Automated Multi-Language Artifact Binding
and Rename Refactoring between Java and
DSLs used by Java Frameworks

Philip Mayer and Andreas Schroeder

Programming & Software Engineering Group
Ludwig-Maximilians-Universitdt Miinchen, Germany
{mayer, schroeder}@pst.ifi.lmu.de

Abstract. Developing non-trivial software applications involves using
multiple programming languages. Although each language is used to de-
scribe a particular aspect of the system, artifacts defined inside those
languages reference each other across language boundaries; such refer-
ences are often only resolved at runtime. However, it is important for
developers to be aware of these references during development time for
programming understanding, bug prevention, and refactoring. In this
work, we report on a) an approach and tool for automatically identifying
multi-language relevant artifacts, finding references between artifacts in
different languages, and (rename-) refactoring them, and b) on an ex-
perimental evaluation of the approach on seven open-source case studies
which use a total of six languages found in three frameworks. As our main
result, we provide insights into the incidence of multi-language bindings
in the case studies as well as the feasibility of automated multi-language
rename refactorings.

Keywords: multi language software, polyglot programming, Java, do-
main-specific languages, program comprehension, refactoring, experiment

1 Introduction

The use of multiple programming languages in the development of a software
system is a common occurrence in software creation. In many cases, a multitude
of languages is used; this includes the well-known general purpose languages
Java, C, C++, JavaScript, or Ruby; but also domain-specific languages (DSLs)
which are dedicated to certain areas, such as the database field (SQL, HQL,
Entity Mapping Files), user interface design (HTML, JSP, JSF, OpenGL, SVG,
CSS) or system setup and configuration (WSDL, Spring IOC, OSGi DS).

There are different reasons for using multiple languages in the develop-
ment of a software system. A usually cited benefit is increased productivity [3]
through the use of specialized languages for a certain domain (language-as-a-tool
metaphor). Additional reasons lie in the use of legacy code (system integration)
and in the expertise of the developers at hand.

{mayer, schroeder}@pst.ifi.lmu.de

2 Philip Mayer and Andreas Schroeder

Applications consisting of parts written in different programming languages
have been called Multi-Language Software Applications (MLSAs) [9]. Each part
and thus language is used to encode a particular aspect of the system. However,
each of the parts usually also contains software artifacts which, due to certain
properties such as their name or position, are relevant across language borders,
being bound to artifacts in a different language. Binding of such artifacts usually
happens at runtime by a framework or (virtual) machine.

Unfortunately, such multi-language bindings can lead to problems, both in
the initial software creation phase and in maintenance, since they must be kept
intact for the system to exhibit the proper behavior. Throughout development
and maintenance as well as in program understanding, programmers must be
aware not only of the semantics of the individual languages, but also of the
semantics of the frameworks which handle the multi-language bindings which
leads to added mental load. This is a particular problem in refactoring: If an
artifact is changed without changing the referenced artifacts in other languages,
the overall system semantics changes (and the system might break altogether).
Worrying about such problems may lead developers to be hesitant about refac-
torings, which means the accumulation of technical debt [15].

We believe that a generic and systematic approach to supporting multi-
language software systems can help to improve the situation for developers and
increase productivity. In this work, we report on an investigation into such an
approach within the Java ecosystem, i.e. in software systems which use Java as
their main programming language and employ frameworks with domain-specific
languages for implementing the non-Java parts of the system.

Our work contributes to the state of the art in three ways:

— we propose an approach for multi-language support in IDEs in which lan-
guage artifacts and artifact bindings are handled as top-level entities,

— we present an implementation of this approach, including automated dis-
covery and binding of artifacts at design time as well as rename refactoring
across six languages from three frameworks,

— we evaluate our approach and tool on seven open-source case studies, giving
empirical evidence of a) incidence of multi-language artifacts and bindings
and b) accuracy of discovery, binding, and rename refactoring of our tool.

Our evaluation shows that we can indeed automatically discover, bind, and
refactor artifacts in 3783 multi-language bindings — with full success in 95.96%
of cases and with well-justified warnings to the user in the remaining cases.

2 Exploration Area and Motivating Example

We have selected the Java ecosystem as our area of investigation, that is soft-
ware which uses Java as the main programming language and domain-specific
languages provided by Java frameworks for encoding specific aspects of the sys-
tem. The three areas, or domains, of system configuration, database querying,
and user interface design each feature a number of such frameworks; from each,
we have selected one framework for further investigation:

Artifact Binding and Rename Refactoring between Java and Java DSLs 3

— The Spring framewor/ﬂincludes an XML dialect for configuring Java objects,
in particular using dependency injection through JavaBean-style properties.
We refer to this language as the Spring language.

— The Hibernate OO mappe7E| allows definition of the mapping between Java
classes and database tables in another XML dialect (HBM). Additionally,
the Hibernate Query Language (HQL) is used for querying the database (in
the form of the defined entities). We refer to the first as the HBM language,
the second as the HQL language.

— The Wicket UI fmmewor/ﬂ also contains two conceptual languages. The
first is an extension to HTML used for defining HTML rendering templates.
These templates are inflated and populated using a corresponding UI compo-
nent tree providing dynamic data, which is defined in Java using the Wicket
API, an internal DSL which we call Wicket/API. Bindings between Wick-
et/HTML and Wicket/API are established through the use of corresponding
identifier strings.

Each of the languages in these frameworks offer two to five artifact types
which are potentially bound to artifacts in other languages. These artifacts,
which are shown in Figure [} are defined and exemplified in the corresponding
framework documentations and implementations.

The diagram shows the Java language in the center with the artifact types
Constructor, Type, Parameter, and Method/Field (mostly, one or the other is
used; therefore, they are shown together). These artifacts may be bound to three
DSLs: Spring, HBM, and Wicket/API. From HBM and Wicket/API, additional
multi-language bindings may lead to HQL and Wicket/HTML, respectively.

Java

: Constructor
sorig | G|
[B \HBM HaL

‘ ConstructorArgument F——’ Parameter ‘ Entity }-—{ EntityReference ‘

‘ Property F——i Method / Field F—{ Attribute F—{ AttributeReference ‘
/I\
W/API

PropertyModel

Fig.1: Artifact Bindings Across Languages

! www.springsource. com
2 www.hibernate.org
3 lwicket.apache.org

www.springsource.com
www.hibernate.org
wicket.apache.org

4 Philip Mayer and Andreas Schroeder

Listing 1.1: Hibernate Queries (HQL)
public class HibernateJtracDao {
public int bulkUpdateStatusToOpen(Space sp,
int st) {
int ¢ = bulkUpdate("update Item i set i.status=?

where i.status=7 and i.space.id=7",
new Object[] { State.OPEN, st, sp.getId()1});

Listing 1.2: Hibernate Mapping (HBM)

<hibernate-mapping package="info. jtrac.domain">
<class name="Item" table="items">

<property name="Status" column="status"/>
</class>
<class name="History" table="history">
<property name="Status" column="status"/>
</class>
</hibernate -mapping>

Listing 1.3: Java
public abstract class AbstractItem {

public Integer getStatus() {
return status;

}

public void setStatus(Integer status) { &F—————
this.status = status;

}

Listing 1.4: Wicket Property & Widget Definition (Wicket/APT)

private class ItemViewForm extends Form {
public ItemViewForm() {
History h = new History();
setModel (new BoundCompoundPropertyModel (h));
add (new IndicatingDropDownChoice ("status",————
states, renderer));

Listing 1.5: Wicket Page Fragment (Wicket/HTML)

<form wicket:id="form">
<select wicket:id="status"/>
</form>

Artifact Binding and Rename Refactoring between Java and Java DSLs 5

As a motivation for our work, we give an example from one of our case studies
which shows how multi-language bindings look like in real life. The example,
which is shown in Listings [I.T] to [[.5] shows bindings between Java, HBM, HQL,
Wicket/API, and Wicket/HTML.

