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Abstract 
Modern software architectures heavily promote the use of interfaces. Originally 
conceived as a means to separate specification from implementation, popular 
programming languages toady accommodate interfaces as special kinds of types that 
can be used – in place of classes – in variable declarations. While it is clear that these 
interfaces offer polymorphism independent of the inheritance hierarchy, little has been 
said about the systematic use of interfaces, or how they are actually used in practice. 
By providing a set of basic patterns of interface use together with numbers of their 
frequency we provide insights that should be of interest not only to the practising 
programmer, but also to the designers and analysts of large code bases. 

1 INTRODUCTION 

After the hype has gone, what remains from a new technology is often not what it has 
originally been acclaimed for. In the case of object-oriented programming, it seems that 
the praise for its potential of code reuse through implementation inheritance has vanished 
in favour of an appreciation of what is sometimes called interface inheritance or, more 
generally, interface-based programming [Pattison00]. This programming style derives 
from the fact that instances of different classes are allowed to take the same place (i.e., 
can be assigned to the same variable) as long as they guarantee to conform to the same 
interface specification, and that this substitutability is independent from whether or not 
the classes share implementation. In interface-based programming, variables are therefore 
typed with interfaces rather than classes. 

The programming language JAVA has recently popularized the interface-as-type 
concept: with it, the designers of a program have the choice to code abstract types (types 
that cannot be instantiated) as either abstract classes or interfaces. The JAVA language 
specification however is rather reticent about the reason to introduce a separate interface 
construct; in fact, from reading the documentation one is led to believe that the primary 
purpose of its existence is to compensate for JAVA’s lack of multiple inheritance. 
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Figure 1 gives an impression of how the use of interfaces has developed over the past five 
major releases of the JAVA application programming interface (API, called JDK 
hereafter). Whereas the ratio of classes to interfaces almost remained constant (approx. 
5.5:1 across all releases; note that equal ratios translate to equal distances on a 
logarithmic scale), that of interface-typed to class-typed variables nearly doubled with the 
change to JAVA 2 (JDK 1.2; approx. from 1:9 to 1:5). At the same time, the average 
number of interfaces implemented per class jumped from 0.8 to 1.8. 

Considering that in JAVA classes must explicitly declare to implement interfaces for 
their instances to be assignable to correspondingly typed variables, one might assume that 
the increased availability of interface-implementing classes accounts for the increased 
popularity of interface-typed (in relationship to class-typed) variables. However, the even 
more dramatic increase of interface implementations one release earlier (which was more 
than 2.5-fold) was not accompanied by a corresponding increase in the ratio of interface 
to class-typed variables (which instead remained almost constant); in fact, it goes back to 
a large part to the introduction of the Serializable interface, which is implemented by 
43% of all classes of the JDK 1.1.6, but which has only few (30) variables declaring it as 
their type. As it turns out, one contributor to the considerable increase in interface-typed 
variables from JDK 1.1 to JDK 1.2 is the introduction of the JAVA collections framework, 
whose 11 interfaces account for 13% of all interface-typed variables in 1.2, but – contrary 
to Serializable – come with only few implementing classes. In the same vein, but 
much more than collections the GUI framework SWING (also introduced with JAVA 2) has 
contributed to the statistics: its interfaces come with 54% of all interface-typed variables 
of the JDK 1.2. While this may be taken as a first evidence of the existence of different 
usage patterns for interfaces, we note here that since then, both the average number of 
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Figure 1. Development of interface utilization in the JDK. 
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interface implementations and the ratio of interface to class-typed variables have 
remained almost constant, suggesting that the use of interfaces, as well as perception of 
their utility, – at least by the authors of the JDK – has settled. 

Outside the realm of JAVA, one can observe that especially within the context of 
large APIs and frameworks such as CORBA, J2EE, COM or .NET the use of interfaces is 
heavily promoted. Not unlike in the JAVA community, however, this is usually done in an 
ad hoc fashion, without an underlying theory when and how interfaces are to be used. 
While this question may have remained unobvious as long as programming languages 
such as C++ (which distinguish only between abstract and concrete classes, not between 
abstract classes and interfaces) were being used, with languages such as JAVA and C# the 
programmer must make an explicit choice, and this choice should be based on 
considerations reproducible by the readers of a program. 

In the following, we elaborate on certain frequent patterns of interface-based 
programming, trying to sharpen the reader’s awareness of the different uses of the 
interface concept, and provide programmers with robust criteria as to when one kind of 
interface or the other is being used. We start in Section 2 with a short survey of the 
evolution of interfaces as types (the indispensable prerequisite of interface-based 
programming), and define a few basic properties of interfaces in Section 3. Based on 
these definitions, Section 4 then provides a classification of interfaces together with the 
patterns of their use. A brief discussion of related work and a justification of our 
approach conclude our work. 

2 EVOLUTION OF THE INTERFACE-AS-TYPE CONCEPT 

Defined as “a shared boundary across which information is passed” [IEEE91], interface is 
a very general notion that has many uses in computer science. Interfaces between 
software components were pioneered by Dijkstra and Parnas in their work on software 
architecture and good design – the fact that it did not take long until interfaces became 
distinct programming entities in languages as respected as MODULA and ADA must be 
considered strong evidence for the import of the concept. Today it appears that the terms 
module and interface have almost become inseparable in software engineering: the ACM 
computing classification system for instance lists them jointly under Design Tools and 
Techniques (entry D.2.2). 

