
Leveraging Integrated Tools for
Model-Based Analysis of Service Compositions

Howard Foster∗ and Philip Mayer†
∗London Software Systems, Imperial College London

London, United Kingdom
†Ludwig-Maximilians-Universität, Munich, Germany

Email: ∗hf1@doc.ic.ac.uk, †mayer@pst.ifi.lmu.de

Abstract—Developing service compositions, using multiple
standards and implementation techniques, typically involves
specifying service characteristics in different languages and tools.
Examples are defining service composition behaviour, in the form
of the Business Process Execution Language for Web Services
(WS-BPEL) and a global service choreography policy, in the
form of the Web Service Choreography Description Language
(WS-CDL). Whilst there have been a number of model-based
analysis tools reported, there is a lack of integration with
development environments to support analysis of these different
service artifacts. In this paper we present a short history of some
of the analysis tools reported, discuss an appropriate criteria
of accessible integrated development with analysis features and
provide an example approach, called ”Service Engineer” using
our tools and integration work. The approach is supported by
an integrated service tool-chain development environment known
as the SENSORIA Development Environment. The aim is to
provide an accessible, rigorous approach to analysing service
compositions but with a simple, clearly defined interface in an
integrated development environment.

I. INTRODUCTION

As the rapid growth and use of system integration services
(typically web services) continues, the work reported on the
analysis of service behaviour models has also grown, with
an application of formal methods proving valuable to assist
engineers verify and validate service configurations prior to
deployment. Most of this work has described formal modelling
techniques with translations to process calculi or algebras.
The verification and validation of these models is often not
hidden from the engineer, which does not lay well with service
engineers who are interested in the ease of the development
and specification environment rather than the process and a
non-contextual form of analysis results. Support tools for this
verification typically require the user of the tools to activate
a translation of service implementations, feed the translation
through a model parser, compile the model, and instigate
a verify option on the model checker. If the verification is
undertaken once or twice on each implementation then this
is not an issue, however, one can expect implementations to
evolve over time (particularly as service reuse and maintenance
increases) and thus, the ease of executing the verification steps
frequently becomes equally as important as the result of the
steps themselves.

In this paper we describe how our tool environment, inte-
grated into the Eclipse Integrated Development Environment

(IDE) provides and hides the type of functionality we dis-
cussed previously. Our aim is simple, to provide a rigorous
verification and validation platform for service engineers,
yet conceal as much as possible that is not relevant to the
engineer but still provide highly accessible functions in as few
steps as possible. We concentrate on support for two service
composition specifications, namely the Web Service Business
Execution Language (WS-BPEL) [1] and the Web Service
Choreography Description Language (WS-CDL) [2]. Whilst
there are others, we use these two to illustrate orchestration
and choreography analysis for supporting service engineering.

The structure of the paper is as follows. In section 2 we
describe a brief history of model-checking service composition
tools, and discuss how they implement the verification steps
mentioned previously. In section 3 we describe a framework
for integrated analysis tools of service compositions. In section
4 we detail our approach and tool for service composition
behaviour analysis and in section 5 we describe the integration
of this tool into a development environment for analysis
tools using the framework described in section 3. Section 6
concludes the paper with a review and comments on future
work.

II. BACKGROUND

There are a number of tools reported to support model
verification and validation of service compositions. We believe
we introduced one of the first tools LTSA-WS in [3], which
presented an automated translation of service orchestrations
described in the WS-BPEL and WS-CDL languages to the
Finite State Process (FSP) [4] notation and subsequently
allowed the user to compile and safety check models of
service compositions. The tool was originally written as a
plug-in to the Labelled Transition System Analyser (LTSA)
also described in [4]. LTSA supports default safety (deadlock)
and progress (property) analysis, but can also support Linear
Temporal Logic (LTL) and Fluent property analysis. The tool
framework is window and tabbed pane based and presented
a simple WS-BPEL editor which required the user to switch
between analysis editors, and invoke compilation, safety and
animation manually. Another tool, called the Web Service
Analysis Tool (WSAT) [5] is also a tool for the analysis and
verifying of service compositions. They use an intermediate
representation in the form of Guarded Finite State Automata

(GFSA). A translator converts WS-BPEL and WSDL input
documents in to GFSA models and then synchronizability and
realizability can be checked. Data expressions used within
the service compositions (for temporary data and guarded
actions) are abstracted to Promela code. The tool is command
line based and requires the user to explicitly state the input
processes and interfaces (WS-BPEL and WSDL documents)
for analysis. WofBPEL [6] is also a tool for the analysis
for service orchestrations in the form of WS-BPEL. The tool
takes as input Petri-net descriptions of WS-BPEL, which are
obtained as output from the BPEL2PNML tool accompanying
the WofBPEL tool. The analysis, as with the others described
in this background, considers the reachability of the com-
position processes but also provides a novel way to check
for concurrent inbound messages and which ones need to be
preserved in the process message queue at each step of a
WS-BPEL process. The input to the tool is again command
line driven and requires several steps to generate the required
output and subsequent inputs between translation and model
checker inputs. Tools4BPEL [7] also translates BPEL process
descriptions to Petri net models using a BPEL2oWFM module.
Again, safety analysis (specified using various properties) can
be checked in the tool, but also there is an additional part of the
tool, called ’Fiona’ which checks for proper interaction models
within the orchestrations and details operating guidelines for
using each of the services appropriately. There has been some
reports of direct editor integration with formal verification
tools, such as with the ActiveBPEL tool in [8] which uses the
UPPAAL model checker to check safety and timed analysis
of orchestrations. The tool makes a good attempt to integrate
with source editors yet does not provide the flexibility to work
with other analysis tools.