We begin with the property status in Listing |[1.3] which is defined with
JavaBean-style getters and setters in the abstract class AbstractItem. This
class is the common superclass of the classes Item and History (which are not
shown). However, these two classes are also Hibernate entities and defined as
such in Listing along with a status property each, which is bound to the
getters and setters for status as shown. This Hibernate property is used in HQL
queries in Listing [1.1} in this case, on the entity Item or rather its alias 1.

The property status of the History subclass of AbstractItem, as defined
in Listing[1.3] is also referenced from Wicket/API (Listing[I.4] line 4) through a
BoundComponentPropertyModel, where History is defined as a data source for
the DropDownChoice widget in line 5. The status string used in line 5 is also
used as a widget identifier between Wicket/API and Wicket/HTML; the latter
is shown in Listing [T.5

Thus, the example shows a total of nine multi-language bindings between
eight artifacts across five languages (or one general-purpose language and two
frameworks). If any of these elements is renamed, all of the others must be
renamed as well since the bindings are created (among other things) due to name
resolution. It is additionally to be expected that the getters and setters from Java
are also referenced elsewhere such that any invocations must be refactored as
well. The same applies to any other use of the Hibernate HBM property definition
and the ID of the Wicket/API widget.

To evaluate automated discovery and rename refactoring of such bindings,
we employed seven open-source case studies with a size between 6k and 110k
LOC (see Table . Two of the case studies use mainly Spring; two use mainly
Hibernate; and two use mainly Wicket. A seventh uses all three frameworks
in combination. We discuss how the case studies were used for evaluation in
Section 4l

3 Multi-Language Artifact Binding and Rename
Refactoring

The use of multiple additional languages in Java software systems is not new. Ac-
cordingly, existing Java IDEs already contain some support for finding artifacts
bindings and for refactoring across language borders. However, such solutions are
usually rather isolated: There is sporadic support in the form of IDE plug-ins
for particular frameworks such as Spring or Hibernate, for example for Eclipse.
There are three major drawbacks to current implementations.

Firstly, there is no generic support for multi-language artifact binding per se;
that is, IDEs are generally unaware of such bindings unless a plug-in contributes
them, in which case each plug-in must provide its own data structure, navigation
menus, and so on.

6 Philip Mayer and Andreas Schroeder

Secondly, current Java IDEs (Eclipse, IDEA, NetBeans) use a participant
approach to refactoring non-Java elements: Usually, DSL refactorings are imple-
mented as add-ons to existing Java refactorings instead of refactorings in their
own right since there is specific support for such participation. By contrast, im-
plementing completely new DSL refactorings with participant support of their
own involves significant additional effort. Also, refactoring changes might need to
be propagated back and forth between languages as new bindings are identified
which is also difficult to implement using current participant approaches (first,
participants need to be enabled and disabled depending on where a refactoring
is started; second, changes must be gathered in a sort of feedback loop to ensure
that every participant may react to changes by others).

Finally, there is no systematic support for handling more than two languages,
in particular if they are not directly bound to Java. As indicated above, the
artifacts of some DSLs (HQL) might bind to artifacts of other DSLs instead of
Java (namely HBM), thus creating cascades of bindings (and thus refactorings).

We believe that a generic, systematic approach to multi-language artifact
binding and refactoring will make it easier to implement MLSA support in IDEs
and thus lead to better support for developers. We thus investigate an approach
to handling multiple languages in IDEs which

— treats all languages, including DSLs, as equals and offers the infrastructure
to make artifacts of each language centrally available,

— defers handling of binding resolution between each of the languages to ded-
icated binding resolvers,

— and allows per-language refactorings to trigger, and be triggered from, generic
refactoring routines which propagate changes based on artifact bindings.

We discuss this approach, and a prototype implementation within Eclipse, in
the next three sections. Note that the tool we have implemented is not intended
to be a product; rather, its aim is demonstrating feasibility and generating the
data about real-life software analysis and refactorings.

Section [3.] discusses artifact discovery, i.e. reading source code and providing
artifacts. Section discusses the dedicated binding implementations which
resolve multi-language bindings. Finally, Section discusses how refactorings
across language borders are implemented.

3.1 Artifact Discovery

Our approach is based on automated discovery of artifacts relevant for multi-
language bindings. With the term artifact we refer to a representation of a
concept used in the source code, such as, for Java, TypeDeclarations which in
turn contain MethodDeclarations, LocalVariableDeclarations, Statements,
and so on. These artifacts form a semantic model [5] in which references or
in-language bindings between them are already resolved; for example, a Java
MethodInvocation is bound to its MethodDeclaration.

The benefit of using semantic models is a simplification of the navigation
within the code base as well as uniquely identifying artifacts; it is furthermore

Artifact Binding and Rename Refactoring between Java and Java DSLs 7

useful in code analysis and visualization and, in our case, in separating the diffi-
culties in finding artifacts within a language with other multi-language concerns.

A semantic model must be extracted from the source code — a parser is
required as well as resolution mechanisms for in-language bindings. We call this
process model discovery; for each language, a model discoverer must be writ-
ten and registered with the platform. In our approach, we use one meta-model
per language, not a single language-agnostic model. Analysis is later done by
analyzing relationships between pairs of individual language models.

Regquired Effort The effort required for model discovery routines depends entirely
on the language which is analyzed. Regarding difficulty, we can separate the
languages we have investigated into two groups. The first group contains Java
(the base language, without data flow), Spring, Hibernate Mapping (HBM), and
Wicket/HTML. In these languages, it is relatively easy to extract the structure
and all artifacts from the source code; furthermore, in-language bindings between
elements may be complex, but are based on straightforward and exact rules.
Parsers with in-language binding resolution already exist for Java; Spring and
HBM are XML-based files such that existing XML parsers may be used to extract
data, with a follow-up of in-language binding resolution implemented by hand.

The second group contains HQL and Wicket/API; in other words, languages
whose source fully or partially consist of strings handled by Java statements.
In both cases, identifiers or query fragments may be combined using an arbi-
trary number and combination of loops, decisions, and values passed in from
the outside. In case of Wicket/API, data and control flow is furthermore used
to (manually) construct a Ul tree out of objects in memory. This tree of Java
objects is required to correspond to the tree created in HTML out of HTML
widgets.

Finding and resolving all HQL and Wicket identifiers and artifacts is gen-
erally undecidable in the environment they live in, i.e. in a general purpose
programming language. We have gone to great length in the model discovery for
these languages; however, some elements could not be extracted which in turn
leads to various problems in artifact binding and refactoring.

An example of this from one of the case studies is shown in Listing
where the variable field is used in the construction of the query. The contents
of field, in this case, cannot be resolved in general since it represents a custom
contributed database table column. Thus, it is known that some attribute of
Item is accessed, but not which one. In such cases, a specific unresolved artifact
is added to the model to make this problem explicit (this information is later
used to add refactoring warnings).

Listing 1.6: Dynamic Query in HQL
bulkUpdate ("update Item item set item." +
field.getName() + " = null");

8 Philip Mayer and Andreas Schroeder

Besides unresolved elements, there may also be orphan artifacts. Contrary to
the example above, these are artifacts whose reference from other model elements
cannot be resolved — that is, for example, a widget creation is found in the code,
but it is unknown to which page or parent element it belongs. Like unresolved
elements, these are reported explicitly in the model.

Static Analysis For discovering HQL and Wicket artifacts embedded in API calls,
we have created a custom static analysis approach on top of the MoDisco Java
semantic modeﬂ In terms of data flow analysis, our approach is interprocedural
(in that it treats method invocations non-atomic) and flow-sensitive (in that it
considers the order of statements).