With the advent of object-oriented programming, classes quickly became the 
primary unit of modularization, replacing to a large part for the more heterogeneous 
concept of a module. The interface of a class is an abstract data type (including formal 
behaviour specification) for which the class provides one (out of many possible) 
implementations. However, in most contemporary object-oriented programming 
languages interface specification is inseparably tied to the definition of a class (by 
tagging some of the class’s features as public and others as private) – it can neither be 
shared by other classes (except of course by its subclasses), nor can the class implement 
more than one abstract data type (except those inherited from its superclasses). We call an 
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abstract data type that is part of the class definition the implicit interface of the class; 
implicit interfaces will play a role in some of our further considerations. 

CLU was perhaps the first language to separate a class from its interface by way of 
associating a distinct type with each. While the primary reason for this was to permit 
separate compilation of modules (called clusters in CLU), it would also have made 
possible the selection among different implementations of an interface at run-time, as its 
authors note [Liskov77]. In fact, the full power of separating interfaces and 
implementation types is unfolded only when combined with type subsumption and the 
principle of substitutability: if instances of different types realize the same interface, they 
are allowed to replace for each other. Although more fundamental than the 
substitutability tied to the inheritance hierarchies of object-oriented programming 
languages, it took some time for so-called inclusion polymorphism to become decoupled 
from subclassing: the creators of JAVA confess to have borrowed the language’s interface 
concept from OBJECTIVE-C (called protocols there), but the true origin is difficult to 
trace.1 

C# has taken over the interface-as-type concept from JAVA and has developed it 
further. Most notably, C# lets classes offer different implementations of the same method 
if this method is declared in more than one of the class’s implemented interfaces, and it 
allows interfaces to make accessible features of their implementing classes otherwise 
inaccessible (so-called explicit interface implementations). The latter is of particular 
interest since it allows the implicit interface of a class to be disjoint from the explicit 
interfaces it implements2; in fact, the implicit interface of a class can even be empty, 
forcing all variables providing access to the features of a class to be interface-typed. Both 
properties of C# are in line with Microsoft’s strong emphasis of the interface-based 
programming paradigm [Pattison00], favouring interface over implementation 
inheritance. 

By today, the interface-as-type concept has emancipated itself to the extent that 
whole software architectures (such as the OMG’s CORBA or Microsoft’s COM) are 
completely defined in terms of interfaces, not classes. The expected advantage of this is a 
better (dynamic especially) composability of software and – as has been right from the 
inception of the interface concept – an insensitivity to changes. However, in a world of 
interfaces only, one important aspect of interface-based programming is missed: the fact 
the same class can implement several, otherwise unrelated interfaces at the same time. 
Trivially, in total absence of classes the distinction between classes and interfaces as 
separate types disappears: it is reduced to the classical separation of specification and 
implementation. 

Throughout the following, we think of an interface as a named type specifying a (not 
necessarily complete) set of features characterizing all instances whose classes declare to 
                                                           
1The language EMERALD [Raj91] is another possible role model for the introduction of interfaces as types 
in JAVA: in EMERALD, all variables must be interface-typed, and classes are completely replaced for by 
(implicitly typed) constructors. 
2To be more precise, the implicit interface of a C# class does not automatically extend the interfaces the 
class implements. 
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implement the interface. Technically, “features” is commonly restricted to methods, but 
conceptually, they include attributes – access to which can be granted through accessor 
methods as part of the interface – as well. 

3 BASIC PROPERTIES OF INTERFACES 

In order to be able to describe the different patterns of interface utilization in Section 4, 
we need a certain vocabulary that covers the different properties of interfaces and their 
relationships to implementing classes. The list given below may appear random at first 
glance (and is certainly incomplete as regards the general properties of interfaces); yet it 
covers all we need to discern the different uses of interfaces as types. 

Caller and Called: The Two Sides of an Interface 

Every interface has two sides: it separates the caller and the called, the two roles of the 
asymmetric calls relationship. In UML jargon, the caller depends on the interface, and the 
called implements it (Figure 2 a). However, this naming is problematic, since the true 
dependency may sometimes be inverted (see below). Note that although caller and called 
are usually associated with classes, it is really objects that play the corresponding roles. 

In the context of components, interfaces are usually classified as either provided or 
required (or ingoing and outgoing). Unlike caller and called, however, provided and 
required do not refer to two sides of the same interface, but to two different interfaces, by 
naming their roles with respect to a single component (Figure 2 b). Although both the 
provided and the required interface have a caller and a called side, these roles do not refer 
to the same components: in fact, the caller of a provided interface can be another 
component than the called of a required interface. Note that if dependency of two 
components is mutual, this has to be expressed by two opposing interfaces, with roles 
swapping depending on the interface being looked at. 

In software engineering jargon the caller of an interface is often called the client and 
the called the server. This naming is biased towards a certain use of interfaces, though; in 
fact, calling in the above (technical) sense is not necessarily tantamount to requesting a 
service, at least not in the original sense of word (which would imply the benefit of the 
call to be on the side of the caller). Rather, as will be seen it may be the case that the 
caller calls the called for the latter’s own profit, inverting the roles of client and server. 

