
Analyzing the Use of Interfaces in Large OO Projects

Philip Mayer
Information Systems Institute, Knowledge Based Systems, University of Hannover

Appelstraße 4
D-30167 Hannover, Germany

pm@pmayer.net

ABSTRACT
Using partial interfaces, i.e. interfaces that cover only a subset
of the total set of published methods of a class, has several ad-
vantages, among them being an increase in understandability of
the code and extended substitutability of classes in frameworks.
However, analysis of large frameworks such as the Java API
suggests that partial interfaces are only sparsely used. We be-
lieve that this is partly due to the fact that introducing and main-
taining partial interfaces is perceived as tedious by programmers
[5]. Therefore, we have created a metrics suite and tool support
to assist the developer in using partial interfaces.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – abstract data types, frameworks, polymorphism.

General Terms
Measurement, Design, Languages

Keywords
interfaces, partial interfaces, context-specific interfaces, roles,
OO programming, Java, metrics, tool support, refactorings

1. INTRODUCTION
Although the use of interfaces in variable declarations is widely
accepted as a prerequisite for writing decoupled code [3], it
seems that interfaces are rarely used in practice. A recent study
showed that on average only 1 out of 5 variables in various large
Java projects declares an interface as its type [5]. Here, we go
one step further and investigate to which extent the interfaces
used (or just offered for use) in a project limit access to an ob-
ject through a variable to those features of the object actually
needed from within the variable’s context (a so-called context-
specific interface). The idea is that a high specificity of the inter-
face would result in a better perception of a class’s usage in the
given context and in an increase in the number of classes being
able to implement the interface. In general, partial interfaces
tend to be less restrictive, allowing a greater decoupling of
classes, resulting in a higher degree of plugability of a design.

Partial interfaces can occur in different forms. In Java, a dedi-
cated interface construct (covering partial specifications) is part
of the language. In languages such as C++, abstract classes with

no implemented features qualify as partial interfaces if only a
subset of the features of the concrete class is specified.

Without tool support, analyzing the usage of classes in all con-
texts of a large software project and identifying suitable context-
specific or partial interfaces is clearly unfeasible. Therefore, we
have designed a small metrics suite measuring the use of classes
and their interfaces in software projects, and provide tool sup-
port for deriving and analyzing the metrics’ results. Identified
partial interfaces can then be introduced and maintained using a
set of refactoring tools [5] developed in a companion project.

2. A SMALL METRICS SUITE FOR ANA-
LYZING INTERFACE USAGE
We used the goal-question-metrics approach [1] to define the
goal behind the use of partial interfaces and to derive questions
and the set of metrics for determining the achievement of our
goal. Here, we focus on the metrics, of which there are four,
namely NODAS, ACD, BCD, and IMI.

2.1 Definition
NODAS (Number Of Different Access Sets). Each variable dec-
laration creates a new context with a specific type and specific
method calls. The NODAS metric returns a count of pairwise
disjoint access contexts of a class and its implemented inter-
faces. The value ranges from 0 to 2n, where n is the number of
published methods of the class.

ACD (Actual Context Distance). ACD is an assessment of the
distance between the methods available to a context (via the
used type) and the methods actually used in the context (con-
crete method calls). A value of 0 indicates a perfect match, that
is, all available methods are being used, whereas a value close to
1 indicates that only few of the available methods are being used
(indicative of a missing suitable partial interface).

BCD (Best Context Distance). The declared type of a variable
needn’t be the best-matching interface available. The BCD met-
ric finds better matches among already defined and implemented
interfaces, and uses those matches to calculate a “best possible”
ACD. The value of BCD ranges between 0 and ACD.

IMI (Interface Minimization Indicator). Methods available in
interfaces, but not used in any context lead to unnecessarily high
ACD/BCD values. The IMI metric detects such superfluous
methods by dividing the number of methods actually used in the
project by the number of methods available in the interface. A
value of 1 indicates that all methods are being used whereas one
of 0 indicates that none are. The metric is cumulated over all
interfaces of a class to allow a quick assessment of the situation.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

382

2.2 Interpretation

Figure 1: Interpreting the metrics

The first step in the metrics’ evaluation is the comparison of the
ACD and BCD metrics of a class. A large difference indicates
that there are already interfaces available waiting to be used in
the given contexts. The NODAS metric can help evaluate the
absolute value of the ACD/BCD metrics, as a high number of
different access sets justifies higher ACD/BCD values. So can
the IMI metric, since a low number signals non-minimal inter-
faces which lead to unnecessarily high ACD/BCD values.
Classes with high ACD/BCD values suggest missing partial
interfaces – the Context Analyzer (see below) can then be used
to determine what to do next.

