
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 5, July-August 2005

Cite this article as follows: Friedrich Steimann, Philip Mayer: “Patterns of Interface-Based
Programming”, in Journal of Object Technology, vol. 4, no. 5, July-August 2004, pp. 75-94
http://www.jot.fm/issues/issue_2005_07/article1

Patterns of Interface-Based
Programming

Friedrich Steimann, Universität Hannover
Philip Mayer, Universität Hannover

Abstract
Modern software architectures heavily promote the use of interfaces. Originally
conceived as a means to separate specification from implementation, popular
programming languages toady accommodate interfaces as special kinds of types that
can be used – in place of classes – in variable declarations. While it is clear that these
interfaces offer polymorphism independent of the inheritance hierarchy, little has been
said about the systematic use of interfaces, or how they are actually used in practice.
By providing a set of basic patterns of interface use together with numbers of their
frequency we provide insights that should be of interest not only to the practising
programmer, but also to the designers and analysts of large code bases.

1 INTRODUCTION

After the hype has gone, what remains from a new technology is often not what it has
originally been acclaimed for. In the case of object-oriented programming, it seems that
the praise for its potential of code reuse through implementation inheritance has vanished
in favour of an appreciation of what is sometimes called interface inheritance or, more
generally, interface-based programming [Pattison00]. This programming style derives
from the fact that instances of different classes are allowed to take the same place (i.e.,
can be assigned to the same variable) as long as they guarantee to conform to the same
interface specification, and that this substitutability is independent from whether or not
the classes share implementation. In interface-based programming, variables are therefore
typed with interfaces rather than classes.

The programming language JAVA has recently popularized the interface-as-type
concept: with it, the designers of a program have the choice to code abstract types (types
that cannot be instantiated) as either abstract classes or interfaces. The JAVA language
specification however is rather reticent about the reason to introduce a separate interface
construct; in fact, from reading the documentation one is led to believe that the primary
purpose of its existence is to compensate for JAVA’s lack of multiple inheritance.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_07/article1

PATTERNS OF INTERFACE-BASED PROGRAMMING

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Figure 1 gives an impression of how the use of interfaces has developed over the past five
major releases of the JAVA application programming interface (API, called JDK
hereafter). Whereas the ratio of classes to interfaces almost remained constant (approx.
5.5:1 across all releases; note that equal ratios translate to equal distances on a
logarithmic scale), that of interface-typed to class-typed variables nearly doubled with the
change to JAVA 2 (JDK 1.2; approx. from 1:9 to 1:5). At the same time, the average
number of interfaces implemented per class jumped from 0.8 to 1.8.

Considering that in JAVA classes must explicitly declare to implement interfaces for
their instances to be assignable to correspondingly typed variables, one might assume that
the increased availability of interface-implementing classes accounts for the increased
popularity of interface-typed (in relationship to class-typed) variables. However, the even
more dramatic increase of interface implementations one release earlier (which was more
than 2.5-fold) was not accompanied by a corresponding increase in the ratio of interface
to class-typed variables (which instead remained almost constant); in fact, it goes back to
a large part to the introduction of the Serializable interface, which is implemented by
43% of all classes of the JDK 1.1.6, but which has only few (30) variables declaring it as
their type. As it turns out, one contributor to the considerable increase in interface-typed
variables from JDK 1.1 to JDK 1.2 is the introduction of the JAVA collections framework,
whose 11 interfaces account for 13% of all interface-typed variables in 1.2, but – contrary
to Serializable – come with only few implementing classes. In the same vein, but
much more than collections the GUI framework SWING (also introduced with JAVA 2) has
contributed to the statistics: its interfaces come with 54% of all interface-typed variables
of the JDK 1.2. While this may be taken as a first evidence of the existence of different
usage patterns for interfaces, we note here that since then, both the average number of

41

119

339 403

857

2151 2516

4747

57

448

4491

7984

187

581

3813

193

628

5715
7149

14192

1773

5714

28050 33034
65583

10

100

1000

10000

100000

JDK 1.0.2 JDK 1.1.6_009 J2 SDK 1.2.1_004 J2 SDK 1.3.0 J2 SDK1.4.1_02

Interfaces Classes Implementations Interface-typed variables Class-typed variables

Figure 1. Development of interface utilization in the JDK.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 77

interface implementations and the ratio of interface to class-typed variables have
remained almost constant, suggesting that the use of interfaces, as well as perception of
their utility, – at least by the authors of the JDK – has settled.

Outside the realm of JAVA, one can observe that especially within the context of
large APIs and frameworks such as CORBA, J2EE, COM or .NET the use of interfaces is
heavily promoted. Not unlike in the JAVA community, however, this is usually done in an
ad hoc fashion, without an underlying theory when and how interfaces are to be used.
While this question may have remained unobvious as long as programming languages
such as C++ (which distinguish only between abstract and concrete classes, not between
abstract classes and interfaces) were being used, with languages such as JAVA and C# the
programmer must make an explicit choice, and this choice should be based on
considerations reproducible by the readers of a program.

In the following, we elaborate on certain frequent patterns of interface-based
programming, trying to sharpen the reader’s awareness of the different uses of the
interface concept, and provide programmers with robust criteria as to when one kind of
interface or the other is being used. We start in Section 2 with a short survey of the
evolution of interfaces as types (the indispensable prerequisite of interface-based
programming), and define a few basic properties of interfaces in Section 3. Based on
these definitions, Section 4 then provides a classification of interfaces together with the
patterns of their use. A brief discussion of related work and a justification of our
approach conclude our work.

