals and utility functions.
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Foundations. Goal-based approaches to requirements analysis, such as KAOS
[46], have been widely used in traditional software engineering, and more recently
probabilistic variants of these approaches have been proposed [14]. Some goal-
based approaches that are concerned with modeling CAS, such as GEM [34], allow
modelers to directly express optimization goals in terms of expected utilities.

Most techniques for utility-based modeling and analysis belong to the area
of operations research [28]. In particular, expected utility theory [9] and the
more general prospect theory [4,40] form the theoretical basis for basing system
analysis and design on utility functions. Multicriteria optimization is extensively
discussed in [41]. Optimization of probabilistic decisions is often treated in the
special context of Markov Decision Processes (MDPs) [56]; stochastic games [49]
generalize MDPs and repeated games and are therefore often a more appropriate
setting for probabilistic decision problems with multiple agents. Solution tech-
niques for MDPs (and generalizations of MDPs) based on reinforcement learning
will be discussed in Sect. 5.2.

Using goal- and utility-based techniques raises the question 1. how system-
level goals or utility functions can be decomposed into goals for individual agents,
2. how high-level individual goals or utility functions can be refined into lower-
level goals/utilities and eventually individual tasks, and 3. how run-time decision
making itself is distributed among the agents in a system. In particular for goal-
based techniques there exist a number of multi-agent oriented programming
languages and agent-oriented software engineering techniques that address these
questions, but most of them are tailored towards deterministic problems and don
not address the probabilistic case. The collection [65] contains several relevant
summary articles.

4.2 Characterize and Design Adaptation and Awareness

Motivation. The reason for developing Collective Autonomic Systems is often
that we need systems that can adjust to many situations, that are resilient to
partial failures, and that can easily be changed and enhanced while they are
operating. Following [34], we call the range of environments in which a system
can operate together with the goals that the system should be able to satisfy in
each environment the adaptation space. It is important to note that typically the
goals and utility functions of a system depend on features of the environment in
which it is operating: The more difficult the environment is for the system, the
lower the expected utility we can expect it to achieve.

As in [33], we call the parts of the system that are responsible for maintaining
information about the environment in which it is operating its awareness mecha-
nism. To ensure that the system achieves its desired performance, the awareness
mechanism has to provide enough information in each of the possible environ-
ments in the adaptation space so that the system can satisfy the goals for that
environment.

We often discover new requirements and environmental conditions that influ-
ence the capability of a CAS to satisfy its goals in the runtime cycle. When this
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happens, we need to be able to determine whether the system can still success-
fully operate under the newly discovered conditions, and, if this is not the case,
which changes to the system can restore its capabilities most economically. This
is easiest to achieve when the adaptation space is explicitly specified and the
awareness mechanism is designed to recognize the different types of environ-
ments and adjust the system’s behavior accordingly:

Principle P2. Characterize the adaptation space and design the system’s aware-
ness mechanism.

Foundations. The notions of adaptation space and awareness mechanism are
introduced in [34] and [33], respectively. The connection between the so-called
“black-box” view of adaptation that is expressed via adaptation spaces and the
“white-box” view of adaptation that is concerned with mechanisms to achieve
adaptation is explored in [12].

Bruni et al. [13] presented a control-data-based conceptual framework for
adaptivity. They provide a formal model for the framework based on a labelled
transition system (LTS). In addition, they provide an analysis of adaptivity
from the control data point of view in different computational paradigms, such
as context-oriented and declarative programming.

Techniques for developing awareness mechanisms are varied and partially
domain dependent. For the robot case study, probabilistic state estimation
and filtering [62] are particularly relevant. Techniques for reasoning, planning
and learning that can be used in a wide variety of awareness mechanisms are
described as part of principle P4 in Sect. 5.2.

5 Runtime Loop

Two principles are mainly rooted in the runtime loop: the exploitation of the
interaction between agents or the system and its environment (P3) and the use
of reasoning, learning and planning techniques at runtime (P4).

5.1 Exploit Interaction

Motivation. Traditionally, the interaction between agents or between a system
and its environment is described in terms of interfaces with protocols that may,
e.g., be expressed as state machines. In CAS these kinds of interactions still exist,
but often agents also have to interact in different ways with the environment or
each other. For example, in the rescue scenario victims may not be able to
communicate actively with the rescue robots, instead the rescuers may have to
analyze their sensor data (i.e., perform a probabilistic state estimation) to detect
the presence of victims and how to rescue them. Similarly, it may not be possible
for rescue robots to directly communicate with all other rescue workers in their
vicinity; they may again have to rely on state estimation to infer their current
activities or intentions. Estimating the internal state of other actors is difficult,
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so we may simplify the task of the observer by signaling the intent or activities
of agents, i.e., by performing the actions in such a way that they are easy to
recognize. In the simplest case this might just consist in turning on a colored
light whenever performing a certain kind of task. For example, a rescue robot
might display a green light when it is searching for victims, a red light while it
is picking up a victim and a blue light when it is transporting a victim to the
rescue zone. More complex behavioral clues are possible and widely observed in
animals.