The domain over which our analysis operates is the domain of method and
object environments: we keep track of approximations of valuations of stack and
heap variables (i.e. local variables and object fields). The values we approximate
are strings for HQL queries as well as custom representations of framework data
structures such as Ul trees for Wicket and query trees for HQL. The transfer
functions we use depend on the source of the code they represent: for application
code, we use standard transfer functions that correspond to the semantics of
Java. For invocations of framework methods, we use custom transfer functions
on the representations of framework data structures. For instance, the transfer
function for line 5 in Listing [1.4] creates a new drop down choice component,
and adds it as child to the ItemViewForm component. Invocations of framework
methods that are not analyzed (for example, the Java Collections framework)
are treated as atomic and ignored.

Our static analysis only performs a single pass over a sequence of program
statements following method invocations, and has therefore two pragmatic limi-
tations: firstly, loops found in program code are handled by performing a single
pass of the loop body. Secondly, recursive methods are handled by ignoring
back-edges in the call graph, i.e., by skipping recursive method calls. Because
of these limitations, our static analysis will miss fabricated identifiers and over-
approximates artifacts in looping and recursive program code. In the context of
model discovery for multi-language artifact binding, however, this is no severe
limitation, as every multi-language binding must point to a corresponding static
name in another language, and thus fabrication of names is not encouraged in
any of the analyzed frameworks.

The analysis routines we implemented proved sufficient to discover the vast
majority of artifacts relevant to multi-language artifact binding, as discussed
in the next section. Since artifact discovery in HQL and Wicket/API is only
a partial aspect of our work, it was not our goal to provide full coverage. In
particular, we did not go as far as creating grammars for string expressions
found in Java code as in Christensen et al. [2]. Also, we do not provide support
for the Java Collection Framework and do not analyze uses of Java Reflection
as in Livshits et al. [10].

4 lyww . eclipse.org/MoDisco

www.eclipse.org/MoDisco

Artifact Binding and Rename Refactoring between Java and Java DSLs 9

3.2 Multi-Language Artifact Binding Resolution

Multi-language binding resolution is concerned with associating artifacts from
two languages with one another, based on the rules of the underlying frame-
work (such as Spring). Considering our example in Section [2| the two HQL
AttributeReference artifacts with name status must each be bound to the
HBM Property with the same name.

The name of an artifact is, in most cases, an important aspect of binding, but
it is nearly never the only one: All languages we have investigated are strongly
hierarchical; thus, the position of artifacts within such hierarchies is crucial. In
our example, the HQL attribute status only refers to the status property of
class Item; not any other class. It is obvious that a purely textual search will
fail in most cases given such a structure. Furthermore, frameworks usually give
developers quite a lot of freedom, i.e. different ways of achieving the same thing,
optional bindings, or double meanings for identifiers. The binding resolution
routines must take these into account and thus depend on the positioning of
elements, attribute value grouping, different naming conventions, and so on.
Multi-language binding resolution fails if an artifact is found in one language
but its required complementary artifact — based on all the framework rules and
options — in another language is not.

For each interesting language pair, we have created dedicated binding re-
solvers which each use their own custom resolution algorithm. These algorithms
are based on the binding logic of the underlying frameworks (i.e. Spring, Hiber-
nate, and Wicket); we have discussed some of these algorithms in detail in [IT].
As an example, the binding resolver for Spring first binds Spring beans (from
the Spring artifact model) to Java classes (from the Java artifact model) based
on fully qualified class names. Afterwards, it binds nested Spring properties to
members in the previously bound Java classes based on simple names.

The binding resolution algorithms in our approach thus always bind artifacts
of two languages together. This yields five resolution implementations for the
six languages we have investigated: Spring and Java, HBM and Java, and Wick-
et/API and Java are the ones grouped around Java; while HQL and HBM and
Wicket/HTML and Wicket/API deal with DSLs on both sides.

The binding results in the form of individual artifacts and the links between
them are reported in a common language-agnostic linking model. This model
later allows identifying the necessary rename operations for a change; its contents
are centrally available on the IDE level; thus, two binding resolvers may bind the
same Java artifact into different languages, which is what happens, for example,
with the status property in the example (Listing. In this way, the IDE can
support navigation from artifact to artifact and is aware of transitively connected
artifacts; in the case of binding errors, it can report and annotate the offending
artifact.

As in model discovery, writing a binding resolver requires effort. While the
code implementing the actual resolving is already part of each framework im-
plementation (e.g., in Spring, Hibernate, and Wicket), it is written with a fo-
cus on runtime and thus not easily extracted. In fact, in our case, we have

10 Philip Mayer and Andreas Schroeder

re-implemented all resolution code by hand based on the framework documenta-
tion and the available framework code. While a good knowledge of the framework
involved is certainly a requirement for writing a binding resolver, in most cases
the logic, though complex, is not overly difficult and thus does not require a
large investment.

3.3 Multi-Language Rename Refactoring

The last part of our approach is support for multi-language rename refactoring.
Many refactoring procedures have been defined in the literature [4]. Of these,
the most important ones across language borders are rename refactorings, to
which we restrict ourselves in this work. These are also the most commonly
used automated refactorings: A study in 2012 has shown 44% of all tracked
refactorings to be rename refactorings [22].

Renaming artifacts even in one language can get very complex (especially
in Java [I8]); thus, we believe it is best to re-use existing refactorings rather
than implementing new ones for multi-language refactorings. In our work, we
therefore assume that each language comes with its own set of automated rename
refactorings. This is certainly true for Java in most IDEs; it is less true for
the DSLs we have looked at. For some, plug-ins are available which add this
functionality, for some, there are not. In the latter cases, we have implemented
single-language rename refactorings by hand to ensure an equal setup for all
languages (fortunately, the selected DSLs include only limited amounts of in-
language bindings and thus the refactorings are rather simple).

Relating Artifact Names To support rename refactoring across language borders,
we need to know how the names of the artifacts relate. Using the information
from the multi-language artifact binding, we already know which artifacts are
bound across language borders. The binding resolvers discussed in the last sec-
tion also have the information which properties of these artifacts carry the names
relevant for the binding, and how the names are related; to support the refactor-
ing step, this information needs to be attached to the bindings (on a meta-level).

In some cases, the relationship is very simple: If a Spring property is bound to
a Java field, the names must match exactly. In other cases, some transformation
takes place: If the property is bound to a setter, for example, the Java method
name must be prefixed with set and the first letter of the property name must
be uppercased (adhering to the JavaBean convention).

Changing Artifacts Refactoring usually starts from a single change of an ar-
tifact property (such as a Java method name) which is triggered by the user.
Once known to the multi-language enabled IDE, this change can now be propa-
gated through the multi-language bindings to all artifacts which are (transitively)
bound to the artifact in which the change originated, i.e., to its transitive binding
closure. This closure can be found generically without involving language-specific
routines. Note that we may move back and forth between languages in this pro-
cess: If, for example, we start with Item.status from Listing and move to

Artifact Binding and Rename Refactoring between Java and Java DSLs 11

Java, the fact that status is not defined in Item but in a superclass and is used
also in History requires us to move back to HBM (and perhaps even HQL).

The resulting transitive closure may contain artifacts from many different lan-
guages, each annotated with the information which properties must be changed
to which new value. The actual source code-changing rename can now be per-
formed by language-specific refactoring routines as discussed above, which may
lead to additional in-language binding renames. For example, renaming a Java
method may involve renaming all of the method invocations, which are not rel-
evant across languages but certainly relevant within Java.

Error Conditions Multi-language refactorings can only be executed on artifacts
with established multi-language bindings (otherwise, the original artifact is an-
notated as having a binding error during binding resolution). Still, a refactoring
may not always be possible.