In an object-oriented program, callers of an interface are marked by variables 
declaring that interface as their type. The called on the other hand are the classes (or, 
rather, their objects) implementing the interface, be it directly or indirectly. Elsewhere we 

a)

«called»«caller»

b)

«required»
«provided»

 
Figure 2. a) The two sides of an interface (notation is UML).  b) Different interfaces. 
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have defined metrics counting the number of call sites (so-called Interface Popularity, 
IPOP) and implementations (so-called Interface Generality, IGEN) [Mayer03, 
Steimann03, Gössner04]; these metrics have been used to compute the numbers of Figure 
1 and, as will be seen, they also provide important hints for the distinction between the 
different usage patterns of interfaces. 

Interfaces and Contracts 

An interface is sometimes regarded as the specification of a contract between a client and 
a supplier [Meyer97]. Both sides of the contract have benefits and obligations: the client 
is obliged to adhere to the preconditions associated with a needed service and benefits 
from the supplier ensuring the postconditions, whereas the supplier benefits from the 
client’s keeping to the preconditions and is obliged to guarantee the postconditions. 
Although the names client and supplier suffer from the same problem as client and server 
mentioned above, the notions of benefit and obligation are somewhat more neutral; they 
will play an important role in our distinction of the different kinds of interfaces. 

Preconditions and postconditions specify the functional (or behavioural) part of an 
interface. Depending on the particular kind of interface, they can be tight (as reflected in 
lengthy prose or complex logical expressions) or loose (as loose as constraining only 
formal parameter and return types of a single method). Generally, the laxer a contract is, 
the more freely a supplying class can behave. This goes as far as allowing the 
implementing class to do anything, as is for instance the case with the Runnable 
interface of the JDK. To the other extreme, interfaces specifications can be so tight that 
the only allowable variability in different implementations is in the non-functional 
requirements (such as time or space consumption). This variability is also an important 
criterion for the distinction of the different patterns of interface use as presented below. 

Total and Partial Interfaces 

The classical interface separating specification from implementation comprises all public 
features of its implementing class(es). We call such interfaces total interfaces.3 However, 
totality of interfaces is not always a desired property. Quite to the contrary – the 
Reference Model of the Open Distributed Processing standard (ODP RM) defines 
interface as follows: 

Interface: An abstraction of the behaviour of an object that consists of a subset of the 
interactions of that object together with a set of constraints on when they may occur. 
Each interaction of an object belongs to a unique interface. Thus the interfaces of an 
object form a partition of the interactions of that object. [ISO] 

Although we find the strict partitioning (i.e., the non-overlapping of interfaces) required 
in this definition debatable, we agree that partiality of an interface (which can have 
different causes and may serve different purposes) is an important concept; we call such 

                                                           
3As noted above, an interface specifies features of objects, not of its implementing classes. Since constructors are class 
methods, the fact that an interface does not include constructors does not mean that it is not total. 
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interfaces partial interfaces. Note that whether or not an interface is partial is not a 
property of the interface alone, but equally determined by its implementing class(es). In 
fact, an interface can be both total and partial (but only of different classes). Thus, when 
speaking of a total interface without referring to a particular implementing class we 
require that it is a total interface of all implementing classes. It follows that absolute 
totality is not a property that can be attributed to interfaces of open systems, unless there 
are language means to prevent implementing classes from adding features. 

Interfaces and Abstraction: Generalizations vs. Roles 

By definition, an interface is always an abstraction: it abstracts from implementation by 
providing its specification. 

In object-oriented programming, a supertype abstracts from its subtypes by omitting 
some of their features (so-called generalization). The interface of a generalized supertype 
is partial in the sense that it does not cover all public features of all its implementing 
classes. Induced by generalization, this partiality is the result of grouping together classes 
that share considerable commonality, differing only in some detail (with the opposite of 
generalization, specialization, adding the detail that distinguishes one subtype from the 
other). 

Partiality does not necessarily result from generalization, however; instead, a partial 
interface may be designed to isolate a certain aspect or facet of its implementing classes. 
Although such a partial interface is still an abstraction, it does not omit detail, but instead 
focuses on it (by omitting all features that are not associated with the aspect). Partial 
interfaces of this kind reduce the generality of objects, by focussing on a specific use or 
appearance in a specific context. Such interfaces are context-specific; as elaborated 
elsewhere, they can be equated with roles [Steimann00b, 01b]. 

It is not always easy to distinguish a role from a generalization. In fact, even though 
there is a fundamental conceptual difference between the two, it is hard to tie it to 
formally observable properties, since the programmer – in expressing her/his intent – is 
free to (ab)use the programming language constructs at hand any which way (s)he 
pleases. One possibility is to assume that intent is expressed literally, i.e., that roles have 
role names (like Customer, Printable, etc.) and generalizations have genera names (like 
Thing, Document, etc.). However, there is no law to enforce this semantic naming 
convention, so that it cannot be relied on. Another possibility is to apply ontological 
criteria: if the interface is defined in the context of some relationship and access to an 
object through the interface is transient in nature, then it must be a role [Steimann 00a]. 
However, this requires a deep understanding of the use of an interface in a program, and 
that this use is stable across all possible extensions, which is seldom the case. Last but not 
least, one could argue that if an interface is partial, is not the only abstraction of the class, 
and is not extended by some other interface of the same class (excluding the implicit 
interface in the case of JAVA, since this interface automatically extends all implemented 
interfaces of the class), then it is a role. This seems justified because one must suspect 
that there are contexts in which the class is used differently than allowed by the interface 
(namely through the other existing abstractions), making the interface (which is not itself 
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a generalization of some other interface) context-specific. However, cases can easily be 
constructed where this (technical) criterion is misleading so that in practice, a 
combination of all three has to be applied. 