2 EVOLUTION OF THE INTERFACE-AS-TYPE CONCEPT

Defined as “a shared boundary across which information is passed” [IEEE91], interface is
a very general notion that has many uses in computer science. Interfaces between
software components were pioneered by Dijkstra and Parnas in their work on software
architecture and good design – the fact that it did not take long until interfaces became
distinct programming entities in languages as respected as MODULA and ADA must be
considered strong evidence for the import of the concept. Today it appears that the terms
module and interface have almost become inseparable in software engineering: the ACM
computing classification system for instance lists them jointly under Design Tools and
Techniques (entry D.2.2).

With the advent of object-oriented programming, classes quickly became the
primary unit of modularization, replacing to a large part for the more heterogeneous
concept of a module. The interface of a class is an abstract data type (including formal
behaviour specification) for which the class provides one (out of many possible)
implementations. However, in most contemporary object-oriented programming
languages interface specification is inseparably tied to the definition of a class (by
tagging some of the class’s features as public and others as private) – it can neither be
shared by other classes (except of course by its subclasses), nor can the class implement
more than one abstract data type (except those inherited from its superclasses). We call an

PATTERNS OF INTERFACE-BASED PROGRAMMING

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

abstract data type that is part of the class definition the implicit interface of the class;
implicit interfaces will play a role in some of our further considerations.

CLU was perhaps the first language to separate a class from its interface by way of
associating a distinct type with each. While the primary reason for this was to permit
separate compilation of modules (called clusters in CLU), it would also have made
possible the selection among different implementations of an interface at run-time, as its
authors note [Liskov77]. In fact, the full power of separating interfaces and
implementation types is unfolded only when combined with type subsumption and the
principle of substitutability: if instances of different types realize the same interface, they
are allowed to replace for each other. Although more fundamental than the
substitutability tied to the inheritance hierarchies of object-oriented programming
languages, it took some time for so-called inclusion polymorphism to become decoupled
from subclassing: the creators of JAVA confess to have borrowed the language’s interface
concept from OBJECTIVE-C (called protocols there), but the true origin is difficult to
trace.1

C# has taken over the interface-as-type concept from JAVA and has developed it
further. Most notably, C# lets classes offer different implementations of the same method
if this method is declared in more than one of the class’s implemented interfaces, and it
allows interfaces to make accessible features of their implementing classes otherwise
inaccessible (so-called explicit interface implementations). The latter is of particular
interest since it allows the implicit interface of a class to be disjoint from the explicit
interfaces it implements2; in fact, the implicit interface of a class can even be empty,
forcing all variables providing access to the features of a class to be interface-typed. Both
properties of C# are in line with Microsoft’s strong emphasis of the interface-based
programming paradigm [Pattison00], favouring interface over implementation
inheritance.

By today, the interface-as-type concept has emancipated itself to the extent that
whole software architectures (such as the OMG’s CORBA or Microsoft’s COM) are
completely defined in terms of interfaces, not classes. The expected advantage of this is a
better (dynamic especially) composability of software and – as has been right from the
inception of the interface concept – an insensitivity to changes. However, in a world of
interfaces only, one important aspect of interface-based programming is missed: the fact
the same class can implement several, otherwise unrelated interfaces at the same time.
Trivially, in total absence of classes the distinction between classes and interfaces as
separate types disappears: it is reduced to the classical separation of specification and
implementation.

Throughout the following, we think of an interface as a named type specifying a (not
necessarily complete) set of features characterizing all instances whose classes declare to

1The language EMERALD [Raj91] is another possible role model for the introduction of interfaces as types
in JAVA: in EMERALD, all variables must be interface-typed, and classes are completely replaced for by
(implicitly typed) constructors.
2To be more precise, the implicit interface of a C# class does not automatically extend the interfaces the
class implements.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 79

implement the interface. Technically, “features” is commonly restricted to methods, but
conceptually, they include attributes – access to which can be granted through accessor
methods as part of the interface – as well.

3 BASIC PROPERTIES OF INTERFACES

In order to be able to describe the different patterns of interface utilization in Section 4,
we need a certain vocabulary that covers the different properties of interfaces and their
relationships to implementing classes. The list given below may appear random at first
glance (and is certainly incomplete as regards the general properties of interfaces); yet it
covers all we need to discern the different uses of interfaces as types.

Caller and Called: The Two Sides of an Interface

Every interface has two sides: it separates the caller and the called, the two roles of the
asymmetric calls relationship. In UML jargon, the caller depends on the interface, and the
called implements it (Figure 2 a). However, this naming is problematic, since the true
dependency may sometimes be inverted (see below). Note that although caller and called
are usually associated with classes, it is really objects that play the corresponding roles.

In the context of components, interfaces are usually classified as either provided or
required (or ingoing and outgoing). Unlike caller and called, however, provided and
required do not refer to two sides of the same interface, but to two different interfaces, by
naming their roles with respect to a single component (Figure 2 b). Although both the
provided and the required interface have a caller and a called side, these roles do not refer
to the same components: in fact, the caller of a provided interface can be another
component than the called of a required interface. Note that if dependency of two
components is mutual, this has to be expressed by two opposing interfaces, with roles
swapping depending on the interface being looked at.

In software engineering jargon the caller of an interface is often called the client and
the called the server. This naming is biased towards a certain use of interfaces, though; in
fact, calling in the above (technical) sense is not necessarily tantamount to requesting a
service, at least not in the original sense of word (which would imply the benefit of the
call to be on the side of the caller). Rather, as will be seen it may be the case that the
caller calls the called for the latter’s own profit, inverting the roles of client and server.

In an object-oriented program, callers of an interface are marked by variables
declaring that interface as their type. The called on the other hand are the classes (or,
rather, their objects) implementing the interface, be it directly or indirectly. Elsewhere we

a)

«called»«caller»

b)

«required»
«provided»

Figure 2. a) The two sides of an interface (notation is UML). b) Different interfaces.

PATTERNS OF INTERFACE-BASED PROGRAMMING

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

have defined metrics counting the number of call sites (so-called Interface Popularity,
IPOP) and implementations (so-called Interface Generality, IGEN) [Mayer03,
Steimann03, Gössner04]; these metrics have been used to compute the numbers of Figure
1 and, as will be seen, they also provide important hints for the distinction between the
different usage patterns of interfaces.