Firstly, there are conditions in which we must inform the user that we do not
have sufficient information to guarantee a successful refactoring execution: Such
warnings result from problems in artifact discovery. As mentioned in Section [3.1
there may be cases where we know that there is an artifact reference present but
not exactly which one, indicated through the presence of an unresolved artifact.
In this case, a warning is attached to the refactoring (as, e.g., the Java rename
refactoring does in the presence of parsing errors).

Secondly, any of the single-language refactorings invoked may veto a change
(for example, due to a restricted name in a language). In this case, the overall
refactoring is aborted with an error.

4 Experimental Evaluation

The underlying rationale for automated multi-language binding and refactoring
support is improving developer productivity. However, productivity is hard to
measure directly. We have thus instead opted for measuring a surrogate endpoint,
which is given by the fitness for the particular purpose of our approach; in
particular that our tool is able to automatically and correctly:

— identify multi-language relevant artifacts in each individual language,
— identify and establish the bindings between said artifacts,
— refactor the previously bound artifacts across multiple languages.

Our assumption is that a developer with such tool support is more productive
than without. It is future work to test the surrogate against the actual endpoint
with adequate empirical studies. In the following, we discuss the setup, execution,
and results of our evaluation.

4.1 Experimental Setup

Case Study Setup We selected seven open-source applications which make
use of Java and at least one of the three frameworks we support. Our sam-
pling process was as follows: After having selected the frameworks to investigate

12 Philip Mayer and Andreas Schroeder

(Spring, Hibernate, and Wicket), we performed a search for applications using
these frameworks (two for each) in the ohloh.net repository. Unfortunately, the
population size was quite small, i.e. we did not find many applications which
were a) not trivially sized, b) not frameworks or framework extensions them-
selves, and c) in a compilable and unit-testable state. We selected the first seven
applications for which a) to ¢) were satisfied.

Table 1: Case Studies

Case Domain Languages Version LOC
Plazma ERP+CRM solution Spring 1.0.2 78k
Tudu Lists Todo Lists Management [Spring, Hibernate |2.3 6k
itracker Issue Tracker Hibernate, Spring |3.1.5 110k
PicketLink Identity Management Hibernate 1.3.1 42k
Brix Content Managament Wicket 2013-08-21 |31k
gidooCMS Content Management Wicket 2013-08-21 |10k
JTrac Issue Tracker All 2.1.0 14k

The cases are listed in Table [I} If possible, the latest stable version was
downloaded either from the repository or from a release website. In the case of
gidooCMS and Brix, no such version was available; a snapshot was instead taken
from the repository. The cases were prepared for analysis as follows:

— Since our tool is Eclipse-based, all case studies were converted to Eclipse
projects such that the code compiles with the JDT and unit tests could be
run within the Eclipse environment, and without any other build system
(such as Maven).

— Since we use the MoDisco discoverer for Java, all classes relevant for discov-
ery must be available as source code; the relevant library classes were thus
extracted and added as source files (and removed from the libraries).

— For refactoring testing, we require a dense test net for all multi-language
relevant artifacts. Where such was not available, we have implemented ad-
ditional tests by hand.

Creating tests for each case study ranged from trivial to demanding. In the
case of Spring and HBM, it was sufficient to instantiate the frameworks since
they perform start-up tests to ensure integrity of the bound artifacts. However,
for HQL as well as for Wicket, no such start-up test mechanisms were available.
However, executing the code containing the artifacts leads the framework to fail;
thus, tests were implemented to cover all the relevant lines of code.

Tool Setup Our tool provides three types of results: artifacts, bindings, and
refactoring closures. Firstly, the artifact discovery results in a list of all artifacts
potentially multi-language relevant which are available in a project. Since it is
not possible to test the correct discovery of these artifacts automatically, we
have created tool support (in addition to orphan detection) specifically for the

Artifact Binding and Rename Refactoring between Java and Java DSLs 13

task of annotating artifacts and have manually read through the source code to
ensure that all relevant artifacts were covered.

Secondly, the binding resolvers discover relationships between artifacts from
different languages. As above, these bindings need to be checked by hand. Again,
we have created specific tool support for the visualization of such bindings,
which allowed us to manually iterate over the bindings, checking both successful
bindings and error cases.

The final result are transitive artifact closures and their refactoring. In this
case, we have opted for automated verification in the same spirit as in “normal”
refactorings: By using unit tests. As mentioned in the previous chapter, refac-
torings are executed on the transitive closures of refactoring changes, i.e. on a
group of artifacts which need to be renamed together. To verify whether the
renamings performed are correct, the following process was run for all closures,
one after the other:

— All unit tests were first run on the unchanged source code. The tests were
expected to pass.

— In the second phase, artifacts were grouped by language. One by one, these
artifact groups were renamed individually, i.e. first the Java artifacts, then
the Spring artifacts, and so on. After each rename, the tests were run and
expected to fail to ensure that renaming the artifacts individually actually
introduces problems. After each test, the changes were undone again.

— Finally, all artifacts in the current closure were renamed and the tests were
run one more time; in this case, they were expected to succeed. This change
was undone as well before proceeding to the next closure.

This process is a very thorough test on many parts of the framework: It
requires that the correct artifacts are grouped into closures; that each artifact
is correctly resolved and has the right source code location attached; that each
individual language refactoring is triggered correctly; and (on the case study
side) that there are indeed tests which cover the multi-language bindings of the
closure.

4.2 Results

Artifact Discovery The result of artifact discovery is a list of potentially
multi-language relevant artifacts (see again Figure . The discovery results are
shown in Table [2] (note that the figure starts at 50%, the remainder being Java
artifacts).

Since all of the cases are written using Java as the main language, the per-
centage of Java artifacts is rather high. In Java, potentially relevant artifacts
include all types, public methods, fields, etc. Considering this, it is quite inter-
esting to see that DSL artifacts amount to as much as they do (from 3.47% to
34.11%, mean 12.67%).

The unresolved and orphan rows in Table [2| show artifacts which could not
be fully discovered. These numbers only occur in the projects which make use

14 Philip Mayer and Andreas Schroeder

Table 2: Discovered Artifacts for each Case Study per Language

Language Plazma|Tudu |itracker|pLink |Brix |gidoo |JTrac |Total
Java 12525 1083 4922 2963 | 5342 | 1469| 3027 (31331
Spring 450 78 236 0 0 0 102 866
HBM 0 21 198 59 0 0 150 428
HQL 0 3 205 244 0 0 182 634
W/API 0 0 0 0 574 224 648 | 1446
W/HTML 0 0 0 0 368 183 466 | 1017
Unresolved 0 0 0 0 18 19 19 56
Orphan 0 0 0 0 92 6 0 98
Total 12975 | 1185| 5561 | 3266| 6394 1901| 459435876
100% - — — — —
95% |— || . mor
phan
m Unresolved
85% +— . —
80% +— I _ mW/HTML
75% +— . mW/API
70% +— -— HQL
65% — mHBM
60% -+— — .
Spring
55% +— —
= Java
50% - . T . T . T A T I T I T .
Plazma Tudu itracker pLink Brix gidoo Jtrac

of HQL and Wicket/API and are indeed related to these two languages. As
discussed in Section [3.1} it is not possible in these two languages to statically
discover and properly place each element in the language models.

First, unresolved elements (56) refer to cases where a reference to an artifact
was found but its value could not be determined — as in the HQL query example
in Section [3.1] These elements are later important in refactoring, where they
induce warnings for refactorings; however, due to their incomplete nature (in
particular, their lack of name or identifier) they can not be bound.