Note that as generalizations, interfaces compete with abstract classes. In fact, in 
practice interfaces and abstract classes are sometimes used as if they were the same 
concept. However, since abstract classes have the potential to pass on implementation to 
their subclasses, they should be used if (and only if) the relationship to the subclasses is 
genetic, i.e., if it is (or at least could be) based on the inheritance of internal structure, that 
is, implementation. If on the other hand the relationship is based on pure function (or, 
weaker still, on sameness of protocol), interfaces should be used. For instance, a linked 
list and a dynamic array would normally not be genetically related (i.e., have no common 
pieces of implementation), yet they share the interface of lists (specifying sequential 
access to their elements). 

4 CLASSIFICATION OF INTERFACES 

While the technical definition of the interface concept is unambiguous, its actual 
utilization can differ greatly. In trying to order the different usage patterns of interfaces, 
we have set up the classification shown in Figure 3. Although it has no strict hierarchical 
structure (it is not a tree, but built on two orthogonal subclassifications), the remainder of 
this section assumes a linear ordering, progressing through it from left to right and 
introducing the different uses along the way. The classification is based as much as 
possible on the terms and definitions presented in Section 3; one should keep in mind, 
though, that programming has many degrees of freedom, and any attempt to classify 
working code into a set of academic categories must either fail or suffer from a certain 
elusiveness. 

Offering Interfaces 

According to its standard conception, an interface publishes some service offered by the 
called to the caller. We call such interfaces offering. The benefit of the call to an offering 
interface is clearly on the side of the caller, whereas the greater part of the obligations are 
on part of the called. This is usually reflected in rather specific postconditions for the 
offered services, whereas the preconditions tend to be brief (and are formulated mostly in 
the server’s terms). For instance, while a stack must not be empty in order to pop it (the 

idiosyncratic family
client/server

server/client server/item

general

offering

enabling

context-specific

Figure 3. Classification of interfaces. Offering and enabling are complementary 
categories, as are general and context-specific. 
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precondition), actually popping it requires that the most recently pushed element be 
removed, that the second be popped next, etc. (the postcondition). As an immediate 
consequence, there is usually a rather large number of potential callers to an offering 
interface (since the preconditions are easily fulfilled), whereas there is typically only a 
rather small number of implementors (because they must all fulfil the same specification, 
there will usually only be few alternative implementations). 

Depending on whether an interface is intended for the general public or for specific 
clients, we distinguish between general and context-specific interfaces 

General Interfaces 

General interfaces are defined with no particular caller in mind. Because their purpose is 
to offer all services of their implementing classes to the general public, general interfaces 
are typically total. This is so because if not, one must suspect that there are contexts in 
which a class is used differently than allowed by the interface (as evidenced by the 
calling of methods excluded from it), making the interface context-specific. 

Unless general interfaces are related by subtyping (i.e., one interface is a 
subinterface of the other), a class usually has only one general interface. This is so 
because there is no point in keeping apart interfaces that serve no specific caller or use. In 
fact, the only purpose of a general interface is to separate specification from 
implementation, making the latter (ex)changeable without affecting its callers. Depending 
on whether changes to the implementation reflect historical or concurrent (competing) 
alternatives, we further divide general interfaces into idiosyncratic and family interfaces. 

If a general interface is implemented by only one class (whose implementation may 
be modified over time, but with no two alternatives occurring in the same project), we 
call this interface idiosyncratic.4 Idiosyncratic interfaces are often named after the classes 
they specify the interface of, with either the interface or the class name being 
complemented by a prefix or suffix indicating the interface or implementor status, as in 
IPerson or StackImpl. 

Idiosyncratic Interfaces.   An idiosyncratic interface use is characterized by a to-one 
relationship of a total interface with its implementing class: only one class implements 
the interface at a time. (The class may however implement other interfaces, but these 
interfaces will typically be context-specific.) Because the interface is a complete ab-
straction of the class it implements, it can replace for the class in variable declara-
tions.5 This is the classical use of the interface-as-type concept. 

                                                           
4Note that general relates to the caller’s side of the interface (indicating that it is not aimed at a specific caller), whereas 
idiosyncratic pertains to the implementor’s: only one class has this interface. Hence, there is no contradiction in calling 
a general interface idiosyncratic. 
5Note that if language peculiarities prevent an idiosyncratic interface from being a complete abstraction of the class it 
represents, it cannot ubiquitously replace for that class in variable declarations. In the case of JAVA, if direct access to 
the fields or non-public or static features of a class is required, this prohibits the use of an interface in the class’s place. 
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Figure 4 illustrates the use of an idiosyncratic interface: a single class, the server, 
implements a total interface on which its (unspecified) clients depend. Because the clients 
are unspecified, later introduction of new clients (with perhaps new uses of the server) do 
not require new interfaces; the idiosyncratic interface is completely unspecific, that is, 
general. 

In contemporary languages such as JAVA and C#, idiosyncratic interfaces will mostly 
remain implicit, because the set of features declared by a class as public can be thought of 
as its interface (the implicit interface; cf. Section 3). Factoring out theses features into a 
separate syntactic entity may not seem worth the effort, particularly since it is implicitly 
done by the compiler. Therefore, we cannot expect to find many idiosyncratic interface 
declarations in JAVA or C# program corpora. This is in contrast to the instructional 
literature on object-oriented programming, in which idiosyncratic interfaces (such as 
IDog or IPerson) abound. 

