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ABSTRACT 
The Business Process Execution Language (BPEL) is emerging as 
the new standard in Web service composition. As more and more 
workflows are modelled using BPEL, unit-testing these 
compositions becomes increasingly important. However, little 
research has been done in this area and no frameworks 
comparable to the xUnit family are available. In this paper, we 
propose a layer-based approach to creating frameworks for 
repeatable, white-box BPEL unit testing, which we use for the 
development of a new testing framework. This framework uses a 
specialized BPEL-level testing language to describe interactions 
with a BPEL process to be carried out in a test case. The 
framework supports automated test execution and offers test 
management capabilities in a standardized and open way via well-
defined interfaces – even to third-party applications. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Testing 
tools 

Keywords 
BPEL, Composition, Orchestration, Testing, Unit Testing, 
BPELUnit 

1. INTRODUCTION 
With the advent of the service-oriented architecture (SOA), 
formerly proprietary software systems are being opened and made 
accessible via Web service technology. Web services are software 
components accessible via the Internet, which can be integrated 
into more complex, and possibly distributed, applications [2][20].  
The Business Process Execution Language (BPEL) [3] is a 
language for composing Web services. BPEL compositions, 
described in XML, form an executable program which interacts 
with other Web services. The composition is recursive, as BPEL 
compositions are themselves exposed as Web services. 
As more and more compositions are modelled using BPEL, 
ensuring good-quality BPEL code becomes critical. In other areas 
the need for reliable, automated repeatable testing is already 
widely recognized, for example in the Extreme Programming 

community [6] and in the area of Test-Driven Development [7]. 
Unit testing has already been proven to improve quality in 
practice [11]. Consequently, there are many unit testing 
frameworks available for all kinds of programming languages 
[14]. 
However, there are still not many efforts for creating unit testing 
frameworks for BPEL, with the exception of [16]. BPEL editors 
currently available – like the Oracle BPEL process manager [18], 
the ActiveBPEL Designer [1] or the preview version of Suns 
NetBeans 5.5 [19] – focus on manual black box testing, i.e. 
feeding predefined input data into a BPEL process and comparing 
the output to a predefined document (or simply presenting it to the 
user). 
However, as BPEL compositions are complex, interacting 
programs they should be tested like any other software program: 
Automated, white-box unit testing with the BPEL process as the 
unit under test and systematic testing of its internal logic can 
provide valuable feedback and assure quality. In this paper, we 
explore the realm of BPEL unit testing, proposing a layer-based 
approach for creating BPEL unit testing frameworks and outlining 
our implementation. 
This paper is structured as follows: First, we introduce the basic 
ideas for a BPEL unit testing approach in section 2. In the next 
section, we outline the ingredients of BPEL testing frameworks as 
well as possible design decisions. Section 4 introduces our own 
approach to BPEL testing. In section 5, we discuss related work. 
Finally, we draw our conclusions and give an outlook on further 
work. 

2. TESTING BPEL 
BPEL is a language for Web service composition. As such, the 
most important functionality of a BPEL process is the invocation 
of other Web services and handling the results from such calls. 
Internal logic of a BPEL process is often targeted at deciding 
which Web services to call with which parameters and how to 
proceed with the results, whether they returned correctly or with a 
failure (in which case compensation activities take over). 
The way BPEL processes communicate with their surroundings – 
via standard Web service calls – is of great advantage for testing, 
as opposed to other languages like Java which do not have this 
kind of unit separation. In fact, defining units when testing Java 
programs often requires a specific “testable” program architecture 
using interfaces (although some are of the opinion that such code 
actually furthers program quality and understanding [7]) to allow 
separate testing of so-defined units. In BPEL, we get this 
separation for free: A unit is a BPEL process, and its interfaces are 
clearly defined through WSDL [20]. 
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Thus, the natural approach to testing BPEL processes is to create 
an harness around the process under test (PUT), enabling the test 
to receive data from the BPEL process and to feed data back in at 
each of the interfaces the process provides – i.e., every operation 
offered by the service and each operation invoked by the service. 
There are several possible implementations for achieving this, 
which are described in detail in the next chapter. 

3. BPEL TESTING ARCHITECTURE 
In this chapter, we present a generic, layer-based approach for 
creating BPEL testing frameworks, which we later use for the 
implementation of our own framework. As a side effect, this 
layer-based model can be used for classifying existing 
frameworks or implementations of other frameworks.  
The architecture consists of several layers which build upon one 
another, as outlined in Figure 1. The functionality of each layer 
can be implemented in various ways, which are pointed out in the 
subsequent sections. 
 

 
 

Figure 1: BPEL testing architecture 

The first layer is concerned with the test specification – i.e., how 
the test data and behaviour are formulated. Building on this, the 
tests must be organized into test cases, test suites, and test runs 
(test organisation layer). 
To achieve results, a test – and therefore also the process under 
test – must be executed (test execution layer). The results must 
then be gathered and logged or presented to the user (test results 
layer). 

