
A visual interface for type-related refactorings
Philip Mayer

Institut für Informatik

Ludwig-Maximilians-Universität

D-80538 München

 plmayer@acm.org

Andreas Meißner
Lehrgebiet Programmiersysteme

Fernuniversität in Hagen

D-58084 Hagen

meissner@acm.org

Friedrich Steimann

Lehrgebiet Programmiersysteme

Fernuniversität in Hagen

D-58084 Hagen

steimann@acm.org

ABSTRACT
In this paper, we present our approach to a visual refactoring tool,
the Type Access Analyzer (TAA), which uses program analysis to
detect code smells and for suggesting and performing refactorings
related to typing. In particular, the TAA is intended to help the
developers with consistently programming to interfaces.

1. INTRODUCTION
When looking at currently available type-related refactoring tools,
a noticeable gap shows between simple refactorings like Extract
Interface and more complex, “heavyweight” ones like Use
Supertype Where Possible and Infer Type [2]: While the former
do not provide any analysis-based help to the user, the latter
perform complex program analyses, but due to their autonomous
workings – without interacting further with the user except for
preview functionality – it is not always clear when to apply them,
what result to expect, and just how far the changes of the
refactorings will reach. For example,

• Extract Interface keeps programmers in the dark about which
methods to choose,

• Use Supertype Where Possible replaces all declaration
elements found without a proper way of restricting it,

• Infer Type creates new types guaranteeing a type-correct
program, but often lacking a conceptual justification.

As a remedy, we propose a new approach to refactoring. The
contributions of this approach consist of:
• moving precondition checking and parameterization from

refactorings to a dedicated program analysis component,
• presenting the analysis results visually in such a way that

they suggest refactorings, and
• breaking down existing refactorings into simpler tools which

perform predictable changes immediately visible and
controllable by the visual refactoring view.

This approach is prototypically realized in our Type Access
Analyser (TAA) tool for type-related refactorings.

2. THE TYPE ACCESS ANALYZER
A loosely coupled and extensible software design can be reached
by consistently programming to interfaces [1], specifically to
what we have called context-specific interfaces [3]. An interface
is considered to be context-specific if it contains exactly – or, in a
more relaxed interpretation, not much more than – the set of
members of a type required in a certain area of code (which is

comprised of variables and methods declared with the interface as
their types and their transitive assignment closure).
Refactoring to the use of such interfaces requires an analysis of
what is really needed in contexts by analyzing the code to find
used or unused members. With this information, the code can be
refactored in an informed way by:
• creating, adapting, or removing interfaces, and
• retrofitting existing variable types to the newly introduced,

or adapted, interfaces.
The TAA follows the approach discussed in the introduction by
analyzing the code using the type inference algorithm we have
introduced in [2], presenting the results in a visual form, and
providing access to and feedback from simplified versions of
refactorings such as Extract Interface or Infer Type.
To give the programmer a comprehensive and concise view of the
program that is tailored to the specific problems of interface-
based programming, we have developed the supertype lattice
view described in [4]. In this view, the supertype hierarchy of the
type under consideration is enhanced by displaying a bounded
lattice of the set of members of the type, each node being
enriched with various kinds of information. Figure 1 shows a
screenshot of the TAA in action on a four-method class (due to
space limitations, only a part is shown).

Figure 1: TAA Visual View

Four types of information are immediately visible from the graph:

• Possible types – each node is a possible supertype of the
class (which is situated at the bottom; not shown).

• Available types are shown in the types section on a node.
Subtyping relations between types are indicated by UML-
style subtyping arrows.

• Variables and methods. Each variable or method typed
with one of the type(s) under consideration is included in the
graph. Assignments between these elements are shown with
red arrows.

• Declared placement. A variable or method is shown in
the declared placement section of the node containing the
declared type of the variable or method.

• Ideal placement. If different from the declared
placement, a variable or method is shown in the ideal
placement section of the node which corresponds to the
set of members (transitively) invoked on this variable or
method.