As it turns out, there are no true examples of idiosyncratic interfaces in the JDK – 
the implementations of literally all interfaces implemented by only one class are tagged 
as examples. Things are different for ECLIPSE, however, which has a use for idiosyncratic 
interfaces even in JAVA programming: its IClassFile for instance is the interface of 
only one class, ClassFile, of which it is a total interface. To quote the documentation, 
this interface “represents an entire binary type (single .class file)” and is “not intended to 
be implemented by clients”. In fact, ClassFile resides in a package explicitly marked 
as being internal to the system (org.eclipse.jdt.internal.core), contrary to its 
interface, IClassFile, which is from the publicly accessible package 
org.eclipse.jdt.core. 

If a general interface is implemented by more than one class at the same time (i.e., 
within the same project), we call this interface a family interface (Figure 4). The different 
classes are often offered as alternative implementations, with different (technical) 
properties; yet each one adheres to the same interface specification. As opposed to 
idiosyncratic interfaces whose implementation can be varied only at design time of the 
program, family interfaces offer implementation alternatives at run time; they are 
therefore often accompanied by factories [Gamma95] and double dispatch as a substitute 
for multiple dispatching [Steimann01a]. 

Family Interfaces.   A family interface heads a family of classes, offering their services 
to the general public (i.e., unspecified clients). If the classes comprised under the fam-
ily interface extend each other, it will be a generalization of some of the classes, but 
these usually have their own (idiosyncratic or family) interfaces. 

Figure 4. Idiosyncratic interface 

Idiosyncratic I/F

Server

Family I/F

Server  BServer A

Figure 5. Family interface 
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Because family interfaces are context-independent, they specify the nature of their 
objects rather than their behaviour in a specific role (cf. Section 3). Family interfaces 
therefore often carry typical class names (such as Number or Interval) and are used 
interchangeably with abstract classes as patres familiae of a family of classes 
[Steimann01a]. In fact, in absence of multiple (class) inheritance interfaces are sometimes 
abused (as regards the criteria of Section 3) to root class hierarchies where abstract 
classes would be in place, in order not to block the possibility of inheritance from other 
classes.6 

Prominent family interfaces are Collection, Set, List, and others from the JAVA 
2 collections framework. Note that Enumeration and Iterator, which are mostly 
implemented by anonymous classes7 and by classes inner to the corresponding 
collections, are also family interfaces: although conceptually both interfaces are context-
specific (providing sequential access to collections in the context of iteration), technically 
they are not – there is no other use of enumeration and iterator objects. 

Because family interfaces are often only partial interfaces of some of their 
implementing classes, the demarcation from client/server interfaces (as discussed next) is 
sometimes difficult. For example, an instance of class TreeSet may be used as a plain 
collection in some places and as a sorted set in others, making its use context-specific. 
However, since Collection is a generalization (of both SortedSet and TreeSet), it 
does not focus on specific properties; hence, it will usually not be seen a role. 

Context-Specific Interfaces (Roles) 

An interface that is not general is context-specific; it comprises the specific protocol 
expected by certain callers whose relationship to the called (the implementors of the 
interface) sets up the context of their (the implementors’) use. Because specificity is a 
property defined only in presence of variety, context-specific interfaces are typically 
partial. However, they may overlap. 

Although it is conceivable that context-specific interfaces are also idiosyncratic (i.e., 
the interface of only one class), one general theme behind context specificity is to 
minimize coupling, allowing a greater number of classes to take the place of the called. A 
distinction based on the count of implementors of a context-specific interface (as done for 
general interfaces) is therefore not useful. Instead, there is an interesting twist to the 
dependency relationship, differentiating offering from enabling interfaces (Figure 3). 
For the obvious kind of context-specific interfaces, the caller relies on some specific 
service offered by the implementor of an interface: being the beneficiary of the 
interaction, it is the client of the service. On the other side of the interface, the called 
                                                           
6In fact, the JAVA API specification is full of Freudian slips confusing classes and interfaces: for example, the interface 
MenuContainer is defined as “the super class of all menu related containers”, and Streamable as “the 
base class for the Holder classess of all complex IDL types”. 
7JAVA’s anonymous class mechanism allows the ad-hoc creation of instances whose protocol conforms to an interface. 
If this interface is exclusively “implemented” by anonymous classes, then it designates the only context in which the 
instances can be used, and it is necessarily total so that it must be classified as a family interface. (It is not idiosyncratic 
because arbitrarily many different alternative implementations can be provided, as is the case for Enumeration.) 
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behaves as the benefactor: it is the server of the service (Figure 6). We therefore call such 
interfaces client/server interfaces. As for general interfaces, client/server interfaces 
usually come with tight contracts so that the called can often be substituted without 
affecting the caller’s or global program behaviour (cf. Section 3). 

Client/Server Interfaces.   A client/server interface is a context-specific interface that 
offers the particular services needed by certain clients. The server typically has other 
features not included in the client/server interface; it offers different interfaces to dif-
ferent clients. 