3.1 Test Specification 
Testing a process means sending data to and receiving data from 
its endpoints, according to the business protocol imposed by the 
process under test and its partner processes.  
BPEL interfaces are described using WSDL port types and 
operations. Such operations specify whether they are one-way or 
two-way and in which direction the data flows. However, the 
WSDL syntax lacks a description of the actual protocol involved, 
i.e. which operation must be invoked after or before which other 
operation (for a discussion, see [2], pp. 137). This is particularly 
relevant for asynchronous operations. A testing framework must 

provide a way for the tester to specify such a protocol and to 
follow it in the test harness. As a BPEL implementation makes no 
real distinction between the clients of the process and other 
invoked processes, this applies to all partner processes. 
As for the information flow between the BPEL process and its 
partner processes, we can differentiate between incoming and 
outgoing data from the perspective of the test harness developer: 

• Incoming data (from the point of view of the test) is data 
sent by the PUT. Each expected data package must be 
analyzed by the test for correctness. 

• Outgoing data (from the point of view of the test) is test 
data sent back into the PUT to achieve a certain goal, i.e. 
some branch should be taken as a result, a fault handled or 
thrown, or a compensation handler activated. The test 
specification must provide a way for describing such test 
data. 

The test specification must provide a way to validate the 
correctness of incoming data as well as create outgoing data. As 
pointed out by [16], incoming data errors can be classified into 
three types: 

• incorrect content, 

• no message at all, when one is expected, and 

• an incorrect number of messages (too few or too many). 

There are several ways of formulating the test specification to 
achieve these goals. The following two examples are the most 
extremes: 

• Data-centred approach: for example using fixed SOAP 
data, augmented with simple rules. Incoming data from the 
process is compared against a predefined SOAP message 
(which for example resides in some file on disk). Outgoing 
data is predefined too, read from a file and sent to the 
process. A simple set of rules determines if messages are 
expected at all and takes care of sending/not sending replies. 
Needless to say, this approach is very simple, but also least 
expressive.  

• Logic-centred approach: for example using a fully-fledged 
programming language for expressing the test logic. A 
program is invoked on each incoming transmission which 
may take arbitrary steps to test the incoming data. The 
outgoing data is likewise created by a program. This 
approach is very flexible and expressive, but requires a lot 
more work by the test developer. 

Of course, there are several approaches in-between. A data-
centred approach could use a simple XML specification language 
to allow testers to specify test data at the level of BPEL, i.e. 
XML-typed data records instead of SOAP messages. A logic-
centred approach could use a simple language for expressing basic 
conditional statements (“if the input data is such-and-such, send 
package from file A, otherwise from file B”). 
Beside the questions of expressiveness of the logic and simplicity 
for the tester, two additional requirements must be considered:  

• Automation: The ultimate goal of a BPEL testing 
framework is automated repeatable testing, which means the 
test must be executable as a whole. This indicates that 
however the test is specified, the specification must be 
unambiguous, machine-readable and -executable. The more 
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sophisticated the test logic, the more complex the test 
execution will be. 

• Tool support: It should be possible to automate at least 
some of the steps for creating the test specification, thereby 
relieving the tester of the more tedious tasks and letting him 
focus on the actual problem.  

3.2 Test Organisation 
Each test specification contains the test logic and data for one test 
case. This does not mean all specification artefacts reside in one 
place, though. A test case could consist of multiple files and/or 
database entries. The test organisation must provide a way to 
integrate all these different artefacts into one, representing the 
complete test case. 
However, the true value of automated testing comes from 
executing many test cases as often as possible. Therefore, it is 
necessary to be able to group tests into composite tests (so-called 
test suites). Such organisation has the additional benefit of being 
able to group tests which require the same setup and shutdown 
procedures, which then need only be executed once. 
Another important aspect of test organisation is the integration of 
the test framework into the overall development process. For 
example, tracing requirements throughout the development cycle 
is important to track and react to changes. To permit requirements 
tracing throughout the testing process it must be possible to 
augment the test cases with custom, requirements-related meta-
data, and to query this data upon test completion. 
There are two basic approaches to test organisation: 

• Integrated test suite logic: The first approach is to integrate 
test organisation with test specification. This is possible only 
when a sophisticated test specification method is in place (for 
example, when using a high-level language). This approach 
has the benefit of being very flexible for the test developer. 
There is a huge drawback, however – the test framework has 
no way of knowing about composite tests and is not able to 
list the results separately. 

• Separate test suite specification: The second approach is to 
allow formulation of separate test organisation artefacts. 
These artefacts could include links to the actual test 
specifications and information about setup and shutdown 
procedures. 