Interfaces and Contracts

An interface is sometimes regarded as the specification of a contract between a client and
a supplier [Meyer97]. Both sides of the contract have benefits and obligations: the client
is obliged to adhere to the preconditions associated with a needed service and benefits
from the supplier ensuring the postconditions, whereas the supplier benefits from the
client’s keeping to the preconditions and is obliged to guarantee the postconditions.
Although the names client and supplier suffer from the same problem as client and server
mentioned above, the notions of benefit and obligation are somewhat more neutral; they
will play an important role in our distinction of the different kinds of interfaces.

Preconditions and postconditions specify the functional (or behavioural) part of an
interface. Depending on the particular kind of interface, they can be tight (as reflected in
lengthy prose or complex logical expressions) or loose (as loose as constraining only
formal parameter and return types of a single method). Generally, the laxer a contract is,
the more freely a supplying class can behave. This goes as far as allowing the
implementing class to do anything, as is for instance the case with the Runnable
interface of the JDK. To the other extreme, interfaces specifications can be so tight that
the only allowable variability in different implementations is in the non-functional
requirements (such as time or space consumption). This variability is also an important
criterion for the distinction of the different patterns of interface use as presented below.

Total and Partial Interfaces

The classical interface separating specification from implementation comprises all public
features of its implementing class(es). We call such interfaces total interfaces.3 However,
totality of interfaces is not always a desired property. Quite to the contrary – the
Reference Model of the Open Distributed Processing standard (ODP RM) defines
interface as follows:

Interface: An abstraction of the behaviour of an object that consists of a subset of the
interactions of that object together with a set of constraints on when they may occur.
Each interaction of an object belongs to a unique interface. Thus the interfaces of an
object form a partition of the interactions of that object. [ISO]

Although we find the strict partitioning (i.e., the non-overlapping of interfaces) required
in this definition debatable, we agree that partiality of an interface (which can have
different causes and may serve different purposes) is an important concept; we call such

3As noted above, an interface specifies features of objects, not of its implementing classes. Since constructors are class
methods, the fact that an interface does not include constructors does not mean that it is not total.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 81

interfaces partial interfaces. Note that whether or not an interface is partial is not a
property of the interface alone, but equally determined by its implementing class(es). In
fact, an interface can be both total and partial (but only of different classes). Thus, when
speaking of a total interface without referring to a particular implementing class we
require that it is a total interface of all implementing classes. It follows that absolute
totality is not a property that can be attributed to interfaces of open systems, unless there
are language means to prevent implementing classes from adding features.

Interfaces and Abstraction: Generalizations vs. Roles

By definition, an interface is always an abstraction: it abstracts from implementation by
providing its specification.

In object-oriented programming, a supertype abstracts from its subtypes by omitting
some of their features (so-called generalization). The interface of a generalized supertype
is partial in the sense that it does not cover all public features of all its implementing
classes. Induced by generalization, this partiality is the result of grouping together classes
that share considerable commonality, differing only in some detail (with the opposite of
generalization, specialization, adding the detail that distinguishes one subtype from the
other).

Partiality does not necessarily result from generalization, however; instead, a partial
interface may be designed to isolate a certain aspect or facet of its implementing classes.
Although such a partial interface is still an abstraction, it does not omit detail, but instead
focuses on it (by omitting all features that are not associated with the aspect). Partial
interfaces of this kind reduce the generality of objects, by focussing on a specific use or
appearance in a specific context. Such interfaces are context-specific; as elaborated
elsewhere, they can be equated with roles [Steimann00b, 01b].

It is not always easy to distinguish a role from a generalization. In fact, even though
there is a fundamental conceptual difference between the two, it is hard to tie it to
formally observable properties, since the programmer – in expressing her/his intent – is
free to (ab)use the programming language constructs at hand any which way (s)he
pleases. One possibility is to assume that intent is expressed literally, i.e., that roles have
role names (like Customer, Printable, etc.) and generalizations have genera names (like
Thing, Document, etc.). However, there is no law to enforce this semantic naming
convention, so that it cannot be relied on. Another possibility is to apply ontological
criteria: if the interface is defined in the context of some relationship and access to an
object through the interface is transient in nature, then it must be a role [Steimann 00a].
However, this requires a deep understanding of the use of an interface in a program, and
that this use is stable across all possible extensions, which is seldom the case. Last but not
least, one could argue that if an interface is partial, is not the only abstraction of the class,
and is not extended by some other interface of the same class (excluding the implicit
interface in the case of JAVA, since this interface automatically extends all implemented
interfaces of the class), then it is a role. This seems justified because one must suspect
that there are contexts in which the class is used differently than allowed by the interface
(namely through the other existing abstractions), making the interface (which is not itself

PATTERNS OF INTERFACE-BASED PROGRAMMING

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

a generalization of some other interface) context-specific. However, cases can easily be
constructed where this (technical) criterion is misleading so that in practice, a
combination of all three has to be applied.

Note that as generalizations, interfaces compete with abstract classes. In fact, in
practice interfaces and abstract classes are sometimes used as if they were the same
concept. However, since abstract classes have the potential to pass on implementation to
their subclasses, they should be used if (and only if) the relationship to the subclasses is
genetic, i.e., if it is (or at least could be) based on the inheritance of internal structure, that
is, implementation. If on the other hand the relationship is based on pure function (or,
weaker still, on sameness of protocol), interfaces should be used. For instance, a linked
list and a dynamic array would normally not be genetically related (i.e., have no common
pieces of implementation), yet they share the interface of lists (specifying sequential
access to their elements).