Although client/server interfaces will typically be found in closed application programs in 
which both client and server have been designed specifically to interact with each other, 
they can specify partitioned access to general purpose classes as well. For instance, an 
interface Stack could be used to specify access to an instance of class Vector in all 
contexts in which it is used as a stack, without prohibiting the use of the same or other 
instances of the same class as something else (a queue for instance) in other places. 

A typical example of a client/server interface is the use of the MenuContainer 
interface from the JDK (package java.awt). The interface provides functions for “all 
menu related containers”; it is implemented by classes as different as Button, 
Checkbox, Scrollbar, and TextFrame, all of which can – despite their different 
nature – present as menu containers to their clients. Clients rely on this particular 
property by accessing their servers through the MenuContainer interface; the classes 
implementing MenuContainer, however, have many other services to offer. 

Other prominent client/server interfaces identified in the JDK are Shape and 
LayoutManager (both from java.awt), DataInput and DataOutput (from 
java.io), and java.lang.CharSequence. Interestingly, some of these interfaces 
would appear to be typical family interfaces: whereas DataInput, DataOutput, and 
CharSequence qualify as role names (names given in a certain context), Shape and 
LayoutManager sound like the names of natural types or generalizations (and hence 
would be expected to be family interfaces; cf. the argumentation of Section 3). However, 
the classes implementing Shape are really quite heterogeneous, with Shape specifying 
only one aspect common to all of these; not as consistently, but in a similar vein, 
LayoutManager is an interface of user interfaces, editors, and layout managers, 
focusing only on the layout manager aspect of each. 

Enabling Interfaces 

For general and client/server interfaces (the interface uses presented so far), the class 
implementing the interface is the service provider. However, as indicated above this need 
not always be so. In fact, there is an important category of interfaces in which the caller 
of the interface is the service provider (server) and in which the called is either the client  
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or an item of it. Because these interfaces enable the called object’s individual 
contribution to or participation in the caller’s context, we call them enabling interfaces. 

Enabling interfaces often carry an -able or -ible suffix, as for example Printable, 
Accountable, or Accessible. Characteristically, postconditions of enabling interfaces 
are not as tight as those for offering interfaces, so that exchanging one implementor for 
another will most likely alter program behaviour. In fact, different implementing classes 
of an enabling interface are typically carriers of different, application-specific code. This 
is in contrast to the caller, which will often be general purpose and can be substituted 
accordingly. 

Depending on whether the called object or some third party is the beneficiary (client) 
of the service, we have subdivided enabling interfaces further, namely into server/client 
and server/item interfaces. 

With server/client interfaces, the beneficiary is the called object, which profits from 
a service offered by the caller of the interface (the roles of client and server thus being 
swapped, as in Figure 7). As an immediate consequence, the contract for the 
implementing class is usually rather lax (as reflected by a fairly small number of methods 
required); that of the caller remains mostly implicit. 

Server/Client Interfaces.   A server/client interface is an interface that enables its im-
plementors to profit from some service offered by the caller. A server/client interface is 
often specific to a particular server; however, it need not be. 

Not coincidentally, the naming suggests that server/client and client/server interfaces 
oppose each other: if interaction between client and server is bidirectional (with roles of 
the participating object being independent of the particular direction), these interfaces are 
likely to occur in pairs (Figure 8). Such is typically the case in asynchronous 
communication, when callbacks are required to return the value of a computation; 
however, it also occurs when the server needs additional information from the client not 
provided with the initial service request. 

Client-A/S I/F

Server

Client-B/S I/F

Client A Client B

Figure 6. Client/server interface. 
Server offers its services to 

different clients, each with its own 
client/server interface, comprising 

only what is needed. 

Server/Client I/F

Server

Client A Client B

Figure 7. Server/client 
interface. The receivers 

of the service are the 
implementors of the 

interface. 

Client/Server I/F

Client

Server

Server/Client I/F

Figure 8. Server/client interface. The 
receivers of the service are the 
implementors of the interface. 
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Although paired client/server-server/client interfaces are common, server/client interfaces 
exist in their own right. For instance, the observer role of the OBSERVER pattern 
[Gamma95] is represented by a server/client interface implemented by the beneficiary of 
the collaboration, namely the object to be notified when a change occurs. Typical 
server/client interfaces from the JDK are thus its listener interfaces. Other typical 
instances of server/client interfaces occur in frameworks, where the execution of user-
provided classes (so called plug-ins) is controlled by a set of framework classes (a 
condition referred to as inversion of control [Fayad97]). Being enabling interfaces, it is 
the implementing class (the client) which provides the application-specific code; the 
calling class (the server) on the other hand is typically application independent (for 
application frameworks: independent of a specific instantiation). Note that although 
server/client interfaces can in principle be total, they are usually only partial since the 
plug-in classes need to interact with others to fulfil their application-specific purpose, of 
which the server has no knowledge. 

The prototypical example of a framework server/client interface is the Runnable 
interface of the JDK (package java.lang), providing for multithreading in JAVA. A 
class implementing Runnable does this because it wants to run a separate (its own) 
thread so it can act independently of others, and it receives this thread (the service) from 
Thread, the class calling the Runnable interface.  The contract for Runnable is 
minimal: it consists of a single method run with no arguments. Even semantically, this 
method is totally unconstrained: to quote the JDK documentation, “[t]he general contract 
of the method run is that it may take any action whatsoever.” Other prominent 
server/client interfaces with similar protocol are Action and MenuElement, both from 
the SWING GUI framework. 