An example of exploiting the interactions between system and environment
is stigmergy, the process of indirect coordination via manipulation of the envi-
ronment. For example, if a robot locates a victim but has currently no capacity
to rescue the victim, it might change the environment (e.g. by scratching a mark
on the ground) to make it simpler for other agents to locate the victim.

Principle P3. Exploit interactions between agents or between the system and its
environment to improve system reliability and performance.

Foundations. Many of the foundations for exploiting interactions, such as speech-
act theory, signaling, mechanism design, auctions, negotiations or arguments
have been studied extensively in the literature on multi-agent systems, see [60,
65,67] for overviews. The theory of signaling has been extensively studied in
economics and evolutionary biology [19,61]. Mechanism design is concerned with
the development of mechanisms that cause utility-maximizing agents to behave
according to a desired utility function [8,35].

Many bio-inspired or swarm-based approaches to computation exploit inter-
actions to enable groups of agents to perform tasks that are beyond the capa-
bilities of the individual member of the group [7,68]. Stigmergy can frequently
be observed in natural systems [18] and it is an important feature of ant algo-
rithms [25].

5.2 Perform Reasoning, Learning and Planning

Motivation. One approach to cope with complex dynamics and change is to
synthesize system knowledge and/or behavior at runtime. This ensures that the
system can react flexibly to situations that actually occur and focus its computa-
tional effort on concretely encountered problems. Engineering of CAS will require
a deep understanding of the requirements and implications of the algorithms and
frameworks involved in this process. In general, three different aspects of system
synthesis at runtime are abstraction, learning and reasoning. Abstraction means
that a system is able to meaningfully condense or filter perceptions and thus
concentrate cognitive effort on relevant portions of low-level data. For example,
the visual system of a rescue robot might condense the signal of its video cameras
into a short list of relevant objects and their spatial locations.

Based on given abstractions, learning is concerned with the compilation of
runtime data to general knowledge about the environment, e.g. in form of causal
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relationships or probabilistic prediction of dynamics. Learning may be incremen-
tal: Already available models may be refined by a learning process accounting
for currently available information, like a rescue robot updating its maps based
on data gathered while navigating the rescue area.

Reasoning is concerned with the exploitation of available knowledge to gener-
ate new knowledge: For example, a formerly unidentified general causal relation
is deduced from some already available knowledge. Decision making in general,
and planning in particular, are reasoning processes that compile knowledge about
valuable system behavior from existing knowledge. Based on this knowledge, con-
crete system behavior is selected and executed in order to satisfy system goals
as much as possible.

Principle P4. Perform reasoning, learning and planning to enable CAS to
autonomously cope with change and unexpected events.

Foundations. Efficiency of system synthesis through learning and planning is
highly correlating with the representation (i.e. the abstraction) of the problem
at hand. Recently, techniques for representation learning have been successfully
applied to learning abstractions from low-level data (digit recognition [29], speech
synthesis and recognition [24], etc.), yielding systems that closely reach human
performance for particular tasks [45]. Representation learning effectively allows
to identify meaningful patterns in raw data. Performing this process iteratively
yields different levels of abstraction. Final system learning and reasoning can
then be based on learned abstractions. As CAS are potentially designed to be
deployed to unknown and/or changing environments, the ability of autonomous
abstraction from low-level data is expected to be highly valuable.

In the context of CAS, learning is a tool to account for uncertainty in spec-
ification. Domains as the exemplary rescue scenario tend to be highly complex
and hard to be modeled completely accurate. Allowing a system to learn models
about these domains at runtime enables them to potentially recover from mis-
conceptions or errors in the specification made at design time (e.g. via decision
forests [21], Gaussian processes [57] or other machine learning techniques [6]).
CAS also may be expected to operate in environments where external, uncon-
trolled entities interact with them, with potentially conflicting or even adversar-
ial interests. In these cases, learning models of these external agents is essential
to ensure system stability and robustness (see also principle P8 in Sect. 7.2).