4 CLASSIFICATION OF INTERFACES

While the technical definition of the interface concept is unambiguous, its actual
utilization can differ greatly. In trying to order the different usage patterns of interfaces,
we have set up the classification shown in Figure 3. Although it has no strict hierarchical
structure (it is not a tree, but built on two orthogonal subclassifications), the remainder of
this section assumes a linear ordering, progressing through it from left to right and
introducing the different uses along the way. The classification is based as much as
possible on the terms and definitions presented in Section 3; one should keep in mind,
though, that programming has many degrees of freedom, and any attempt to classify
working code into a set of academic categories must either fail or suffer from a certain
elusiveness.

Offering Interfaces

According to its standard conception, an interface publishes some service offered by the
called to the caller. We call such interfaces offering. The benefit of the call to an offering
interface is clearly on the side of the caller, whereas the greater part of the obligations are
on part of the called. This is usually reflected in rather specific postconditions for the
offered services, whereas the preconditions tend to be brief (and are formulated mostly in
the server’s terms). For instance, while a stack must not be empty in order to pop it (the

idiosyncratic family
client/server

server/client server/item

general

offering

enabling

context-specific

Figure 3. Classification of interfaces. Offering and enabling are complementary
categories, as are general and context-specific.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 83

precondition), actually popping it requires that the most recently pushed element be
removed, that the second be popped next, etc. (the postcondition). As an immediate
consequence, there is usually a rather large number of potential callers to an offering
interface (since the preconditions are easily fulfilled), whereas there is typically only a
rather small number of implementors (because they must all fulfil the same specification,
there will usually only be few alternative implementations).

Depending on whether an interface is intended for the general public or for specific
clients, we distinguish between general and context-specific interfaces

General Interfaces

General interfaces are defined with no particular caller in mind. Because their purpose is
to offer all services of their implementing classes to the general public, general interfaces
are typically total. This is so because if not, one must suspect that there are contexts in
which a class is used differently than allowed by the interface (as evidenced by the
calling of methods excluded from it), making the interface context-specific.

Unless general interfaces are related by subtyping (i.e., one interface is a
subinterface of the other), a class usually has only one general interface. This is so
because there is no point in keeping apart interfaces that serve no specific caller or use. In
fact, the only purpose of a general interface is to separate specification from
implementation, making the latter (ex)changeable without affecting its callers. Depending
on whether changes to the implementation reflect historical or concurrent (competing)
alternatives, we further divide general interfaces into idiosyncratic and family interfaces.

If a general interface is implemented by only one class (whose implementation may
be modified over time, but with no two alternatives occurring in the same project), we
call this interface idiosyncratic.4 Idiosyncratic interfaces are often named after the classes
they specify the interface of, with either the interface or the class name being
complemented by a prefix or suffix indicating the interface or implementor status, as in
IPerson or StackImpl.

Idiosyncratic Interfaces. An idiosyncratic interface use is characterized by a to-one
relationship of a total interface with its implementing class: only one class implements
the interface at a time. (The class may however implement other interfaces, but these
interfaces will typically be context-specific.) Because the interface is a complete ab-
straction of the class it implements, it can replace for the class in variable declara-
tions.5 This is the classical use of the interface-as-type concept.

4Note that general relates to the caller’s side of the interface (indicating that it is not aimed at a specific caller), whereas
idiosyncratic pertains to the implementor’s: only one class has this interface. Hence, there is no contradiction in calling
a general interface idiosyncratic.
5Note that if language peculiarities prevent an idiosyncratic interface from being a complete abstraction of the class it
represents, it cannot ubiquitously replace for that class in variable declarations. In the case of JAVA, if direct access to
the fields or non-public or static features of a class is required, this prohibits the use of an interface in the class’s place.

PATTERNS OF INTERFACE-BASED PROGRAMMING

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Figure 4 illustrates the use of an idiosyncratic interface: a single class, the server,
implements a total interface on which its (unspecified) clients depend. Because the clients
are unspecified, later introduction of new clients (with perhaps new uses of the server) do
not require new interfaces; the idiosyncratic interface is completely unspecific, that is,
general.

In contemporary languages such as JAVA and C#, idiosyncratic interfaces will mostly
remain implicit, because the set of features declared by a class as public can be thought of
as its interface (the implicit interface; cf. Section 3). Factoring out theses features into a
separate syntactic entity may not seem worth the effort, particularly since it is implicitly
done by the compiler. Therefore, we cannot expect to find many idiosyncratic interface
declarations in JAVA or C# program corpora. This is in contrast to the instructional
literature on object-oriented programming, in which idiosyncratic interfaces (such as
IDog or IPerson) abound.

As it turns out, there are no true examples of idiosyncratic interfaces in the JDK –
the implementations of literally all interfaces implemented by only one class are tagged
as examples. Things are different for ECLIPSE, however, which has a use for idiosyncratic
interfaces even in JAVA programming: its IClassFile for instance is the interface of
only one class, ClassFile, of which it is a total interface. To quote the documentation,
this interface “represents an entire binary type (single .class file)” and is “not intended to
be implemented by clients”. In fact, ClassFile resides in a package explicitly marked
as being internal to the system (org.eclipse.jdt.internal.core), contrary to its
interface, IClassFile, which is from the publicly accessible package
org.eclipse.jdt.core.

If a general interface is implemented by more than one class at the same time (i.e.,
within the same project), we call this interface a family interface (Figure 4). The different
classes are often offered as alternative implementations, with different (technical)
properties; yet each one adheres to the same interface specification. As opposed to
idiosyncratic interfaces whose implementation can be varied only at design time of the
program, family interfaces offer implementation alternatives at run time; they are
therefore often accompanied by factories [Gamma95] and double dispatch as a substitute
for multiple dispatching [Steimann01a].

Family Interfaces. A family interface heads a family of classes, offering their services
to the general public (i.e., unspecified clients). If the classes comprised under the fam-
ily interface extend each other, it will be a generalization of some of the classes, but
these usually have their own (idiosyncratic or family) interfaces.