Second, orphan elements (98) refer to cases where elements were found but
their context, contrary to unresolved elements, is unknown such that a refer-
ence could not be added to the model. Multi-language binding resolution is not
possible with orphans, thus no navigation is available and the orphans cannot
take part in refactoring. In all of the cases reported here (as manually verified),
the elements would not have been resolved across languages or taken part in
refactoring anyway: Most of the orphans lie in Wicket JUnit test case imple-
mentations, where their IDs are ignored (54 cases); the remaining occurrences
either use passed-in IDs (39) or lie within Wicket library code (5). Thus, there is
no further impact of missing these elements here (this may obviously be different
in other cases).

Artifact Binding and Rename Refactoring between Java and Java DSLs 15

Artifact Binding Resolution In binding resolution, artifact bindings from
one language to artifacts from a second language are resolved based on the rules
of the underlying framework. The resulting numbers are shown in Table [3]

Table 3: Discovered Multi-Language Bindings for each Case Study per Resolver

Resolver Plazma|Tudu|itracker|pLink|Brix |gidoo|JTrac|Total
Spring to Java 517 89 241 0 0 0 123 | 970
HBM to Java 0 25 151 65 0 0 271 512
HQL to HBM 0 3 429 215 0 0 199 | 846
W/API to Java 0 0 0 0| 108 4 216 | 328
W/API to HTML 0 0 0 0| 382| 192 553 |1127
Total 517 117 821 280 | 490, 196 | 1362 | 3783
Binding Error 0 0 0 0 26 11 5 42
100% | =
90% +— I —
80% +— —
® Binding Error
70% +— —
60% +— |- W/API to W/HTML
50% -— l_ = W/API to Java
40% +— — HQL to HBM
30% — ~— ®=HBMtoJava
20% 1 I_ Spring to Java
10% +—— —
0% T T T T T — T 1
Plazma Tudu itracker plink Brix gidoo Jtrac

Again, due to the nature of the underlying case studies, we see a progression
from Spring-related bindings via Hibernate-related bindings to Wicket-related
bindings from left to right, with the exception of JTrac on the far right which
uses all frameworks. In total, we have found 3783 bindings between elements in
all case studies; the average number of bindings per case is 540. Considering that
these bindings must be intact for the software to work correctly and are only
partially supported by tools, possibilities for things to go wrong abound. From
a purely statistical point of view, in the case with the most bindings (JTrac),
this would amount to one multi-language binding every 11 lines of code.

In the three projects to the right, we see a total of 42 binding errors; as
mentioned in Section [3.2] a binding error is reported if an artifact was found
without its expected corresponding artifact in another language. All errors are
reported on HQL and Wicket artifacts.

In 14 cases, these errors are actual problems in the observed code (JTrac: 2
/ gidooCMS: 5 / Brix: 7), that is, an artifact should indeed have a partner in
another language but did not. The other 28 cases are erroneously reported errors
and can be separated into three categories. The first category is the originally
expected one: Binding errors due to unresolved artifacts, of which there are

16 Philip Mayer and Andreas Schroeder

only two (0/2/0). The second category contains problems due to the if-then-
else over-approximation in the HQL and Wicket/APT static analysis; i.e. some
artifacts are present in more than one position in the model of which some are
inaccurate (3/0/15). The third category contains missing bindings which are due
to references in Wicket library code (0/4/4) which is due to the use of MoDisco.

Thus, all 28 erroneous reports (0.74%) are due to shortcomings in the static
analysis. The two binding errors due to unresolved artifacts will lead, additionally
and independently, to refactoring warnings. The others, which are due to over-
approximation or use of library code and refer to ”missing” artifacts do not carry
identifiers and thus have no further impact on refactoring.

Refactoring Change Closures If an element, or rather a name property of an
element is selected for a rename refactoring, all existing multi-language bindings
must be traversed to find the transitive closure of artifacts which are affected by
the rename, and which must be changed as well. In the following, we first report
on results from this traversal. Afterwards, we present the results of actually
executing refactorings for each closure.

Closure Discovery Results The results from the discovery of closures and thus
the incidence of languages, artifacts, and edits is shown in Table

Table 4: Discovered Transitive Refactoring Closures per Case Study

Case Plazma Tudu itracker PicketLink
Closures 122 72 214 55
@ Languages 2.00£0| 2.03£0.17 2.28 +£0.45 2.56 + 0.50
Language Max 2 3 3 3
@ Artifacts 4.69 £12.00 | 2.21 £0.47 4.32 £5.54 6.09 £ 6.08
@ Edits 4.28 £12.06 | 4.42 £ 12.41 | 28.58 £ 68.32 | 16.93 £ 19.47
Artifacts > 2 (%) 4.92 18.06 69.63 72.73
Case Brix gidoo JTrac Total

Closures 398 174 674 1709
@ Languages 2.05+0.21 2.00+0 2.144+0.48 | 2.15£0.39
Language Max 3 2 5 5
@ Artifacts 2.22+£0.79 | 2.13+0.79 290+2.70 | 3.51+4.39
O Edits 349+£291 | 3.60+£5.08| 6.07+17.04 | 9.62 + 28.25
Artifacts > 2 (%) 11.56 4.02 32.34 28.03

Overall, the number of transitive closures range from 55 (PicketLink) to 674
(JTrac); the total is 1709 closures with an average of 244 closure per case. The
average of artifacts in all closures is 3.51; however, with a standard deviation
of 4.39. In Plazma, itracker, PicketLink, and JTrac, the standard deviation is
quite high, while in Tudu, Brix, and gidooCMS it is quite low. The maximum
number of artifacts in a closure is 61 (in Plazma), where the Spring property
dataSource is renamed; this property is injected into 60 beans which share a
common setter method (hence 61 artifacts).

Artifact Binding and Rename Refactoring between Java and Java DSLs 17

An interesting observation is the number of closures in which there are more
than 2 artifacts. Here, the case studies seem to fall into three groups: The first
group includes itracker and PicketLink with around 70% of closures with more
than 2 artifacts; the second group consisting of just JTrac with around 30%, and
finally all others with less than 20%. Since itracker and PicketLink mostly use
HBM/HQL and JTrac has a HBM/HQL part, we have investigated whether this
phenomenon is language-specific. Figure [2] shows closure artifact counts per lan-
guage (that is, size of closures which have artifacts in the given language), where
it becomes clearly visible that we mostly deal with only 2 artifacts in Spring,
Wicket/HTML and Wicket/API. In HBM and HQL, however, the majority of
closures have 3 or more artifacts.

100% — -
0% | [

80% +—
70% +—
60% +—
50%
40%
30%
20%
10%
0%

m >15 Artifacts

6-15 Artifacts

3-6 Artifacts

m 2 Artifacts

Java Spring HBM HQL W/API W/HTML

Fig.2: Artifacts per Closure and Language

Another observation regards the number of languages involved in the closures
also shown in Table [d] In four case studies, we mostly or exclusively deal with
two languages per closure: In Plazma, only Spring and Java are involved; in
gidooCMS, only Wicket/API and Wicket/HTML. There are two closures with
HQL and HBM artifacts in Tudu and 19 closures with Java in Brix, which is why
the maximum number of languages is three in these cases. The highest number
of languages involved in one closure is 5 in JTrac, which nevertheless only has an
average number of 2.14 languages per closure. The remaining two case studies lie
in the middle with 3 maximum languages and an average of 2.28 (itracker) and
2.56 (PicketLink) artifacts per closure. An example of a closure with 5 languages
(from JTrac) has already been shown in Section [2] (Listings [1.1] to [L5)).

An inverse representation of these numbers is shown in Figure [3] which shows
the percentage of closures with 2 to 5 languages having at least one element from
the chosen language. This correlates with the number of artifacts: In Spring,
Wicket/API and Wicket/HTML, closures mostly deal with two languages. In
HBM, over 40% of closures deal with three and more languages. As expected,
HQL-affected closures always use at least three languages (HQL, HBM, and
Java), with extensions into Wicket/API and Wicket/HTML.