The quality of the variable and method declarations (i.e. the
matching between types and their usage contexts) is shown by the
colours of the background of the node. A green colour represents
the use of context specific types, while a red colour signals a
mismatch between types and usage contexts.
Selecting variables or methods in the graph further enriches the
display:

• A line is drawn connecting the ideal and declared placements
of an element (if different).

• Additional lines are drawn connecting all elements which the
current element is being assigned to (transitively).

This data may be used to detect smells in the code and take
appropriate action. The following section will detail this.

3. VISUAL REFACTORINGS
By analyzing a type in the TAA view, the developer has complete
overview of the usages of this type. The annotations on the
supertype lattice suggest a number of ways of improving the
typing situation; specifically, the arrangements of types and
variables/methods visualize code smells which can be removed by
applying refactorings.
The following table associates design problems in the code, the
way these problems show up in the visual view (as smells), and
the actions to be taken by the developer to deal with those
problems. Later on, we will present refactorings for executing
these actions.

Problem Smell Action
No interfaces
available for
a context

Nodes in the graph
with ideal placement of
variables/methods, but
without interfaces

Extract interface and
redeclare variables/
methods with new
interface

Poorly
designed
interface

Ideal placement of
variables/methods
swarming around
existing interfaces

Move existing
interface up or down
in hierarchy

Two
interfaces for
the same
purpose

Two interfaces share
the same/neighbouring
nodes, each with
ideally placed
variables/methods

Merge interfaces

Superfluous
interface

Interface present in a
node without declared
placements; no ideal
placements in vicinity

Remove interface
from hierarchy

Interface is
not (yet)
used

Interface is present in a
node with ideally but
no declared placements

Redeclare variables
/methods with
existing interface

Table 1: Code Smells

As can be seen from the table above, the TAA suggests a number
of actions to be taken as a result of identified smells. These
actions are implemented as refactorings. In line with our approach
of putting the developer in charge, these refactorings may be
selected as (semantically) appropriate by the user.
Contrary to existing refactorings, the ones invoked from the TAA
in general do not require further dialog-based parameterization –
all information required for a refactoring is already available in
the graph and the way the user invokes the refactoring in a visual
way. These visual start procedures are shown in Table 2:

Refactoring Visual start procedure
Extract interface Alt + Drag an interface to another,

higher node in the graph
Move interface in
hierarchy

Drag an interface to another node
in the graph (up or down)

Remove interface from
hierarchy

Select an interface, select delete

Merge interfaces Select two interfaces, select merge
Redeclare declaration
elements (transitively, i.e.
following assignments)

Select a variable or method, select
redeclare

Table 2: Refactorings

While the Extract Interface refactoring is already available as-is
in many tools, the others have been either adapted or specifically
written for the TAA.

4. SUMMARY
In this paper, we have described our approach to visual
refactoring. The TAA tool aids the developer by providing
valuable information about the typing situation in the code – in
itself suitable for program understanding – and thereby suggests
refactorings whose effect is more predictable and which can be
executed directly from the visual view. The results of the
refactorings are likewise directly shown in the graph.

In the future, we will investigate ways of further improving the
user interface and add more refactorings to the TAA.

5. REFERENCES
[1] E Gamma, R Helm, R Johnson, J Vlissides Design Patterns -

Elements of Reusable Software (Addison-Wesley, 1995).
[2] F Steimann “The Infer Type refactoring and its use for

interface-based programming” JOT 6:2 (2007) 67–89.
[3] F Steimann, P Mayer “Patterns of interface-based

programming” JOT 4:5 (2005) 75–94.
[4] F Steimann, P Mayer “Type Access Analysis: Towards

informed interface design” in: TOOLS (2007) to appear.This work has been partially sponsored by the project
SENSORIA, IST-2005-016004.

	1. INTRODUCTION
	2. THE TYPE ACCESS ANALYZER
	3. VISUAL REFACTORINGS
	4. SUMMARY
	5. REFERENCES