Figure 4. Idiosyncratic interface

Idiosyncratic I/F

Server

Family I/F

Server BServer A

Figure 5. Family interface

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 85

Because family interfaces are context-independent, they specify the nature of their
objects rather than their behaviour in a specific role (cf. Section 3). Family interfaces
therefore often carry typical class names (such as Number or Interval) and are used
interchangeably with abstract classes as patres familiae of a family of classes
[Steimann01a]. In fact, in absence of multiple (class) inheritance interfaces are sometimes
abused (as regards the criteria of Section 3) to root class hierarchies where abstract
classes would be in place, in order not to block the possibility of inheritance from other
classes.6

Prominent family interfaces are Collection, Set, List, and others from the JAVA
2 collections framework. Note that Enumeration and Iterator, which are mostly
implemented by anonymous classes7 and by classes inner to the corresponding
collections, are also family interfaces: although conceptually both interfaces are context-
specific (providing sequential access to collections in the context of iteration), technically
they are not – there is no other use of enumeration and iterator objects.

Because family interfaces are often only partial interfaces of some of their
implementing classes, the demarcation from client/server interfaces (as discussed next) is
sometimes difficult. For example, an instance of class TreeSet may be used as a plain
collection in some places and as a sorted set in others, making its use context-specific.
However, since Collection is a generalization (of both SortedSet and TreeSet), it
does not focus on specific properties; hence, it will usually not be seen a role.

Context-Specific Interfaces (Roles)

An interface that is not general is context-specific; it comprises the specific protocol
expected by certain callers whose relationship to the called (the implementors of the
interface) sets up the context of their (the implementors’) use. Because specificity is a
property defined only in presence of variety, context-specific interfaces are typically
partial. However, they may overlap.

Although it is conceivable that context-specific interfaces are also idiosyncratic (i.e.,
the interface of only one class), one general theme behind context specificity is to
minimize coupling, allowing a greater number of classes to take the place of the called. A
distinction based on the count of implementors of a context-specific interface (as done for
general interfaces) is therefore not useful. Instead, there is an interesting twist to the
dependency relationship, differentiating offering from enabling interfaces (Figure 3).
For the obvious kind of context-specific interfaces, the caller relies on some specific
service offered by the implementor of an interface: being the beneficiary of the
interaction, it is the client of the service. On the other side of the interface, the called

6In fact, the JAVA API specification is full of Freudian slips confusing classes and interfaces: for example, the interface
MenuContainer is defined as “the super class of all menu related containers”, and Streamable as “the
base class for the Holder classess of all complex IDL types”.
7JAVA’s anonymous class mechanism allows the ad-hoc creation of instances whose protocol conforms to an interface.
If this interface is exclusively “implemented” by anonymous classes, then it designates the only context in which the
instances can be used, and it is necessarily total so that it must be classified as a family interface. (It is not idiosyncratic
because arbitrarily many different alternative implementations can be provided, as is the case for Enumeration.)

PATTERNS OF INTERFACE-BASED PROGRAMMING

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

behaves as the benefactor: it is the server of the service (Figure 6). We therefore call such
interfaces client/server interfaces. As for general interfaces, client/server interfaces
usually come with tight contracts so that the called can often be substituted without
affecting the caller’s or global program behaviour (cf. Section 3).

Client/Server Interfaces. A client/server interface is a context-specific interface that
offers the particular services needed by certain clients. The server typically has other
features not included in the client/server interface; it offers different interfaces to dif-
ferent clients.

Although client/server interfaces will typically be found in closed application programs in
which both client and server have been designed specifically to interact with each other,
they can specify partitioned access to general purpose classes as well. For instance, an
interface Stack could be used to specify access to an instance of class Vector in all
contexts in which it is used as a stack, without prohibiting the use of the same or other
instances of the same class as something else (a queue for instance) in other places.

A typical example of a client/server interface is the use of the MenuContainer
interface from the JDK (package java.awt). The interface provides functions for “all
menu related containers”; it is implemented by classes as different as Button,
Checkbox, Scrollbar, and TextFrame, all of which can – despite their different
nature – present as menu containers to their clients. Clients rely on this particular
property by accessing their servers through the MenuContainer interface; the classes
implementing MenuContainer, however, have many other services to offer.

Other prominent client/server interfaces identified in the JDK are Shape and
LayoutManager (both from java.awt), DataInput and DataOutput (from
java.io), and java.lang.CharSequence. Interestingly, some of these interfaces
would appear to be typical family interfaces: whereas DataInput, DataOutput, and
CharSequence qualify as role names (names given in a certain context), Shape and
LayoutManager sound like the names of natural types or generalizations (and hence
would be expected to be family interfaces; cf. the argumentation of Section 3). However,
the classes implementing Shape are really quite heterogeneous, with Shape specifying
only one aspect common to all of these; not as consistently, but in a similar vein,
LayoutManager is an interface of user interfaces, editors, and layout managers,
focusing only on the layout manager aspect of each.

Enabling Interfaces

For general and client/server interfaces (the interface uses presented so far), the class
implementing the interface is the service provider. However, as indicated above this need
not always be so. In fact, there is an important category of interfaces in which the caller
of the interface is the service provider (server) and in which the called is either the client

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 87

or an item of it. Because these interfaces enable the called object’s individual
contribution to or participation in the caller’s context, we call them enabling interfaces.

Enabling interfaces often carry an -able or -ible suffix, as for example Printable,
Accountable, or Accessible. Characteristically, postconditions of enabling interfaces
are not as tight as those for offering interfaces, so that exchanging one implementor for
another will most likely alter program behaviour. In fact, different implementing classes
of an enabling interface are typically carriers of different, application-specific code. This
is in contrast to the caller, which will often be general purpose and can be substituted
accordingly.