Single agent decision making can be driven by model-based reinforcement
learning with open-loop planning, showing promising results in numerous appli-
cation areas [10,64]. These techniques particularly suit the highly dynamic and
probabilistic environments that CAS are typically designed for. Collective learn-
ing and emergent optimization can be achieved with Hierarchical Lenient Multi-
Agent Reinforcement Learning [31]. Here, a special emphasis is given to scalability
issues in the context of CAS.

While representation learning, supervised machine learning and reasoning
each provide powerful tools for their respective problem areas, CAS will require
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Observation Model Action

Abstraction Learning/Reasoning Reasoning

Fig. 3. Interplay of abstraction, learning and reasoning

a deep integration of the aspects involved. Figure 3 illustrates the subtle inter-
play of these fields. The subfields of system autonomy are clearly dependent on
each other: For example, abstraction influences what is learned, but how does
a learned model influence possible changes in abstraction? What ways of com-
bining learned models and decision making are there? Answering questions of
this kind will be essential for engineering, analyzing and understanding CAS.
For recent results combining representation learning and decision making the
context of autonomous game players see [17,51]. Further investigation in this
direction seems a promising venue for research in the field of CAS.

6 Evolution Loop

Our principles for the evolution loop concern the interplay of static and dynamic
knowledge (P5), and a system architecture that enables evolutionary feedback
and management of the system’s evolution (P6).

6.1 Consider Interplay of Static and Dynamic Knowledge

Motivation. In classical engineering, perceptual abstractions and causal mod-
els about system dynamics are usually specified in some particular formalism
at design time. We refer to this kind of specification as static knowledge. CAS
are typically equipped with abilities for gathering and compiling information
about their current execution environment. This enables CAS to build percep-
tual abstractions and causal models at runtime and to optimize their behavior
accordingly (see Sect. 5.2). For engineering CAS this raises the question how to
deal with and integrate these different sources of knowledge.

For example, a CAS in the rescue domain could learn about the influence of
victims’ weights on the success of a transportation task and adjust its behavior
accordingly. While dynamic optimization of this kind seems a valuable property,
the interplay of static specification and runtime optimization is not obvious. For
example, specifying a reward function for providing first aid to an injured victim
could lead to robots that cause injuries intentionally to collect the specified
reward for subsequently providing first aid.
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In order to combine static and dynamic knowledge, we have to ensure com-
patibility of specified and learned representations. CAS have to incorporate spec-
ifications when learning abstractions, and we have to extract useful information
from knowledge dynamically synthesized by a system at runtime. This infor-
mation is fed back to the design cycle, and potentially influences further static
knowledge design.

Also, continuous comparison of expectation and observation enables systems
to detect discrepancies of system design (e.g. knowledge about the environment)
and concrete situation. This may trigger recovery mechanisms by either signaling
the discrepancy to system operators, or by activating autonomous recovery mech-
anisms. For example, a designed environmental model may be autonomously
replaced by one learned from observations at runtime in case the latter becomes
more accurate. Also, this learned model should be fed back into further iterations
of system design and analysis.

Principle P5. Understand, analyze and document the interplay of static and
dynamic knowledge over the whole lifecycle of CAS.

Foundations. For concepts and algorithms used to compile knowledge from run-
time observations, see Sect. 5.2.

To the best of the authors’ knowledge, not much research has yet been ded-
icated to the relation of specification, and representation and model learning.
We argue that researching methods for integrating static and dynamic knowl-
edge is a central challenge for successful development of CAS, in particular the
integration of results from representation learning with manual specifications.

6.2 Enable Evolutionary Feedback and Manage Evolution

Motivation. Systems designers are used to the notion that they iteratively adapt
and improve systems during the development phase, and that they deploy these
improvements as part of a larger system. In this process it is common to move
from information-rich analysis and design models to a runtime representation in
which many of the concerns that are relevant for the system design are “compiled
away,” either by manually implementing the design models or by performing
model transformations into low-level reprentations.

In the EDLC we assume that the developers cannot exactly predict the envi-
ronment in which the system is operating and the policies that the system should
use. Instead the system dynmically improves the actions it takes in response to
various situations and, based on the result of these actions, its model of the
environment. It is an important problem in the development of CAS to ensure
that the notion of autonomous “improvement” of the system agrees with the
goals of the stakeholders, and that learned adaptations can be transferred back
to the design cycle so that they can influence future design choices and persist
over redeployments of and updates to the system. To this end, larger parts of
the design knowledge have to be made explicit and made available to the system
at runtime: When manually designing a rescue robot it may not be necessary
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to provide the robot with the information that further injuring victims is unde-
sirable, since this knowledge is already encoded in the robot’s program; when
allowing the robot to autonomously adapt its strategy it is imperative that this
kind of information is present to inform the robot’s choices.