As in the previous section about test specification, it is also 
important here to stress the importance of automation and tool 
support for test organisation, as the organisation artefacts are the 
natural wrappers for the test specification. 

3.3 Test Execution 
A BPEL process is an executable program which must be 
executed in order to test it. For normal execution, BPEL processes 
are usually deployed into a BPEL engine, instantiated and run 
upon receipt of a message triggering instance creation. However, 
for testing a BPEL process there are other possibilities, too. 
BPEL process testing means creating a harness (i.e., the test 
specification) around the PUT, executing the process, and 
handling input and output data for a concrete PUT instance 
according to the specification. This can be done in several ways. 
The following two approaches are the most obvious ones: 

• Simulated testing: Simulated testing, as defined here, means 
the BPEL process is not actually deployed in the usual sense 
and invoked afterwards by means of Web service 
invocations. Instead, the engine is contacted directly via 
some sort of debug API and instructed to run the PUT. 
Through the debug API, the test framework closely controls 
the execution of the PUT. It is therefore possible to intercept 
calls to other Web services and handle them locally; it is also 
possible to inject data back into the PUT. This approach is 
taken by some editors currently available for manual testing 
and debugging. 

• Real-life testing: Real-life testing, as defined here, means 
actually deploying the PUT into an engine and invoking it 
using Web service calls. Note that this means that all partner 
Web services must be replaced by “mocks” [17] in a similar 
way, i.e. they must be available by Web service invocation 
and be able to make Web service calls themselves. The PUT 
must be deployed such that all partner Web service URIs are 
replaced by URIs to the test mocks.  

Both approaches are heavily constrained by the existing (or rather, 
non-existing) infrastructure:  

• Simulated BPEL execution only works if the engine supports 
debugging, i.e. has a rich API for controlling the execution of 
a BPEL instance. Whilst most engines do support such 
features, they are unfortunately in no way standardised. To 
avoid vendor lock-in, a test framework must therefore factor 
out this part and create adapters for each BPEL engine to be 
supported, which may get rather tedious. 

• Real-life BPEL execution requires the process to be deployed 
first, binding the PUT to custom (test) URIs for the test 
partner processes. However, most engines rely on custom, 
vendor-specific deployment descriptors, which the test 
framework must provide, and which are not standardised as 
well. Furthermore, the BPEL specification allows dynamic 
discovery of partner Web services. Although frequent use of 
such features is doubted [2], a framework relying on real-life 
test execution will have no way to counter such URI 
replacements. 

There are certain correlations between the two approaches 
discussed in section 3.1 and the two execution types. Indeed, the 
choice of specification has a strong influence on the way the test 
should be executed. For example, the test framework can directly 
use predefined SOAP messages in the case of simulated testing; 
real-life execution requires Web service mocks, which can be 
formulated in a higher-level programming language.  
However, other combinations are also possible and depend on the 
amount of work done by the framework. It is relatively easy to 
create simple Web services out of test data, and simulating BPEL 
inside an engine does not mean the test framework cannot forward 
requests to other Web services or sophisticated programs 
calculating a return value. 

3.4 Test Results 
Execution of the tests yields results and statistics, which are to be 
presented to the user at a later point in time. Many metrics have 
been defined for testing [22], and a testing framework must 
choose which ones – if any – to calculate and how to do this. 
The most basic of all unit test results is the Boolean test execution 
result which all test frameworks provide: A test succeeds, or it 
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fails. Failures can additionally be split into two categories, as is 
done in JUnit [13]: an actual failure (meaning the program took a 
wrong turn) or an error (meaning an abnormal program 
termination). 
Furthermore, test metrics can be calculated. A very common test 
metric is the code coverage metric which has many flavours. It 
indicates the percentage of code which has been executed in a test 
case (or a test suite, for the matter). Coverage of 100% indicates 
each code statement (in case of statement coverage) has been 
executed at least once. This does not mean that each path has been 
taken; which is indicated by the path coverage metric (also 
ranging from zero to 100%). 
The more sophisticated the metrics, the more information is 
usually required about the program run. This is an important 
aspect to discuss because control over the execution of a BPEL 
process is not standardised as pointed out in the last section. For 
example, it is rather easy to derive numbers on test case failures, 
but activity coverage analysis requires knowledge about which 
BPEL activities have actually been executed. There are several 
ways of gathering this information: 

• During BPEL simulation, APIs may be used to query the 
activity which is currently active. However, these APIs are 
again vendor-specific. 

• During BPEL execution, the invoked mock partner processes 
are able to log their interactions with the PUT. It is thus 
possible to detect execution of most PUT activities (i.e. all 
activities which deal with outside Web services, which are in 
fact most of the activities). However, this requires additional 
logic inside the mock partner processes which will 
complicate the test logic. Conclusions about path coverage 
may also be drawn from this information, but they will not be 
complete as not all paths must invoke external services. 