The relationship between the server and the client of a server/client interface is 
typically rather long-lasting. As it turns out, server/client interfaces can often be 
identified by the fact that the server offers a special procedure for registering its clients 
(and a corresponding attribute keeping references to them). This holds particularly for 
plug-ins and observers; it does not, however, apply to the links held by a server calling 
back its clients, which are typically temporary in nature.8 

                                                           
8Note that in the common type system (CTS) of Microsoft’s .NET framework, both callbacks and observers are realized 
by so-called delegates, special types representing function pointers. 
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Figure 9. Server/item interface 
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Figure 10. Service relying on a server/item interface, 
made available through a client/server interface. 
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For many enabling interfaces the beneficiary of the service is not the implementor (the 
called) itself, but some other class holding it. Typical examples are the -able interfaces 
Comparable and Accountable; for instance, it is not the comparable object which 
profits from being compared, but the object holding it, as for example a collection that is 
to be sorted (or, ultimately, the owner of the collection). Because the implementing object 
is typically an item of some other class, we call these interfaces server/item interfaces. 

Server/item interfaces occur in collaborations of three or more objects in which one 
object (the item) is passed by another (the client) to a third (the server) which is to 
process the item for the client (Figure 9). This processing requires some support from the 
item, which offers this support by implementing the server/item interface. As opposed to 
server/client interfaces, the relationship established between the caller (the server) and the 
called (the items) of a server/item interface is temporary in nature. Therefore, server/item 
interfaces typically occur as the types of formal parameters and temporaries, but not of 
attributes (fields). 

Server/Item Interfaces.   A server/item interface is an interface that enables the proc-
essing of a certain kind of objects (the items) by a server for the profit of some third 
party, the client. 

Server/item interfaces are frequently found in conjunction with offering (client/server 
especially) interfaces. The offering interface then includes the server/item interface as a 
formal parameter type (Figure 10). Note that in the example of sorting collections, this 
would require a generic type (a List of Comparables). 

Other prominent server/item interfaces are Printable (from java.awt.print), 
LazyValue (inner to javax.swing.UIDefaults) and XMLWritable (from 
org.apache.crimson.tree). Note that in the case of Printable, one might argue 
that it is the printable object itself that profits from being printed. However, unless the 
object and the printer are related somehow (which is typically not the case for 
implementors of Printable), some third party must be the issuer (and beneficiary) of 
the printing request. 

Special cases of server/item interfaces are the so-called tagging or marker 
interfaces.9 Tagging interfaces are often empty, in which case they can only occur as 
parameter (and not as receiver) types of method calls. The dependency arrow from the 
server to the server/item interface in Figure 10 then stands for a dynamic type check 
(usually in the form of an instance-of test), the primary purpose of a tagging interface.10 
On the other hand, many tagging interfaces are abstract in the sense that they are not 
directly implemented, but root a hierarchy of non-empty interfaces, or they extend non-
empty interfaces without adding functionality. 

                                                           
9The names are to express that the so-labelled interfaces flag their implementing classes as being of a certain type. This 
information can be utilized by the compiler (through type checking) as well as during program execution (by querying 
an object’s conformance to the interface). Quite obviously, tagging interfaces share this property with all others. 
10Tests for identity are another possible operation for tagged objects. Characteristically enough, however, the JDK’s 
most frequently implemented empty interface, Serializable (implemented 1975 times in the JDK 1.4) grants 
access to all attributes of its implementing classes, albeit only through introspection. 
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Relative Distribution of Interfaces 

To probe the relative frequency of the different kinds of interfaces, we looked at the 100 
most often implemented and at the 100 most often referenced (as counted by the number 
of variables) interfaces from the JDK 1.4.11 Between the two groups, there was an overlap 
of 43. One interface contained only constants; we excluded it from our list because it did 
not serve as a type. 

Among the remaining 156 interfaces, there are no idiosyncratic and only 30 family 
interfaces (together comprised as general interfaces; of these, only four are total 
interfaces of all their implementing classes); the remainder (126) is context-specific, i.e., 
classified as roles. Among these, less than half (56) are client/server interfaces; the rest 
(68) was categorized as enabling interfaces, namely 42 as server/client and 26 as 
server/item. Among the 42 server/client interfaces 22 are listeners. 

As can be seen from Figure 11, offering (i.e., family and client/server) interfaces 
dominate over enabling interfaces, but this dominance is not as clear as one might have 
expected. This may be due to our selection criteria, which placed equal weight on number 
of implementations and number of variables (or call sites; cf. Footnote 11). In fact, more 
than half of the most often implemented interfaces were classified as enabling, compared 
to only one third of the most often referenced (which lead in the offering category). This 
should come as no surprise, though, since clients are likely to be more common than 
servers, meaning that offering interfaces should be referenced more often than they are 
implemented, whereas enabling interfaces (with roles of client and server inverted) 
should be implemented more often than they are referenced. 
Investigating this relationship further, Table 1 reveals that average values for IGEN and 
IPOP as well as their quotient distinguish pretty well between offering and enabling 
interfaces: in fact, on average there is less then one variable per implementing class of an 
enabling interface, while there are almost four per class for each offering interface. Also, 
                                                           