3. RESULTS
Table 1 shows the top 5 classes of the Java API with respect to
the NODAS metric. A comparison of the ACD/BCD values –
they differ slightly – shows that not all contexts are typed with
the best possible interface, yet the impact of replacing the types
would be small. The IMI metric – being 1 – shows that none of
the implemented interfaces has methods not used, so that mini-
mizing the interfaces would be no remedy. However, the
ACD/BCD values are close to 1 which suggests a lack of suit-
able partial interfaces. Having identified the problem, the Con-
text Analyzer can be used to determine the missing interfaces.

Table 1: Top 5 NODAS classes of the Java API

Name NODAS ACD BCD IMI

java.lang.String 238 0.941 0.734 1

java.util.Vector 197 0.782 0.729 1

java.awt.Component 173 0.986 0.971 1

java.awt.Graphics 136 0.946 0.946 -

javax.swing.JComponent 116 0.978 0.968 1

Table 2, which has been produced by the Context Analyzer,
shows the three most heavily used method subsets of the classes,
the highest count being 568 usages of a subset containing only
equals. The table also shows the types currently used in the
contexts (C.Types) as well as the type best matching the context
(B.Type) along with the distance to the given context (counted
as the number of excessive methods).
In the case of String, a partial interface CharSequence
including the methods length and charAt (and, per default,
also equals) is readily available, but is only used in 2 out of
990 contexts; in the case of Vector, the interface List could
have been used had the method calls been renamed as suggested
by the Java 2 collections framework .

Of course, Vector and String serve as examples only; the
real test would be application domain classes.

Table 2: Contexts for java.lang.String / java.lang.Vector

Count C.Types B.Type(dist.) Methods
java.lang.String

568 String (any interface) equals
279 String (277),

CharSequence (2)
CharSequence (3) length

143 String CharSequence (2) length/charAt
java.lang.Vector

100 Vector Vector (108) size/elementAt
61 Vector Vector (107) size/

elementAt/
addElement

49 Vector Vector (109) addElement

4. TOOL SUPPORT
The metrics suite and the Context Analyzer have been imple-
mented as plug-ins for IntelliJ IDEA [4] (an IDE offering a fully
resolved parse tree). Together with the set of refactorings devel-
oped separately [5, 7], they make IDEA a very comfortable tool
for the analysis, introduction and maintenance of partial inter-
faces. All described tools can be downloaded from [7].

5. OPEN ISSUES AND CONCLUSION
One problem not addressed here is that of context switches: If
the content of a variable is passed to another context, the set of
methods required from the object may change requiring type-
casts to another interface. The implications of this circumstance
prevent the introduction of minimal context-specific interfaces
in certain cases, yet they do not hinder the use of partial inter-
faces in general, since related contexts together often form a role
of an object, which is also naturally represented as a partial
interface [2, 6]. A more thorough investigation of these implica-
tions is under way.

We have shown that our metrics and tool support can help iden-
tify possible partial interfaces. Further experiments are planned
to evaluate the results of the metrics, and to gain new insights
from applying the refactorings suggested by metrics and Context
Analyzer to widely used packages.

6. REFERENCES
[1] Basili, V., Caldiera, G., Rombach, D. The Goal Question

Metric Approach. Encyclopedia of SE, Volume 1, 1994.

[2] Fowler, M. Refactoring: Improving the Design of Existing
Code. Addison-Wesley 2000.

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns. Addison-Wesley 1995.

[4] IntelliJ IDEA. www.intellij.com/idea

[5] Steimann, F., Siberski, W., Kühne, T. Towards the System-
atic Use of Interfaces in JAVA Programming. In Proc. of
PPPJ 2003 (Kilkenny, Ireland, June 2003) 13–17.

[6] Steimann, F. A radical revision of UML’s role concept. In
Proc. of UML 2000 (York, UK 2000) 194–209.

[7] Framework for the Use of Java Interfaces. www.kbs.uni-
hannover.de/fuji

NODAS

ACD BCD

IMI

383