With this explanation of the test result layer, we have finished our 
description of the four-layer BPEL testing framework 
architecture. In the next section, we present our own instance of 
this generic framework. 

4. BPELUnit – A BPEL TESTING 
FRAMEWORK 
Section 3 provided an overview of the possible architectures of 
BPEL testing frameworks and presented some of the choices to be 
made when instantiating such a framework. In this section we 
present our own framework design. We describe the choices made 
for each of the framework layers and our implementation 
approach. 

4.1 Framework Design 
In this section, we describe our implementation choices for each 
of the four layers of the testing architecture. 

4.1.1 Test Specification 
The most important choice made for each BPEL testing 
framework is how to specify the test logic. This is the first design 
decision to be made in our layered architecture.  
Our framework is aimed at “test-infected” developers [12], who 
interleave testing and coding during development. To support this 
development style, a test framework should allow rapid testing, 
i.e. creating and running tests should be easy and fast. 

Formulating BPEL test cases can be greatly facilitated for the 
tester by creating a specialized language which allows 
specification of which data is to be sent to the PUT, and which 
data is expected at each partner service – and then let the testing 
framework do the rest. Creating such a language raises two 
questions: 

• How to specify the data, i.e. at what level (the lowest 
possible level being SOAP, and the highest possible level 
depending on the implementation of the corresponding Web 
service). 

• How to specify the interaction details, i.e. what protocol to 
expect at which partner. 

BPEL Web services are based on WSDL descriptions which use 
XML Schema for type definitions (see [3], Chapter 1). When 
creating BPEL processes, developers thus deal with XML 
variables and message formats which can be validated against a 
given XML Schema. The so-defined XML is therefore the 
“natural data language” for BPEL, and we believe it is also the 
best language for specifying data to be sent to the PUT.  
One could use the same format to check incoming messages – i.e., 
compare the XML node-by-node. However, messages from the 
PUT may contain random data like dates or auto-incremented 
numbers, which may not even be relevant for the test. Instead of 
specifying which data is not relevant in a complete message, we 
adopt the opposite approach: Specifying which data is relevant by 
means of XPath expressions [10]. An incoming message can then 
be checked against one or more Boolean XPath expressions, thus 
making sure it contains all the relevant details. 
With the data format specified, we can move on to the interaction 
details. As the BPEL process is a Web service cooperating with 
other Web services, the following interactions can take place: 

• One-Way (Receive Only and Send Only). Although 
probably rarely used, the combination of these two 
interactions can be used for fire-and-forget calls. 

• Two-Way Synchronous (Send/Receive and Receive/Send). 
These are the most obvious interactions. The first one will be 
mainly used in the client of the PUT, whereas the second will 
be mainly used by partners.  

• Two-Way Asynchronous (Send/Receive and Receive/Send). 
Although in fact consisting of two one-way operations, it is 
best to think of these interactions as a logical unit. They will 
be used in a similar fashion to their synchronous 
counterparts.  

Testing the PUT means verifying the correctness of the 
implemented business protocol. To do this, one needs to simulate 
the business protocol of the client and the partners to provoke and 
test the reactions of the BPEL process. We will thus allow testers 
to specify sequences of the interactions mentioned above for the 
client as well as every partner of the PUT. By chaining these 
atomic interactions together, it is possible to easily shape different 
interaction protocols with the PUT on a case-by-case basis.  
A PUT has one client and an arbitrary number (including zero) of 
partners. These Web services all run in parallel, interacting with 
the PUT. The interaction details must thus also cover a number of 
parallel sequences of defined interactions with the PUT, all of 
which must be completed successfully for a test case to pass. If 
one of the interactions fails, for example if a condition does not 
hold or no call is received at all, the test fails and is aborted. 
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By using XML data and sequences of atomic interactions with the 
PUT for the test data specification, our approach lies in-between 
the data-driven and logic-driven ends of the scale. As the test data 
corresponds directly to the XML Schema type definitions for the 
WSDL messages, the tester is able to operate on the same data 
level as if he were programming in BPEL. The test specification is 
thus a highly specialized mini-language directly aimed at rapid 
BPEL testing.  
Due to the simplicity of the language, the actual execution is not 
very difficult for the framework. Tool support for creating the test 
specification is also possible. For every interaction, a wizard may 
be created which allows the user to fill in all the relevant details; it 
is also possible to create an XML-Schema-based UI to generate 
and edit the actual data to be sent.  