18 Philip Mayer and Andreas Schroeder

100% — — - — —
90% +—
80%
70%
60% m 5 Languages
50% 4 Languages

40%
30%
20%
10%

0%

3 Languages

® 2 Languages

Java Spring HBM HQL W/API W/HTML

Fig.3: Languages per Closure

As an insight into the technical underpinnings, Table [f] also gives the average
number of actual text edits performed per closure, which also varies greatly. This
number depends not only the number of artifacts relevant for multi-language
bindings, but also on all the additional changes the per-language refactorings had
to add. The maximum number of text changes for a closure is 620 (in itracker),
where an id attribute is renamed: This attribute is defined in an abstract entity
superclass and is thus used in each HBM entity definition as well as all HQL
queries for any of these elements; furthermore, the id getters and setters in Java
must be renamed which are again heavily used in the code base.

Refactoring Results The results from executing the refactoring actions on all of
the closures found is shown in Table |5} Note that the figure starts from 80%, the
remainder being successful tests.

The results show that the tests after refactoring each closure succeeded in
95.96% of cases across all case studies (1640 of 1709 closures). In the remaining
69 cases, a warning was attached to the closure (based on incomplete artifact
discovery, as discussed above); in 38 of these cases, the tests still succeeded; thus,
the warning was unnecessary; in 31 cases the test failed, thus the warning was
accurate. No closure test failed without a warning being attached. In all cases,
problems are again down to artifact discovery in HQL and/or Wicket/API; in
all of these cases, we can warn the user of potential problems.

The last row in Table Bl shows the number of closures in which at least one
single-language tests succeeded. Recalling from the experimental setup, each
closure was refactored multiple times: Firstly, each language on its own (which
should lead to test failures), and finally all together (which should succeed).
Thus, it is interesting to look at why the single-language tests succeeded despite
having not renamed all elements.

First, there is one succeeding test in PicketLink on an HQL attribute called
binaryValue. This attribute is used in an unreachable part of code which thus
could not be tested. In Brix, gidooCMS, and JTrac, most (56) of the test suc-

Artifact Binding and Rename Refactoring between Java and Java DSLs 19

Table 5: Results from Refactoring Transitive Closures

Language Plazma|Tudu|itracker|pLink|Brix |gidoo|JTrac|Total
OK 122 72 214 55 | 398| 162 | 617 |1640
OK (warned) 0 0 0 0 0 7 31 38
FAIL (warned) 0 0 0 0 0 5 26 31
Total 122 72 214 55| 398| 174| 674 (1709
Single Language Success 0 0 0 1 17 3 39 60
100%

ses = E

96% —

94% I—

92% T mWarnFail

90% ®m Warn OK

88%

86% = OK

84%

82%

80% T T T T T T

Plazma Tudu itracker pLink Brix gidoo Jtrac

cesses refer to the Java language and are due to fallback behavior of Wicket: If a
Java getter /setter is not found for a certain entity, Wicket looks for a field of the
same name. Since we only rename the JavaBean-style getters and setters and all
relevant fields have exactly the same property name, the field is still found by
Wicket and thus the tests succeed. Manual renaming of the field leads to test
failures in every case. In the remaining three cases (two from Brix, one from gi-
dooCMS), the success affects both Wicket/HTML and Wicket/API. In the first
two cases, the references are overwritten by generated HTML code (Brix), in the
second, we deal with dead code (gidooCMS); thus, they are not testable.

4.3 Discussion

Our experimental evaluation has covered six languages across seven case studies;
each language was present in at least three case studies.

The artifact discovery process has reported 35876 multi-language relevant
artifacts across all case studies. As discussed, 154 these (56 unresolved elements,
98 orphans) from the languages HQL and Wicket/API could not be extracted
due to static analysis limitations in these languages.

In the follow-up multi-language binding resolution, 3783 unique bindings be-
tween artifacts across languages have been automatically resolved. Again due to
limitations in the static analysis, some bindings have been erroneously reported
as missing in 18 cases (0.74%).

Regarding the refactoring step, we were able to automatically refactor all
1709 closures found. The test run results after refactoring the closures show

20 Philip Mayer and Andreas Schroeder

a success rate of 95.96%, i.e. in 1640 of 1709 closures, the tests after a full
refactoring succeeded. The remaining 69 cases were attached with warnings due
to incomplete artifact discovery; in about half of them, the refactorings and
subsequent tests succeeded despite warnings.

The single-language test runs which were supposed to show that single-
language changes do not suffice only succeeded in 60 cases, of which most are
due Wicket’s fallback mechanisms; the remaining four are due to unreachable or
dead code. This clearly shows that the system functionality, as far as the tests
are concerned, is only kept intact by multi-language refactoring.

Thus, we believe that the fitness for the intended purpose of our tool (i.e.,
discovery, binding, and refactoring for multi-language software applications) has
been established. The automated refactoring and testing approach we have used
in this experimental evaluation has been helpful in reaching this goal, in debug-
ging, and in establishing trust in our own system, since all aspects of the system
must work together to lead to succeeding tests after refactoring.

The numbers also show that, in particular regarding HQL and HBM appli-
cations, more than two artifacts and languages are involved in multi-language
transitive refactoring closures. We believe that this shows the need for generic
support for languages and language bindings instead of a participant-based two-
language approach.

Finally, the implementation and validation of our tool has shown which lan-
guage features are particularly difficult to support. In fact, all artifact discovery,
binding, and refactoring problems ultimately originate in the languages HQL
and Wicket/API and the fact that the statements of these languages are em-
bedded in Java and it is allowed to manipulate them using Java control flow
constructs, necessitating extensive (and expensive) static analysis. Compared
to the length to which one has to go to to support such languages, supporting
external languages such as Spring, HBM, or Wicket/HTML is almost trivial.

It is interesting to ask the question if the ability to manipulate the language
constructs in HQL and Wicket/API in this manner is really necessary, i.e. if it
is crucial to the usability or fitness for purpose of these languages. This is to
be investigated in the future. If no reasons can be found, we recommend not
allowing such manipulations in future languages, and suggest using external,
clearly separated languages instead.

Although our tool showed good results on the languages we investigated, it is
unclear how these results translate to other languages. Several frameworks within
the Java world deal with similar domains (i.e. system configuration, querying,
and UI); these would present a good starting point for further evaluation.

Regarding refactorings, a possible conceptual difficulty of our approach lies
in the re-use of existing refactorings, which might change elements in the source
code, affecting artifacts that are part of another multi-language binding. Since
this change is encapsulated behind the refactoring, it is not possible to react
before the change has been committed. Note that this is only a problem if the
artifacts changed are not bound in the semantic model as well (otherwise, the

Artifact Binding and Rename Refactoring between Java and Java DSLs 21

propagation algorithm would have found them). We have not encountered this
problem in our test cases, but it is conceivable that such situations may occur.

4.4 Threats to Validity

Our claim is the fitness for the intended purpose of our tool, i.e. that artifact
discovery, binding, and refactoring works as expected when tested on real-life
cases for the languages involved. Obviously, we can only claim this for the seven
case studies we have investigated; however, we believe that they represent a good
spread of cases; we have also taken care to implement a general solution. Still,
other cases may lead to different and possibly more error cases in each of the
areas of artifact discovery, binding, and refactoring.

Regarding our evaluation, artifact discovery and binding resolution have been
executed manually, i.e. we investigated the source code to determine whether
discovery and binding were accurate. We have created and used tool support
specifically for this task for artifact annotation and orphan detection and have
taken care to find all elements; however, it is still possible that we have missed
artifacts and bindings during this process. Refactoring success was tested by
JUnit tests; although we have checked coverage regarding the artifacts found,
some closures may still be incomplete without us noticing. In the other direction,
some closures may also be too extensive, i.e. include elements which would not
have needed renaming. Since the renaming and tests of the individual language
artifact groups failed as described, there is a strong indication that all bindings in
each closure are relevant; however, we did not unit-test each binding individually.