Depending on whether the called object or some third party is the beneficiary (client)
of the service, we have subdivided enabling interfaces further, namely into server/client
and server/item interfaces.

With server/client interfaces, the beneficiary is the called object, which profits from
a service offered by the caller of the interface (the roles of client and server thus being
swapped, as in Figure 7). As an immediate consequence, the contract for the
implementing class is usually rather lax (as reflected by a fairly small number of methods
required); that of the caller remains mostly implicit.

Server/Client Interfaces. A server/client interface is an interface that enables its im-
plementors to profit from some service offered by the caller. A server/client interface is
often specific to a particular server; however, it need not be.

Not coincidentally, the naming suggests that server/client and client/server interfaces
oppose each other: if interaction between client and server is bidirectional (with roles of
the participating object being independent of the particular direction), these interfaces are
likely to occur in pairs (Figure 8). Such is typically the case in asynchronous
communication, when callbacks are required to return the value of a computation;
however, it also occurs when the server needs additional information from the client not
provided with the initial service request.

Client-A/S I/F

Server

Client-B/S I/F

Client A Client B

Figure 6. Client/server interface.
Server offers its services to

different clients, each with its own
client/server interface, comprising

only what is needed.

Server/Client I/F

Server

Client A Client B

Figure 7. Server/client
interface. The receivers

of the service are the
implementors of the

interface.

Client/Server I/F

Client

Server

Server/Client I/F

Figure 8. Server/client interface. The
receivers of the service are the
implementors of the interface.

PATTERNS OF INTERFACE-BASED PROGRAMMING

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Although paired client/server-server/client interfaces are common, server/client interfaces
exist in their own right. For instance, the observer role of the OBSERVER pattern
[Gamma95] is represented by a server/client interface implemented by the beneficiary of
the collaboration, namely the object to be notified when a change occurs. Typical
server/client interfaces from the JDK are thus its listener interfaces. Other typical
instances of server/client interfaces occur in frameworks, where the execution of user-
provided classes (so called plug-ins) is controlled by a set of framework classes (a
condition referred to as inversion of control [Fayad97]). Being enabling interfaces, it is
the implementing class (the client) which provides the application-specific code; the
calling class (the server) on the other hand is typically application independent (for
application frameworks: independent of a specific instantiation). Note that although
server/client interfaces can in principle be total, they are usually only partial since the
plug-in classes need to interact with others to fulfil their application-specific purpose, of
which the server has no knowledge.

The prototypical example of a framework server/client interface is the Runnable
interface of the JDK (package java.lang), providing for multithreading in JAVA. A
class implementing Runnable does this because it wants to run a separate (its own)
thread so it can act independently of others, and it receives this thread (the service) from
Thread, the class calling the Runnable interface. The contract for Runnable is
minimal: it consists of a single method run with no arguments. Even semantically, this
method is totally unconstrained: to quote the JDK documentation, “[t]he general contract
of the method run is that it may take any action whatsoever.” Other prominent
server/client interfaces with similar protocol are Action and MenuElement, both from
the SWING GUI framework.

The relationship between the server and the client of a server/client interface is
typically rather long-lasting. As it turns out, server/client interfaces can often be
identified by the fact that the server offers a special procedure for registering its clients
(and a corresponding attribute keeping references to them). This holds particularly for
plug-ins and observers; it does not, however, apply to the links held by a server calling
back its clients, which are typically temporary in nature.8

8Note that in the common type system (CTS) of Microsoft’s .NET framework, both callbacks and observers are realized
by so-called delegates, special types representing function pointers.

Server/Item I/F

Item

Server

Client

Figure 9. Server/item interface

Server/Item I/F

Item

Server

Client

Client/Server I/F

Figure 10. Service relying on a server/item interface,
made available through a client/server interface.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 89

For many enabling interfaces the beneficiary of the service is not the implementor (the
called) itself, but some other class holding it. Typical examples are the -able interfaces
Comparable and Accountable; for instance, it is not the comparable object which
profits from being compared, but the object holding it, as for example a collection that is
to be sorted (or, ultimately, the owner of the collection). Because the implementing object
is typically an item of some other class, we call these interfaces server/item interfaces.

Server/item interfaces occur in collaborations of three or more objects in which one
object (the item) is passed by another (the client) to a third (the server) which is to
process the item for the client (Figure 9). This processing requires some support from the
item, which offers this support by implementing the server/item interface. As opposed to
server/client interfaces, the relationship established between the caller (the server) and the
called (the items) of a server/item interface is temporary in nature. Therefore, server/item
interfaces typically occur as the types of formal parameters and temporaries, but not of
attributes (fields).

Server/Item Interfaces. A server/item interface is an interface that enables the proc-
essing of a certain kind of objects (the items) by a server for the profit of some third
party, the client.

Server/item interfaces are frequently found in conjunction with offering (client/server
especially) interfaces. The offering interface then includes the server/item interface as a
formal parameter type (Figure 10). Note that in the example of sorting collections, this
would require a generic type (a List of Comparables).

Other prominent server/item interfaces are Printable (from java.awt.print),
LazyValue (inner to javax.swing.UIDefaults) and XMLWritable (from
org.apache.crimson.tree). Note that in the case of Printable, one might argue
that it is the printable object itself that profits from being printed. However, unless the
object and the printer are related somehow (which is typically not the case for
implementors of Printable), some third party must be the issuer (and beneficiary) of
the printing request.

Special cases of server/item interfaces are the so-called tagging or marker
interfaces.9 Tagging interfaces are often empty, in which case they can only occur as
parameter (and not as receiver) types of method calls. The dependency arrow from the
server to the server/item interface in Figure 10 then stands for a dynamic type check
(usually in the form of an instance-of test), the primary purpose of a tagging interface.10
On the other hand, many tagging interfaces are abstract in the sense that they are not
directly implemented, but root a hierarchy of non-empty interfaces, or they extend non-
empty interfaces without adding functionality.