4.1.2 Test Organisation 
As defined in our test specification, a test case consists of a 
number of parallel interaction threads describing the simulated 
business protocols of client and partners of the PUT. The test 
organization must be able to group these test cases into suites. 
Additionally, there are still some parts which cannot be integrated: 
The PUT itself, referenced WSDL files, and possibly other files 
(for example, XSD files with the data types). 
Our test organization combines multiple test cases with a setup 
part containing links to the external artefacts, thereby creating a 
test suite. The test organization is thus separate from the test 
specification, although they may reside in the same file. 
BPEL testing is different from other xUnit approaches in that a 
setup and shutdown phase before and after the test case execution 
is mandatory, as partner Web services and the PUT itself need to 
be set up before the test, and later shut down again. The setup part 
of our test suite document contains all necessary information to 
execute these phases. 
By using an XML format for the test suite, it is also easily 
possible to augment the test cases and test suites with additional 
metadata, like for example the requirement tracing data mentioned 
in chapter 3.  
This approach leaves us with a central access point to the test – 
the test suite specification, which is used as a starting point for test 
execution.  

4.1.3 Test Execution 
Both available choices for testing the PUT – simulated and real-
life testing – are dependent on some sort of API or deployment 
descriptor in the engine, which means vendor-lock-in, as there are 
no standards in this area. 
To keep our framework free from such dependencies – and 
therefore maximally general – we tried to use an approach which 
would allow us to decouple from concrete engines by writing 
adapters. The easiest way to do this is to create a wrapper around 
the deployment process (possibly including the generation of 
deployment descriptors) for each particular engine.  
Therefore, we have adopted the real-life deployment approach: 
deploying the PUT before the test, running the test, and 
undeploying the PUT afterwards. 

4.1.4 Test Results 
Using real-life deployment within the framework makes it 
difficult to gather any information on what is going on inside the 

tested PUT instance. As pointed out in chapter 3, one way of 
gathering information would be to include specific logic for this in 
the test processes. However, such an approach would never yield 
complete results. 
Another way would be to use available APIs of the engines to 
query the engine about the state of a process instance after its 
completion. We hope to be able to leverage such APIs across 
engine vendors, but this is still subject to further research. 

4.2 Implementing the framework 
Implementing the BPEL testing framework as laid out in section 
4.1 first requires us to define an adequate format for the test suite 
document, i.e. a way for developers to define test cases and 
deployment information. Our approach is described in section 
4.2.1.  
Afterwards, we outline the software design of the core framework 
which handles test execution and gathering of results. The design 
takes arbitrary WSDL styles and encodings, multiple BPEL 
engine vendors and UIs into consideration and is described in 
section 4.2.2. 

4.2.1 Writing tests 
As already hinted at in section 4.1, the easiest way of integrating 
test data, interactions, and deployment information for a test suite 
is to use an XML-based format. Our test suite document consists 
of two parts: 

• The first part is the deployment section, in which the PUT 
and all of the partners are specified 

• The second part is the test case section, which contains an 
arbitrary number of test cases 

In the following two sections, we will discuss each part. 

4.2.1.1 The Deployment Section 
The deployment section specifies the simulated partners along 
with their WSDL files, and contains information on how to deploy 
and undeploy the PUT. As our framework is extensible to be used 
with different engines, the deployment information is laid down in 
a vendor-specific way and passed on to the deployer registered for 
the given PUT type.  
We will provide deployers for the Oracle BPEL server [18] and 
the open-source BPEL engine ActiveBPEL [1]. Our framework 
provides extension points which can be used to provide support 
for other engines. Adding support for an engine requires 
programmatic (un-)deployment support and specification of the 
deployment tags for the test suite document. 
Running a test suite means deploying the PUT, setting up the 
framework for sending and receiving calls on behalf of the client 
and partners, running the test cases, and undeploying the PUT 
after the test. The deployment section is thus used both for set up 
and shut down of the suite. 
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Figure 2: Deployment Section 

Figure 2 shows the deployment section for the Business Travels 
Web Service example from [15]. The PUT specification contains 
all the necessary details for deployment in an Oracle-specific 
format, which will be passed on to the deployer registered to the 
type oracle. It also contains a link to the WSDL file of the PUT. 
Additionally, two partner Web services are specified, each with a 
link to the implemented WSDL. The names of the partners will 
later be used in the test case section. 

4.2.1.2 The Test Case Section 
The second part of the test suite document contains the test cases. 
Each test case contains one thread for each partner, called a 
partner track, which contains a sequence of interactions, called 
activities, which describe expected actions from the PUT or 
actions the partner must take.  
Figure 3 shows an example test case section. Two partner tracks 
are specified – one for the client and one for a partner called 
Airline. Each partner track contains a sequence of activities.  
As can be seen in the example we also define a property-based 
extension mechanism for each test case and test suite, which can 
be used to define arbitrary properties and their values (like the use 
case specification in the example) to add test management 
capabilities. These remain untouched by the framework, but are 
provided via API to clients (see section 4.2.2). 
 

 
Figure 3: Test Organisation Example 

As an example of an activity, Figure 4 shows a synchronous 
send/receive inside a test specification for the Business Travels 
Web Service example from [15]. This is an activity for the client 
of the PUT, instructing it to send the specified data to the PUT, 
wait for a synchronous answer, and verify the answer according to 
the given condition. 
 