Since our model discovery partially relies on an incomplete static analysis,
some artifacts are reported as unresolved or orphans; also, several binding errors
are reported which do not in fact exist. However, the number of such problems
is rather low; thus we believe that we can still claim usefulness of our tool.

A final issue is how well our approach can be adapted to an interactive
mode, since our refactoring tests have been carried out in batch mode. Model
discovery and binding is currently a non-incremental process and takes up to a
minute, depending on the number of bindings in the code. It is future work to
investigate incremental discovery (as, for example, in the JDT compiler) as well
as incremental artifact binding routines.

5 Related Work

We discuss adjacent existing work in three parts: Firstly, works which focus on a
particular language binding or bindings; secondly, works which focus on multiple,
but similar languages, and finally, other related work.

To our knowledge, our work is the first which ranges across six languages
and three frameworks, focuses on a generic framework to be placed inside an
IDE to treat all languages and language bindings in an equal way, and contains
a systematic unit-test based evaluation of multi-language refactorings on seven
open-source case studies.

22 Philip Mayer and Andreas Schroeder

Domain- or Language Specific Approaches Firstly, there are several works
which implement support for individual language pairings which usually go
deeper into individual language semantics whereas our approach is focused on a
generic integration architecture.

In 2008, the workshop on refactoring tools has drawn two papers on cross-
language refactoring. Chen and Johnson [I] present an approach for refactoring
references to Java in XML code (examples given are Spring, Struts, and Hiber-
nate). XPath expressions are used to locate references in XML code, and rename
refactorings are considered. Kempf et al. [6] have discussed cross-language refac-
toring between Java and the Groovy programming language, also with a focus on
renaming. A follow-up paper in 2009 [7] has shown these refactorings to be com-
pletely automatable, and the implementation is now part of the official Groovy
Eclipse plugin. In both cases, the implementations presented are specific to the
target languages (i.e. XML and Groovy); our own approach could be used to
integrate these languages and binding implementations with others.

A similar work which deals with interactions between two particular lan-
guages is Tatlock et al. [2I] (2008). They use the term deep refactoring for their
approach to the refactoring of Java applications using a JPA-based framework.
Both class and field renames between Java entities and JPA queries are con-
sidered. Their approach uses data flow analysis to also collect partial queries.
Furthermore, they include a type checking algorithm for verifying inputs and
outputs of queries, i.e. whether the correct Java types are used as parameters
and returning elements in JPA. Thus, their approach goes beyond what we offer
for JPA, but is in turn restricted to JPA and queries, since the grammar-based
approach they use is not easily extensible to other, non-query languages.

Schink et al. [16] have presented, in 2011, an approach to refactor Hiber-
nate applications which include entity definitions (in this case, as annotations)
and queries. The refactorings analyzed are Rename Method, Pull Up Method
and Introduce Default Value. An interesting aspect here is the discussion of the
data present in the database, and of the impact of refactorings (such as pull up
method) on such data. Thus, this approach goes beyond rename and even uses a
dedicated database refactoring; again, it would be interesting to integrate these
efforts (and investigate different refactorings for additional languages).

In 2012, Nguyen et al. [I3] have presented the tool BabelRef which handles
cross-language function calls and widget references in the web application lan-
guages PHP, JavaScript, and HTML with the goal of renaming elements. Their
specific focus is on the partial nature of HTML page parts in PHP, where they
use symbolic execution to create a single tree structure called D-model; by con-
trast, our own approach uses an artifact model with separate bindings.

Refactorings on Similar Languages Secondly, there is some work on refac-
toring multiple languages which share similar concepts, such as being object-
oriented. Such approaches can take advantage of language similarities, which
however makes them specific to this context.

The first two of these are by Strein et al.[T9J20] (2006). Here, a generic frame-
work based on a common meta-model is presented with the aim of renaming ele-

Artifact Binding and Rename Refactoring between Java and Java DSLs 23

ments, in particular methods, across languages. They present the tool X-Develop,
which implements these refactorings for the languages of the .NET framework
(C#, J#, and Visual Basic). A key difference in this approach is the use of a
common meta-model, which is beneficial if the target languages are similar, as
in .NET — all languages share the same or very similar concepts such as types,
methods, and properties. Thus, elements from all languages are represented in
the same way on this level, and it is indeed feasible to write refactorings on
this level. By contrast, we have investigated very different languages in which
there are few common concepts; we therefore use per-language models and re-use
existing individual refactoring implementations for each language.

Sobernig and Zdun [I7] (2010) discuss multi-language refactoring as an eval-
uation technique for implementing multi-language method calls in a scenario in
which one OO language is embedded into another (in this case, the Frag lan-
guage into Java). The main goal of this work is a comparison between reflective
and generative integration techniques, where the amount of effort required for
implementing refactorings can be used for comparison. Besides renaming, they
also consider the very interesting refactorings replace embedded with host object
and replace embedded with host method, as well as remove host method. Such
refactorings are naturally only possible in languages with similar functionality;
not between a general-purpose and a domain-specific language as in our case.

Other related work We have investigated patterns of cross-language linking
between Java and DSLs before [I1] (namely, Spring, Hibernate, and Android),
identifying how to describe and implement binding resolution between artifacts
in these frameworks. In a follow-up paper [I12], we have presented results from
the application of such resolution on a single case study. Building on these re-
sults, the current paper provides a comprehensive description of an approach and
implementation of a generic and systematic multi-language support framework,
and includes a thorough empirical investigation on seven case studies.

In 2012, Pfeiffer and Wasowski [14] have executed a user study to show
multi-language support mechanisms in general to aid software developers. This
experiment with 22 participants has evaluated the tool TexMo, which includes
support for links between Java, Hibernate and Wicket, and is based on the JTrac
case study which we use as well. The main differences lie in the fact that artifact
bindings in TexMo are manually established, and are based on a common, text-
based model. In comparison, our tests show the feasibility of automation as well
as the usefulness of cross-language renames from the unit testing perspective.

A more general discussion of program comprehension and maintenance of
multi-language application can be found in Kontogiannis et al. in 2006 [§]. Open
issues relate to gathering data, formalization and modeling of multi-language
systems, extraction, discovery and storage of extracted information, and how to
support exploration, queries, and knowledge management.

24 Philip Mayer and Andreas Schroeder

6 Conclusion

Multi-language software applications (MLSAs) are a common occurrence for
which systematic tool support is lacking in today’s IDEs. We believe that such
support can make a significant difference for developers, and have thus inves-
tigated an approach and tool for multi-language software. Our implementa-
tion supports six languages (Java, Spring, HBM, HQL, Wicket/API and Wick-
et/HTML) across three frameworks (Spring, Hibernate, and Wicket).

Our approach treats languages and language bindings as first-level entities,
and includes systematic support for multiple (in particular, more than two at a
time) languages without language bias. We provide a generic refactoring algo-
rithm which re-uses existing single-language refactorings and propagates changes
across languages based on artifact bindings.

Using manual inspection for artifact and binding discovery as well as auto-
mated refactoring and unit testing, we have evaluated our tool on seven open
source case studies with a total of 3768 bindings between artifacts in different
languages. The automated refactorings succeeded in 95.96% of the 1709 transi-
tive closures of artifacts which must be renamed together. The remaining cases
were annotated with warnings such that the user is aware of potential problems.

Through our experiments, we have shown that the tool is fit for the purpose
it was created, i.e. automatically and correctly finding multi-language relevant
artifacts, discovering the bindings between them, and (rename) refactoring ele-
ment across language borders.