9The names are to express that the so-labelled interfaces flag their implementing classes as being of a certain type. This
information can be utilized by the compiler (through type checking) as well as during program execution (by querying
an object’s conformance to the interface). Quite obviously, tagging interfaces share this property with all others.
10Tests for identity are another possible operation for tagged objects. Characteristically enough, however, the JDK’s
most frequently implemented empty interface, Serializable (implemented 1975 times in the JDK 1.4) grants
access to all attributes of its implementing classes, albeit only through introspection.

PATTERNS OF INTERFACE-BASED PROGRAMMING

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Relative Distribution of Interfaces

To probe the relative frequency of the different kinds of interfaces, we looked at the 100
most often implemented and at the 100 most often referenced (as counted by the number
of variables) interfaces from the JDK 1.4.11 Between the two groups, there was an overlap
of 43. One interface contained only constants; we excluded it from our list because it did
not serve as a type.

Among the remaining 156 interfaces, there are no idiosyncratic and only 30 family
interfaces (together comprised as general interfaces; of these, only four are total
interfaces of all their implementing classes); the remainder (126) is context-specific, i.e.,
classified as roles. Among these, less than half (56) are client/server interfaces; the rest
(68) was categorized as enabling interfaces, namely 42 as server/client and 26 as
server/item. Among the 42 server/client interfaces 22 are listeners.

As can be seen from Figure 11, offering (i.e., family and client/server) interfaces
dominate over enabling interfaces, but this dominance is not as clear as one might have
expected. This may be due to our selection criteria, which placed equal weight on number
of implementations and number of variables (or call sites; cf. Footnote 11). In fact, more
than half of the most often implemented interfaces were classified as enabling, compared
to only one third of the most often referenced (which lead in the offering category). This
should come as no surprise, though, since clients are likely to be more common than
servers, meaning that offering interfaces should be referenced more often than they are
implemented, whereas enabling interfaces (with roles of client and server inverted)
should be implemented more often than they are referenced.
Investigating this relationship further, Table 1 reveals that average values for IGEN and
IPOP as well as their quotient distinguish pretty well between offering and enabling
interfaces: in fact, on average there is less then one variable per implementing class of an
enabling interface, while there are almost four per class for each offering interface. Also,

11We classified all interfaces manually, by looking at the source code and documentation. Quite clearly, there was no
way of doing this for all of JDK 1.4.1’s 857 interfaces. In order to include the most interesting interfaces and at the
same time keep the bias small, we decided to pick those with the highest numbers of implementations and variables,
respectively. However, as it turned out the ratio of these counts separates offering and enabling interfaces pretty well,
so that there is a certain bias towards an equal distribution of our sample between these two groups.

client/server
37%

server/item
17%

server/client
27%

family
19%

idiosyncratic
0%

context-specific
81%

offering
56%

general
19%

enabling
44%

Figure 11. Relative distribution over the five different uses.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 91

the average size of the interfaces (as measured by the number of methods) is significantly
larger for offering than for enabling interfaces; this is in accord with the assumption that
the contract for enabling interfaces is much weaker than for offering (general and
client/server) interfaces (cf. Section 3). Note that average interface size does not differ
much between family and client/server; while this may be partly due to the fact that the
boundary between these two in open general purpose libraries such as the JDK is rather
blurry, we have observed elsewhere [Mayer03b] that client/server interfaces tend to be
not as context-specific (narrow) as they could be, including more methods than actually
needed.

We would have liked to present a table analogous to Table 1 here with measures for
formally differentiating general from context-specific interfaces, but were unable to
identify robust decision rules. This is in line with the already mentioned (in Section 3)
lack of sharp criteria distinguishing generalizations from roles.

5 DISCUSSION

Related Work

The general literature on object-oriented software engineering and programming strongly
advocates the use of interfaces. However, little is written about how interfaces are to be
identified and introduced systematically. Coad’s book about the design of JAVA
applications [Coad99] and one about programming with COM [Pattison00] are
noteworthy exceptions; note that the latter is also one of the few sources using the term
interface-based programming.

In his lengthy treatment of the design with interfaces, Coad has identified mainly two
different categories: “the kinds of classes whose objects you want to plug into that plug-in
point”, and “the kinds of behaviour you want such objects to exhibit”. In the latter
category, interfaces contain “little groupings of functionality” within a broader “kind of
class” classification. This category is subdivided into interfaces indicating an algorithm’s

Table 1: Average number of implementations (IGEN), variables (IPOP), and methods for each category of
interfaces.
CATEGORY ∅IGEN ∅IPOP ∅(IPOP/IGEN)* ∅NUMBER OF METHODS
: : idiosyncratic – – – –
: : family 22 79 3.17 20
: : client/server 21 63 4.31 19
: offering 21 69 3.86 19
: : server/client 54 34 0.91 4
: : server/item 134** 40 0.41 7
: enabling 84 37 0.73 5
Overall 49 55 1.91 12
* computed as the geometric mean

** high value explained by Serializable‘s IGEN being 1975; without it, ∅IGEN would be 60 and thus comparable to
that of server/client interfaces.

PATTERNS OF INTERFACE-BASED PROGRAMMING

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

plug-in points (enabling interface in our terminology) and interfaces indicating that a so-
called feature sequencer is expected at a given point. [Coad99]

Note that although Coad discusses the relation of roles to interfaces, he views roles
as suggested by the ROLE OBJECT PATTERN [Bäumer97]. By contrast, we have equated
roles with context-specific interfaces [Steimann00b, 01b], a standpoint that is supported
by the fact that these interfaces often carry role names (e.g., the -ables and -ibles), and
that patterns themselves are defined in terms of roles (including the ROLE OBJECT
PATTERN, which cannot be applied to itself) [Steimann00a].