 
Figure 4: A synchronous send/receive 

<clientTrack> 
 
 <sendReceive  
    service="travel:TravelDoc"  
    port="TravelDocPort"  
    operation="process"> 
      
  <send> 
 
    <data> 
     <travel:TravelDocProcessRequest> 
      <travel:employeeData> 

 <emp:FirstName>Philip</emp:FirstName> 
  <emp:LastName>Mayer</emp:LastName> 

 <emp:Department>SE</emp:Department> 
       </travel:employeeData> 
 
       <travel:flightData> 
   ...  
       </travel:flightData> 
 
     </travel:TravelDocProcessRequest> 
    </data> 
 
  </send> 
 
  <receive> 
 
    <condition> 

travel:TravelDocProcessResponse/ 
aln:Approved[1]='true' 

    </condition> 
 
  </receive> 
 
 </sendReceive> 
 
</clientTrack> 

<deployment> 
 
  <put type="oracle" name="TravelDoc"> 
 
    <deploymentOptions> 
 
      <bpd:oracleDeployment  

  xmlns:bpd="http://www...oracle"  
 
        processName="TravelDoc" 
        compiledBPELJarFile=   

  "bpel_TravelDoc_1.0.jar"  
 
        domain="default"   
        password="bpel"  /> 
 
    </deploymentOptions> 
   
    <wsdl>TravelDoc.wsdl</wsdl> 
 
  </put> 
 
  <partner name="Employee" 
    wsdl="EmployeeDatabase.wsdl"/> 
 
  <partner name="Airline"  
    wsdl="TravelAirlineReservation.wsdl"/> 
 
</deployment> 

<testCases> 
   
  <testCase name="Travel Test"> 
 
    <property name="useCase">245</property> 
   
    <clientTrack> 
 ... 
    </clientTrack> 
 
    <partnerTrack name="Airline"> 
 ... 
    </partnerTrack> 
 
  </testCase> 
 

</testCases 
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The framework assists the tester in detecting the three kinds of 
incoming data errors listed in section 3.1. Incorrect message data 
is easy to detect: the XPath conditions in the receive block take 
care of this. A missing message is detected through timers in the 
framework: If an expected message is not received within a 
certain time, a fault is generated. The case of too many messages 
is also handled by the framework: If it does not find a waiting 
receive block for a message, a fault is generated. 
Figure 5 shows a sequence diagram of a typical interaction 
between the framework, its client and partner tracks, and the PUT. 
The PUT is a simple BPEL process which delegates a credit 
request to two partners.  

 
Figure 5: A Testing Sequence 

When thinking about the specification of data and interactions for 
use in a real-life setup, one has to take two additional challenges 
into consideration: the different possible SOAP styles and 
encodings, and how to address partners in asynchronous calls. 

4.2.1.2.1 Handling SOAP styles and encodings 
The XML data specified in the test suite document is plain XML-
Schema-based XML as specified in the type definitions for a 
WSDL message. However, this data may be very different from 
the SOAP data on the wire. The wire format depends entirely on 
the concrete style and encoding of the given WSDL binding. For 
example, in the case of a document/literal encoding the SOAP 
envelope is merely a very thin wrapper around the literal XML 
data; in the case of RPC/literal, there are even more wrappers, and 
in other encodings, the whole message may change. 
In our opinion, a tester should not need to concern himself with 
the actual wire format of the messages. This is a task best left 
automated, and our framework will automatically create the wire 
format required for each partner Web service and the PUT itself 
according to the selected bindings. 
To allow this kind of operation, the specification of each activity 
includes links to the service, port, and operation (see Figure 4). 
The framework uses this information – among other things – to 
extract the SOAP message style and encoding from the WSDL, 
which is required for correctly encoding or decoding a message 

sent to or received from the PUT. As pointed out in chapter 4.1, 
the WSDL may specify arbitrary styles and encodings. Our 
framework contains encoders for the two styles allowed by the 
WS-I Basic Profile [5] (document/literal and rpc/literal), but 
contains an extension point to plug-in arbitrary encoders for other 
formats.  

4.2.1.2.2 Handling asynchronous addressing 
When using synchronous send/receive or receive/send operations 
and the HTTP transport, the respective answer can simply be 
returned in the same connection, and no special addressing is 
needed. However, when using asynchronous messaging, a 
separate HTTP request must be used for the call-back, and 
addressing information for this request is required. 
Where and how to specify call-back information is basically up to 
concrete Web service implementations. Therefore, the framework 
uses an extensible mechanism to allow arbitrary addressing-
related manipulation of SOAP headers before a message is sent 
and right after it is received. We provide an implementation of the 
WS-Addressing specification [8]; other processors may be 
registered with the framework by means of an extension point. 
The concrete addressing implementation to use is specified by the 
tester using a special tag inside of asynchronous activities. 