The independent adaptation of the CAS leads to an evolutionary process in
which parts of the systems can exploit novel capabilities of other agents in the
system to autonomously improve their own performance. For example, a rescue
robot might figure out a way to scale walls that allows it to cut down the time
it needs to get to the victims. Robots without the wall-scaling capability might
then stop rescuing other victims and instead transport medicine to the rescue
are to avoid medics running out of medicine.

The resulting evolutionary process may either result in a stable system behav-
ior, or it may result in a system where each robot continuously adjusts its strat-
egy to react to the behavioral changes in other robots. This continuous adap-
tation may greatly enhance the flexibility and performance of the system, but
it may also lead to a system that squanders its resources on permanent adap-
tation without achieving its goals. But even if the system adapts successfully,
its developers now face the challenge that their design loop has to keep up with
and exploit the evolutionary process in the system, and that new agents they
deploy into the system should manage and improve the evolutionary process,
not disrupt it needlessly.

Principle P6. Enable evolutionary feedback and manage the evolutionary process.

Foundations. Evolutionary processes can generate surprisingly complex behavior
even when the agents involved in the process follow simple, fixed algorithms.
Many algorithms in swarm intelligence [25,68] are based on systems consisting
of relatively simple agents that collectively achieve complex behaviors. However,
to our knowledge no general, systematic method to derive simple agent rules
that result in a desired swarm behavior exists. For many scenarios it seems
therefore more tractable to have system designs in which individual agents can
perform substantial tasks on their own. Techniques for enabling adaptation of
these agents to an evolutionary process are described in the principles in Sects. 4
and 5.

The main tool for understanding and analyzing the system dynamics resulting
from continuous adaptation of multiple agents is evolutionary game theory [3,63],
and in particular the notions of evolutionary stable strategy and co-evolution.
References [60,65] contain discussions of evolutionary game theory in the context
of multi-agent systems.

The foundations mentioned for principle P3 are important to manage the
evolutionary process as well. In particular mechanism design [8,35] provides tools
to design rules that steer the evolutionary process in the desired direction. In
many cases it may be necessary to go beyond utility maximization of individual
agents and to institute norms or institutions that regulate parts of the system
[38,52,55].
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7 Engineering Principles for All Loops

In addition to the engineering principles presented in the previous sections for
specific EDLC-loops we present two principles encompassing the whole devel-
opment process: simulation and analysis throughout the system life cycle (P7),
and the consideration of societies of systems (P8).

7.1 Perform Simulation and Analysis

Motivation. Complex requirements documents invariably contain inconsisten-
cies, omissions and errors. In traditional system development these problems
often manifest themselves during the design or implementation phases and are
resolved before the system is deployed. Since in CAS the requirements also serve
as a basis for autonomic adaptation of the system, it is more difficult, and also
more important, to ensure that the requirements of the system are complete,
correct and actually express the desired properties.

Collective adaptive systems potentially have to operate in large environments
with probabilistic dynamics and high branching factors. The system environ-
ment typically exposes its own dynamics mostly uncontrolled by the system
to be designed. Coordination of numerous components increases the complex-
ity of adaptation mechanisms and their assessment through system engineers.
Emergent behavior resulting from the interplay of system and environmental
dynamics and from interaction of various system participants has to be tuned
to fit a system’s original requirements.

Statistical analysis of simulation data enables to quantify system properties.
For example, in classical reachability analysis a definite result is possible due to
the deterministic nature of systems. In CAS, there will usually be a probabilistic
dimension to reachability results, as typically only few of the dynamics of the
domain are under direct control of the system. On the other hand, classical
verification techniques such as model checking could be used at runtime in order
to verify and analyze the actually occurring system configuration. This allows
verification without considering all possible adaptations of the CAS.

Principle P7. Perform simulation and analysis throughout the system life cycle.
In particular, deploy early to a simulated environment so that feedback from the
runtime loop can be used in the design cycle as early as possible.

Foundations. Modern simulation tools allow to access system behavior at vari-
ous levels of detail by being able to simulate physical dynamics, visual data and
audio information with accuracy close to reality [50,53]. Simulation is highly
efficient, supported by designated hardware architectures (e.g. graphic proces-
sors). High-quality simulation data is especially valuable in situations where
algorithms are employed that learn abstractions from low-level data at runtime
(e.g. autoencoders [24], principal component analysis [37] or sparse coding [47]).