The literature describes other programming languages that emphasize interfaces over
classes. For instance, EMERALD has no classes (only constructors); it uses interfaces as
types in variable declarations [Raj91]. Type checking in EMERALD (as required for
variable assignments) is performed statically wherever possible; where not, a run-time
type check is inserted and executed dynamically to ensure that further operations (method
calls) are safe. However, since interfaces are the only kind of type in EMERALD, there are
no interface-specific usage patterns to be observed.

Why JAVA and the JDK?

We chose to look at JAVA programs because the JAVA language (like C#) offers both
abstract classes and interfaces as syntactically distinct constructs, giving the programmer
the opportunity of being explicit about her/his intentions: although completely abstract
classes and interfaces can be (and sometimes are) used interchangeably to a certain
extent, we expect the resultant classification errors to be small, especially when compared
to the errors induced by manually deciding whether an abstract class was conceptually
intended to be an interface or the root of a class hierarchy, as we would have had to do,
for instance, with C++ class libraries.

We selected the JDK mainly because it is rather well-known to a wide audience,
because it is well-documented, and because an archive of older versions is available. We
have also looked at other large and freely available packages; of these, ECLIPSE appears
to make the most disciplined use of interfaces, but its API is known only to a smaller
audience and examples would have required much more explanation.

Note that it is generally difficult to classify the interfaces of an open API such as the
JDK as we did, because utilization of the offered types in actual applications is somewhat
unpredictable. However, since the JDK is also a framework making extensive use of its
own classes and interfaces, we are confident that the derived numbers have some
practical relevance.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 93

6 CONCLUSION

While there seems to be a certain consensus that the introduction of interfaces as types
syntactically distinct from classes is a good idea, only little work has been spent on the
investigation of their practical use. The reason for this apparent lack of interest may be
that the concept seems too simple to be subject to examination. On the other hand, we
could identify a number of fundamental properties distinguishing different kinds of
interfaces, and derive guidelines for their systematic use. A set of five basic patterns of
interface utilization together with figures indicating the frequency of their occurrence are
the results of our work.

REFERENCES

[Bäumer97] D Bäumer, D Riehle, W Siberski, M Wulf “The role object pattern” in:
PLoP ´97 – Proceedings of the 1997 Conference on Pattern Languages of
Programs (1997).

[Coad99] P Coad, M Mayfield JAVA Design: Building Better Apps and Applets 2nd
edition (Yourdon Press, Upper Saddle River 1999).

[Fayad97] ME Fayad, DC Schmidt “Object-oriented application frameworks” CACM
40:10 (1997) 32–38.

[Gamma95] E Gamma, R Helm, R Johnson, J Vlissides Design Patterns – Elements of
Reusable Software (Addison-Wesley, 1995).

[Gößner04] J Gößner, P Mayer, F Steimann “Interface Utilization in the Java
Development Kit” in: Proceedings of the 19th ACM Symposium on Applied
Computing SAC 2004 (Nicosia, Cyprus, 2004) 1310–1315.

[IEEE] IEEE Standard Computer Dictionary (IEEE, 1991).

[ISO] ISO/IEC Open Distributed Processing – Reference Model – Part 2:
Foundations International Standard 10746-2 /ITU-T Recommendation
X.902

[Liskov77] B Liskov, A Snyder, R Atkinson, C Schaffert “Abstraction mechanisms in
CLU” CACM 20:8 (1977) 564–576.

[Mayer03a] P Mayer Eine Metrik-Suite zur Analyse des Einsatzes von Interfaces in Java
Bachelor Thesis (Universität Hannover, September 2003).

[Mayer03b] P Mayer “Analyzing the Use of Interfaces in Large OO Projects”. in:
OOPSLA 2003 Companion (Anaheim, USA , October 26-30, 2003) 382–
383.

PATTERNS OF INTERFACE-BASED PROGRAMMING

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

[Meyer97] B Meyer Object-Oriented Software Construction Second Edition (Prentice
Hall, 1997).

[Pattison00] T Pattison Programming Distributed Applications with COM & Microsoft
Visual Basic (Microsoft Press, 2000).

[Raj91] RK Raj, ED Tempero, HM Levy, AP Black, NC Hutchinson, E Jul
“Emerald: A General-Purpose Programming Language” Software – Practice
and Experience 21:1 (1991) 91–118.

[Steimann00a] F Steimann “On the representation of roles in object-oriented and
conceptual modelling” Data & Knowledge Engineering 35:1 (2000) 83–106.

[Steimann00b] F Steimann “A radical revision of UML’s role concept” in: E Evans, S
Kent, B Selic (eds) UML 2000: Proceedings of the 3rd International
Conference (Springer, 2000) 194–209.

[Steimann01a] F Steimann “The family pattern” Journal of Object-Oriented
Programming 13:10 (2001) 28–31.

[Steimann01b] F Steimann “Role = Interface: a merger of concepts” Journal of Object-
Oriented Programming 14:4 (2001) 23–32.

[Steimann03] F Steimann, W Siberski, T Kühne “Towards the systematic use of
interfaces in JAVA programming” in: Proceedings of 2nd Int. Conf. on the
Principles and Practice of Programming in JAVA (Kilkenny, 2003) 13–17.

About the authors

Friedrich Steimann is a full professor for Programming Systems at the
Fernuniversität in Hagen, Germany. He leads a research group on
software modelling, programmers’ productivity, and object-oriented
development tools. He can be reached as steimann at acm.org.

Philip Mayer is a graduate student of Computer Science at the
Universität Hannover. In his Bachelor's Thesis he developed an
extensive metric suite measuring the use of interfaces in Java programs.
He is one of two developers of intoJ, an open source Eclipse plugin
analyzing the access of types. He can be reached at plmayer@acm.org.

mailto:steimann@acm.org
mailto:plmayer@acm.org