4.2.2 Framework Core Layout 
Consistent with many BPEL engines and the goal of platform-
independence, our framework is written in Java. The tasks of the 
framework include reading the test suite specification, deploying 
the linked BPEL process, starting and managing the partner 
tracks, and gathering results from the tracks, and possibly, the 
engine. 
Figure 6 shows the design of the framework. The core provides an 
API and three extension points for external software. 
The API is intended to be used by clients of the framework to 
present a UI to the user and as such allow execution of tests. 
Examples of such clients are displayed in the figure – a command 
line client, an ant integration library, and a plug-in for Eclipse. 
At the extension points, adapters can plug in to offer deployment 
for a particular BPEL engine, encoding support for a particular 
WSDL/SOAP style and encoding, and header processors for a 
particular addressing mechanism.  

• A BPEL deployer is registered with a type (or name). If this 
type is used within a test suite specification, the 
corresponding deployer is instantiated. At the beginning of 
the test run, the deployer is instructed to deploy the process 
with the deployment settings from the test suite specification. 
After the test cases have been run, the deployer is instructed 
to remove the process from the engine. 

• An encoder is responsible for encoding to and decoding from 
a particular SOAP message format. An encoder is registered 
with a certain style and binding. If that combination is 
encountered in a WSDL file by the framework, the encoder is 
instantiated. When a message is about to be sent, the encoder 
is responsible for converting the literal data into a complete 
SOAP message. When a message is received, the encoder is 
responsible for retrieving the literal data from inside the 
SOAP message.  

• A header processor is registered with a name, which allows it 
to be referenced from inside an activity, where the tester 
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specifies the processor required for a certain operation. 
Header processors are free to change the SOAP header in any 
way they see fit, although the main objective is to allow call-
back addressing. 

On the right-hand side in Figure 6, the user-written test 
specification is displayed, which in turn contains links to the user-
written BPEL process. Note that the BPEL code just passes 
through the core, processing it is not required.  
 

 
 

Figure 6: Framework Core Layout 

The framework is invoked with a test suite document via the UI 
APIs. It passes the information on to the selected deployment 
implementation, which deploy the linked process. The partner 
tracks are then instructed to start the test. The framework waits for 
the tracks to complete (throwing a fault, or returning normally). 
Afterwards, the selected deployer is instructed to undeploy the 
BPEL process, and the next test suite may be run. 
As an example of a UI, Figure 7 shows the Eclipse test runner 
which deliberately looks like the JUnit test runner already 
supplied with Eclipse. A test run may be started inside Eclipse by 
creating a BPELUnit launch configuration for a test suite 
specification file. During the launch, the BPELUnit framework 
core is instantiated and instructed to run the test suite. During and 
after the run, the progress and results of the run are presented to 
the user. 

 
Figure 7: BPELUnit Eclipse View 

The BPELUnit view differs from the JUnit view in the following 
ways: 

• The tree view does not only show the test suite and test cases, 
but offers a deep view into what is going on inside the 
partner tracks and activities. This is of particular importance 
as there are nearly unlimited sources of error when dealing 
with remote calls. The test runner shows a complete history 
of every message sent or received, from literal data to 
complete SOAP message. 

• Instead of a Java stack trace, the detail pane shows more 
information about a selected test artefact. In the figure, a 
complete SOAP message is shown; selecting activities would 
yield more information about how the activity was executed. 

• There are two progress bars; one for the test cases and one 
for the activities of the current test case, which allows better 
progress tracking. 
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4.3 Tool Support  
Although the test specification is very simple, writing the XML 
document can be tedious work for the developer. Therefore, we 
propose tool support for aiding the developer in creating both the 
test interaction details as well as the actual test data. 
The first question to be answered when contemplating tool 
support is the intended target group, i.e. the users of the tools. On 
the one hand, BPEL is a programming language which allows 
writing rather complex programs. On the other hand, BPEL 
compositions are fairly high-level artefacts; close to business 
goals and requirements of the resulting system. Two different user 
groups of BPEL testing tools can therefore be anticipated: 

• BPEL developers: Naturally, there must be someone who 
wrote the original PUT BPEL code, and as suggested by 
some [6][7], testing and development should be interleaved. 
Therefore, one option is to create tool support for the 
developer himself. 

• Specialized testers: Another way of approaching testing is to 
entrust testing to a specialized department consisting of 
professional testers. These testers are closer to requirements 
than they are to code; therefore the tool support must 
concentrate on requirements, too. 

In the case of BPEL developers as the target group, the tool 
support probably should consist of creating skeletons for the test 
specification document, which are then to be filled by the 
developer. In the case of specialized testers, the tool support could 
provide wizard-based test generation tools based on more simple 
representations of the test data. This, however, will not be possible 
for all types of PUTs and interactions. It will be an interesting 
challenge, though, to see how far this approach scales. 
 