Simulation provides a way to train and assess systems that employ model or
behavior synthesis before actually deploying them (i.e. learning and reasoning
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systems, see Sect. 5.2). For example, a system that uses some sort of represen-
tation learning to compile abstractions from low-level data may use simulated
sensory data to start to learn abstractions before being deployed.

Simulation is also the core component of statistical approaches to validation
and verification of systems, as e.g. statistical model checking [48,59]. Here, a
number of simulated runs of the system is performed and analyzed to provide
assertions about system performance with a required statistical confidence. To
the best of the authors’ knowledge, literature does not provide a generic solution
of generating explicit feedback for system design from stochastic simulation data
effectively. Identifying relevant parts of simulation data and finding ways to use
this information, both at design time and at runtime, are crucial challenges for
successfully building and operating CAS.

7.2 Consider Societies of Systems

Motivation. Often multiple ensembles exist that we require to cooperate adap-
tively, resulting in ensembles that team up to build larger ensembles. While it is
possible to define coordinative mechanisms in a centralized manner, it is valuable
to provide approaches that allow for emergent control of collaboration to ensure
adaptivity and robustness. Various forms of coordination and collaboration can
be observed in natural societies and organizations: Societal mechanisms of con-
trol range from highly centralized (e.g. dictatorial) to extremely distributed (e.g.
swarms). Organization forms for managing communication and aggregation of
information range from flat to highly hierarchical. Building societies of systems
also requires to dynamically define to what extend a member of a society (be it
an individual or an ensemble) should weight individual vs. global welfare.

In the robotic rescue example, consider different teams of robots operating
in the scene. When an ensemble is built to extinguish a fire in a particular area,
the group mainly designed to provide first aid to victims would rather hinder
in fulfilling the goal. Also, different ways of organization would be needed for
fighting a fire (probably very reactive, with high individual decision impact)
and transporting a victim to safety in collaboration (rather centralized, with
individuals providing information to a coordinator). Nevertheless it may be the
case that some robots have to participate in both tasks.

Conflicting individual goals, openness and the need for collaboration require
the ability to deal robustly with potentially adversarial or malfunctioning deci-
sion makers. For example, an agent could simply fail without having noticed or
it could provide misinformation intentionally. It is valuable for CAS to explicitly
maintain a model of reliability of collaborators to base own decisions on this
information.

Principle P8. Consider societies of systems and enable CAS to cope adaptively
and robustly with the complexity of interaction within and between systems.

Foundations. While it is straightforward to implement social mechanisms ad-
hoc, it is necessary to study their characteristics and implications in order to
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ensure their support for our design goals. Recent approaches take inspiration
from the fields of socio-technical systems [27] and institutional theory [58] to pro-
vide formal techniques and languages to capture and express the exact meaning
of social institutions and mechanisms [38,55].

Exploiting virtual social institutions to enable adaptive formation and disas-
sembly of coordination collectives yields highly open systems. This openness of
CAS disables traditional security solutions. Recent surveys provide an overview
of new attacks forms and solution approaches in the changing security land-
scape of open, autonomous multi-agent systems [5,39]. Research and engineering
approaches in the field of CAS have to address the changing security challenges
resulting from building societies of systems. Trust- and reputation-based com-
puting provides a principled approach for systems to deal with openness and
external decision makers [15,26,54].

8 Conclusions

In this work we presented eight engineering principles that we consider to play
a fundamental role in the construction and running of collective autonomous
systems (CAS) and that we consider promising areas for future research:

P1 Use probabilistic goal- and utility-based techniques
P2 Characterize the adaptation space and design the awareness mechanism
P3 Exploit interaction
P4 Perform reasoning, learning and planning
P5 Consider the interplay of static and dynamic knowledge
P6 Enable evolutionary feedback
P7 Perform simulation and analysis throughout the system life cycle
P8 Consider societies of systems

The principles are closely related to the ensembles development life cycle
(EDLC), which distinguishes a design, a runtime and an evolution loop. Some of
our principles concern the whole development process while others are focused
on a particular loop (design loop: P1, P2; runtime loop: P3, P4; evolution loop:
P5, P6; all loops: P7, P8). We have motivated each principle in the context of
CAS and discussed its scientific foundations and challenges.

Our list of principles is far from exhaustive. There are other relevant aspects
which could be addressed and analyzed in detail. Some of these address technical
properties of CAS, such as safety or security. There are also broader implications
of development and deployment of CAS to be considered, for example the ethical
and legal concerns raised by systems that autonomously act in environments
shared with humans and other autonomous systems. We hope that the principles
presented in this paper can serve as guidelines for future research in the area of
CAS and foster further discussion and ideas in the field.
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