This work has been partially sponsored by the EU project ASCENS, 257414.

References

1. Chen, N., Johnson, R.: Toward Refactoring in a Polyglot World. In: Proceedings
of the 2nd Workshop on Refactoring Tools. pp. 1-4. ACM (2008)

2. Christensen, A.S., Mgller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Proceedings of the 10th International Conference on Static Analysis.
pp. 1-18. Springer (2003)

3. Fjeldberg, H.C.: Polyglot Programming. A Business Perspective. Master thesis,
Norwegian University of Science and Technology (2008)

4. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Pearson Education (2012)

5. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)

6. Kempf, M., Kleeb, R., Klenk, M., Sommerlad, P.: Cross language refactoring for
Eclipse plug-ins. In: Proceedings of the 2nd Workshop on Refactoring Tools. pp.
1:1-1:4. ACM (2008)

7. Klenk, M., Kleeb, R., Kempf, M., Sommerlad, P.: Refactoring support for the
Groovy-Eclipse plug-in. In: Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications. pp. 727-728.
ACM (2008)

8. Kontogiannis, K., Linos, P., Wong, K.: Comprehension and Maintenance of Large-
Scale Multi-Language Software Applications. In: Proceedings of the 22nd IEEE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Artifact Binding and Rename Refactoring between Java and Java DSLs 25

International Conference on Software Maintenance. pp. 497-500. IEEE Computer
Society (2006)

Linos, P.: PolyCare: A Tool for Re-engineering Multi-language Program Integra-
tions. In: Proceeding of the 1st IEEE International Conference on Engineering of
Complex Computer Systems. pp. 338-341. IEEE Computer Society Press (1995)
Livshits, B., Whaley, J., Lam, M.S.: Reflection Analysis for Java. In: Proceedings of
the 3rd Asian Conference on Programming Languages and Systems. pp. 139-160.
Springer (2005)

Mayer, P., Schroeder, A.: Patterns of Cross-Language Linking in Java Frameworks.
In: Proceedings of the 21st IEEE International Conference on Program Compre-
hension. pp. 113-122 (2013)

Mayer, P., Schroeder, A.: Towards Automated Cross-Language Refactorings be-
tween Java and DSLs used by Java Frameworks. In: Proceedings of the 6th ACM
Workshop on Refactoring Tools. pp. 1-4 (2013)

Nguyen, H.V., Nguyen, H.A., Nguyen, T.T., Nguyen, T.N.: BabelRef: detection
and renaming tool for cross-language program entities in dynamic web applications.
In: Proceedings of the 34th International Conference on Software Engineering. pp.
1391-1394. TEEE Press (2012)

Pfeiffer, R.H., Wasowski, A.: Cross-Language Support Mechanisms Significantly
Aid Software Development. In: Proceedings of the 15th International Conference
on Model Driven Engineering Languages and Systems. LNCS, vol. 7590, pp. 168—
184. Springer (2012)

Pfeiffer, R.H., Wasowski, A.: TexMo: A Multi-language Development Environment.
In: Proceedings of the 8th European Conference Modelling Foundations and Ap-
plications. LNCS, vol. 7349, pp. 178-193. Springer (2012)

Schink, H., Kuhlemann, M., Saake, G., Ldmmel, R.: Hurdles in Multi-language
Refactoring of Hibernate Applications. In: Proceedings of the 6th International
Conference on Software and Data Technologies. pp. 129-134. SciTePress (2011)
Sobernig, S., Zdun, U.: Evaluating java runtime reflection for implementing cross-
language method invocations. In: Proceedings of the 8th International Conference
on the Principles and Practice of Programming in Java. pp. 139-147. ACM (2010)
Steimann, F., Thies, A.: From Public to Private to Absent: Refactoring Java Pro-
grams under Constrained Accessibility. In: Proceedings of the 23rd European Con-
ference on Object-Oriented Programming. LNCS, vol. 5653, pp. 419-443. Springer
(2009)

Strein, D., Kratz, H., Lowe, W.: Cross-Language Program Analysis and Refac-
toring. In: Proceedings of the 6th IEEE International Workshop on Source Code
Analysis and Manipulation. pp. 207-216. IEEE Computer Society (2006)

Strein, D., Lincke, R., Lundberg, J., Léwe, W.: An Extensible Meta-Model for
Program Analysis. IEEE Transactions on Software Engineering 33(9), 592-607
(Sep 2007)

Tatlock, Z., Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Deep typechecking
and refactoring. In: Proceedings of the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and applications. pp. 37-52. ACM (2008)
Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.:
Use, disuse, and misuse of automated refactorings. In: Proceedings of the 34th
International Conference on Software Engineering. pp. 233-243. IEEE Press (2012)

26 Philip Mayer and Andreas Schroeder

A Artifact Description

Authors of the artifact. Design and Core Implementation: Philip Mayer,
Andreas Schroeder. Language Metamodels and Parsers: Thomas Neumeier

Summary. This aim of this artifact is demonstrating feasibility of an implemen-
tation for analysis and refactoring of multi-language software systems (MLSAs),
and for collecting data from this process. As such, the routines for gathering
artifacts, artifact bindings, and for executing refactorings are targeted at batch
processing, using (lengthy) tables with CSV export functionality as output. Sup-
port is also available for graphically visualizing some aspects of the data, and
for navigating to the source code positions of artifacts, bindings, and closures.

The implementation is realized as a set of Eclipse plug-ins. These plug-ins
include EMF meta-models, model parsers, language binding implementations,
and refactoring add-ons for six languages (Java, Spring, Hibernate/HBM, Hi-
bernate/HQL, Wicket/API, and Wicket/HTML). Additional code (views, edi-
tors, actions) provides the user interfaces and glue code required to use the core
routines as well as automated regression tests for all case studies.

The artifact package provides a virtual machine image designed to support
repeatability of the experiments in the paper and thus regenerating the data we
have presented. It also includes the code of the seven case studies we have used
in our analysis.

Content. The artifact package consists of a VirtualBox VM image which hosts:

— an Eclipse installation with all required plug-ins and the source code of our
tool implementation in the workspace

— a configured runtime Eclipse launch configuration with all seven case studies
in the workspace to be used for testing

— detailed instructions for using the artifact to test some interesting language
links as well as reproducing the data used in the paper

Getting the artifact. The artifact endorsed by the Artifact Evaluation Com-
mittee is available free of charge as supplementary material of this paper on
SpringerLink. Additionally, the source code and instructions for installation are
available on our website: http://www.xllsrc.net/.

Tested platforms. Being Java- and Eclipse-based, the artifact should work
on all major platforms. The virtual machine image is known to work on any
platform running Oracle VirtualBox (with around 4GB of main memory).
License. EPL-1.0 (http://www.eclipse.org/legal/epl-v10.html)

MD5 sum of the artifact. e4dbe341e2b4a02b9bd118a5488125bab

Size of the artifact. 4.03 GB

http://www.xllsrc.net/
http://www.eclipse.org/legal/epl-v10.html

	Multi-Language Artifact Binding and Rename Refactoring between Java and Java DSLs
	Introduction
	Exploration Area and Motivating Example
	Multi-Language Artifact Binding and Rename Refactoring
	Artifact Discovery
	Multi-Language Artifact Binding Resolution
	Multi-Language Rename Refactoring

	Experimental Evaluation
	Experimental Setup
	Case Study Setup
	Tool Setup

	Results
	Artifact Discovery
	Artifact Binding Resolution
	Refactoring Change Closures

	Discussion
	Threats to Validity

	Related Work
	Domain- or Language Specific Approaches
	Refactorings on Similar Languages
	Other related work

	Conclusion
	Artifact Description