 
 

Figure 8: Eclipse Tool Support 

The tool support for BPEL testing is currently under research and 
has not yet been implemented. Figure 8 shows a basic 
architectural diagram of the tool support, which will be 
implemented as Eclipse plug-ins.  
Note that the actual framework and the tool support are 
independent of one another and only connected through the test 
specification and the linked PUT and WSDL. Therefore, other 
forms of tool support are easily implemented on top of the 
framework. 

5. RELATED WORK 
As the BPEL language is relatively new, there are still not many 
efforts for creating unit testing frameworks specifically targeted at 
BPEL. The area of BPEL testing is currently restricted to either 
theoretical approaches [16] or practical embedded approaches (as 
implemented in the ActiveBPEL designer, or NetBeans 5.5).  

• The approach in [16] contains some initial ideas on BPEL 
unit testing. It uses BPEL as the test specification language, 
requiring testers to create a BPEL test process for each 
partner of the PUT as well as a central, coordinating process. 
Testing BPEL with BPEL is an interesting approach, 
especially in lights of the xUnit family. However, the paper 
does not contain information about how to actually run the 
tests (as BPEL itself does not allow user interactions), how to 
deploy the processes, and on the particular problem of 
parameterizing the BPEL test mocks, i.e. instructing the 
mocks what data to expect and send in a particular test case. 
Our approach differs from [16] in that it goes a step further 
by clearly addressing test parameterization, organization, and 
execution. 

• Existing practical approaches built into IDEs fall into two 
categories. In the first category, a simple black-box approach 
is used, i.e. data is sent into a BPEL process and an answer is 
expected. This means that the BPEL process is not tested as a 
composition, but as a simple Web service, which is a 
different setup. In the second category, the respective BPEL 
engines run in a “simulation mode”, which allows the testing 
framework to directly inject or extract data instead of making 
actual SOAP test calls. These approaches focus on manual 
testing, are limited to a particular engine and also do not test 
the complexities involved in the SOAP encoding process as 
well as the message transport. 

As BPEL processes are Web services, existing web-service testing 
tools can also be used for BPEL testing. However, most of these 
testing tools regard Web services as black boxes, only to be 
instrumented by a client and without simulating possible partners. 
Simulating a partner is in many ways opposite to client-side 
testing of Web service, as the testing tool must simulate a Web 
service instead of interacting with it, for example by extracting 
and using addressing information for not only receiving 
asynchronous call-backs, but actively creating and sending them. 
As an example of such tools, we discuss WS-Unit [21] and 
ANTEater [4], both of which are open source. WS-Unit is a “Web 
service consumer tester”, i.e. it can be used to simulate a BPEL 
partner. ANTEater, on the other hand, is a functional testing tool, 
intended for simulating a client (including asynchronous call-
backs). Both tools also allow simple copying and verification 
rules like the ones we use in our framework. However, our 
framework differs in two important points from these tools: 

• We are using literal XML data as the data specification 
format instead of complete SOAP envelopes, which puts the 
tester on the same level with the BPEL compositions. 

• Instead of focussing on single interaction sequences, our 
framework allows the specification of parallel threads of 
activities required for simulating several partners of a PUT at 
once, and also provides the ability to extract call-back 
information to create server-side call-backs. 
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6. CONCLUSION 
In the first part of this paper, we have presented a generic layer-
based approach to creating testing frameworks for repeatable 
white-box BPEL unit testing. Each layer has been described 
systematically and several implementation techniques have been 
proposed. We believe that the given architecture can be used for 
classification of existing frameworks and as an aid for future 
implementations of BPEL testing frameworks. 

In the second part of this paper, we have presented our specific 
implementation of this framework, which uses literal XML data 
and a custom interaction mini-language for the test specification 
as well as a Java-based test runner which can be extended to 
support multiple BPEL engines, SOAP styles and encodings, 
addressing modes and UIs for test execution and result 
presentation. We believe that our approach greatly facilitates 
BPEL testing, as it is easy to use, operates on the same data level 
as BPEL, and provides extensive reporting capabilities inside the 
Eclipse UI. 

Due to a flexible architecture, our BPEL testing framework is 
usable both on the client side by the developer himself, for 
example inside an IDE such as Eclipse, as well as on the server 
side, for example by using Ant for running all tests as part of a 
nightly build. 

As outlined in the previous chapters, our BPEL testing framework 
is still a work in progress. We will continue working on the 
question of gathering metrics from the process under test to create 
coverage figures, and on tool support for aiding both programmers 
and testers in creating BPEL test cases. Especially the integration 
into development environments including tool support is an 
important aspect; our implementation will feature integration into 
the Eclipse IDE. The presented concepts for a BPEL unit testing 
framework will serve as a solid foundation for our future research. 
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