11We classified all interfaces manually, by looking at the source code and documentation. Quite clearly, there was no 
way of doing this for all of JDK 1.4.1’s 857 interfaces. In order to include the most interesting interfaces and at the 
same time keep the bias small, we decided to pick those with the highest numbers of implementations and variables, 
respectively. However, as it turned out the ratio of these counts separates offering and enabling interfaces pretty well, 
so that there is a certain bias towards an equal distribution of our sample between these two groups. 
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Figure 11. Relative distribution over the five different uses. 
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the average size of the interfaces (as measured by the number of methods) is significantly 
larger for offering than for enabling interfaces; this is in accord with the assumption that 
the contract for enabling interfaces is much weaker than for offering (general and 
client/server) interfaces (cf. Section 3). Note that average interface size does not differ 
much between family and client/server; while this may be partly due to the fact that the 
boundary between these two in open general purpose libraries such as the JDK is rather 
blurry, we have observed elsewhere [Mayer03b] that client/server interfaces tend to be 
not as context-specific (narrow) as they could be, including more methods than actually 
needed. 

We would have liked to present a table analogous to Table 1 here with measures for 
formally differentiating general from context-specific interfaces, but were unable to 
identify robust decision rules. This is in line with the already mentioned (in Section 3) 
lack of sharp criteria distinguishing generalizations from roles. 

5 DISCUSSION 

Related Work 

The general literature on object-oriented software engineering and programming strongly 
advocates the use of interfaces. However, little is written about how interfaces are to be 
identified and introduced systematically. Coad’s book about the design of JAVA 
applications [Coad99] and one about programming with COM [Pattison00] are 
noteworthy exceptions; note that the latter is also one of the few sources using the term 
interface-based programming. 

In his lengthy treatment of the design with interfaces, Coad has identified mainly two 
different categories: “the kinds of classes whose objects you want to plug into that plug-in 
point”, and “the kinds of behaviour you want such objects to exhibit”. In the latter 
category, interfaces contain “little groupings of functionality” within a broader “kind of 
class” classification. This category is subdivided into interfaces indicating an algorithm’s 

Table 1: Average number of implementations (IGEN), variables (IPOP), and methods for each category of 
interfaces. 
CATEGORY ∅IGEN ∅IPOP ∅(IPOP/IGEN)* ∅NUMBER OF METHODS 
: : idiosyncratic – – – – 
: : family 22 79 3.17 20 
: : client/server 21 63 4.31 19 
: offering 21 69 3.86 19 
: : server/client 54 34 0.91 4 
: : server/item 134** 40 0.41 7 
: enabling 84 37 0.73 5 
Overall 49 55 1.91 12 
*  computed as the geometric mean 

** high value explained by Serializable‘s IGEN being 1975; without it, ∅IGEN would be 60 and thus comparable to 
that of server/client interfaces. 
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plug-in points (enabling interface in our terminology) and interfaces indicating that a so-
called feature sequencer is expected at a given point. [Coad99] 

Note that although Coad discusses the relation of roles to interfaces, he views roles 
as suggested by the ROLE OBJECT PATTERN [Bäumer97]. By contrast, we have equated 
roles with context-specific interfaces [Steimann00b, 01b], a standpoint that is supported 
by the fact that these interfaces often carry role names (e.g., the -ables and -ibles), and 
that patterns themselves are defined in terms of roles (including the ROLE OBJECT 
PATTERN, which cannot be applied to itself) [Steimann00a]. 

The literature describes other programming languages that emphasize interfaces over 
classes. For instance, EMERALD has no classes (only constructors); it uses interfaces as 
types in variable declarations [Raj91]. Type checking in EMERALD (as required for 
variable assignments) is performed statically wherever possible; where not, a run-time 
type check is inserted and executed dynamically to ensure that further operations (method 
calls) are safe. However, since interfaces are the only kind of type in EMERALD, there are 
no interface-specific usage patterns to be observed. 

Why JAVA and the JDK? 

We chose to look at JAVA programs because the JAVA language (like C#) offers both 
abstract classes and interfaces as syntactically distinct constructs, giving the programmer 
the opportunity of being explicit about her/his intentions: although completely abstract 
classes and interfaces can be (and sometimes are) used interchangeably to a certain 
extent, we expect the resultant classification errors to be small, especially when compared 
to the errors induced by manually deciding whether an abstract class was conceptually 
intended to be an interface or the root of a class hierarchy, as we would have had to do, 
for instance, with C++ class libraries. 

We selected the JDK mainly because it is rather well-known to a wide audience, 
because it is well-documented, and because an archive of older versions is available. We 
have also looked at other large and freely available packages; of these, ECLIPSE appears 
to make the most disciplined use of interfaces, but its API is known only to a smaller 
audience and examples would have required much more explanation. 

Note that it is generally difficult to classify the interfaces of an open API such as the 
JDK as we did, because utilization of the offered types in actual applications is somewhat 
unpredictable. However, since the JDK is also a framework making extensive use of its 
own classes and interfaces, we are confident that the derived numbers have some 
practical relevance. 
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6 CONCLUSION 

While there seems to be a certain consensus that the introduction of interfaces as types 
syntactically distinct from classes is a good idea, only little work has been spent on the 
investigation of their practical use. The reason for this apparent lack of interest may be 
that the concept seems too simple to be subject to examination. On the other hand, we 
could identify a number of fundamental properties distinguishing different kinds of 
interfaces, and derive guidelines for their systematic use. A set of five basic patterns of 
interface utilization together with figures indicating the frequency of their occurrence are 
the results of our work. 
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