Industry has also focused on providing some web service
composition support, that is, above and beyond service or-
chestration editors and syntax validation. For example, the
IBM Websphere Business Modeller [9] provides validation of
process workflows, which in turn, can be exported to WS-
BPEL compliant process descriptions. It is not known which
techniques are used to perform this analysis, and it is believed
that the analysis is limited to checking that they are complete
flows (for example, that there are sufficient start and end nodes
specified).

Our contribution builds on our earlier work and analysis
tool suite by concentrating on a set of key design features
to support enhanced development of web service composi-
tions, and in particular the analysis of their specifications.
We call the approach the ’Service Engineer Approach’. The
approach has been formed as part of a European Union Global
Computing 2 funded project called Service Engineering for
Service-Oriented Overlay Computers (SENSORIA). Further
information on this project is available on the project website:
http://www.sensoria-ist.eu.

III. CRITERIA FOR TOOLS

Our criteria consists of several steps to aid the engineer in
performing analysis of service compositions. To begin with

however, it is useful to define a framework for the approach
based upon a number of principles. For service composition
analysis tool support, we appropriately split the discussion
into a series of criteria for evaluation taken from the work by
Clarke and Wing in [10]. This criteria considers tool support
from several viewpoints including; ease of learning, early
payback, efficiency of developers time, increase in benefits,
error detection, integrated development environment enabled,
focus on analysis and support for evolutionary development.
We now describe these and how we extend model based
service engineering aspects of analysis.

Ease of Learning: In ease of learning the notations and
tools should provide a starting point for writing specifications
for developers who would not otherwise write them. It is
not the intention of the service analysis tools to presume
how the input for analysis is constructed. The analysis tools
should provide a simple interface to allow user’s to access the
analysis functions with ease, and provide suitable results that
can be understood without formal knowledge of the source
specification translation model rules.

Early Payback: To provide methods and tools which give
significant benefits almost as soon as user’s begin to use them.
Access to analysis functionality should be provided appropri-
ately in the service composition development life cycle. For
example, even at the stage of partial descriptions of service
behaviour the user should be able to analyse incrementally
the current specification and be presented with early results to
guide the user to more an accurate, correct solution.

Efficiency of User’s Time: Tools should make efficient use
of a user’s time, and in particular, turnaround time with
an interactive tool should be comparable to that of normal
compilation. Clarke and Wing also noted that developer’s are
generally more inclined to wait for tools that are known to
perform more extensive analysis. Model checking analysis
tools can require a large set of available resources and can
carry out processes which take time to execute. Progress in
analysis steps should be displayed where possible.

An Increase in Benefits: Benefits should increase as de-
velopers get more adept or put more effort in to writing
specifications or using tools. The tool set should provide highly
useful results, and presented in a context which is meaningful
to the user. With service compositions this means providing
the right type of analysis at the right point in the service
development life cycle, with context related results displayed.

Integrated Use: The use of tools for formal methods should
be integrated with that of tools for traditional software de-
velopment. We have already mentioned that the analysis tool
should not consider being a source editor for the service
composition languages. Rather, it should complement the
capturing of these specifications and provide an integrated,
coherent approach to both undertaking the analysis and then
using the results obtained from the analysis.

Error Detection: Methods and tools should be optimised
for finding errors, not for certifying correctness. They should
support generating counterexamples as a means of debugging.
It should be assumed that correctness of the source documents

(i.e. that they are well-formed and follow the syntactical rules
as defined in their specifications) has already been validated
by editors. However, in the progress of translation to formal
models and analysis, the tool should inform the user if a
semantic value is invalid given the current source (above
that of syntax). In translation we raise such violations as
’problems’ and present these to the user during analysis. We
also present examples of violations (such as the trace of actions
specified that led to a violation) in an accessible form, in this
case in Message Sequence Charts (MSC) notation.

Evolutionary Development: Methods and tools should sup-
port evolutionary system development by allowing partial
specification and analysis of selected aspects of a system. As
analysis is undertaken at points in the service life cycle, the
user should be able to easily refine or elaborate on design or
implementation and reiterate analysis to check that changes
have the desired effect.

IV. THE SERVICE-ENGINEER APPROACH

Our initial approach and tool support for integrated analysis,
takes a 2-dimensional view of service composition analysis,
listed in table I. In a first dimension it considers core service
composition artifacts being; orchestrations (service processes),
interface (service descriptions), choreography (which could be
argued are the main layers of service orientation) and resources
(architecture dependent features of service compositions).
From a second dimension it considers the analysis features
of service compositions including; design, implementation,
architecture configuration and deployment. Thus, one can use
the approach to consider design for service orchestrations,
or alternatively the deployment of collaborating processes
and their architecture configuration in service choreography,
or any aspect against the other in the matrix. We believe
such an approach provides a much richer coverage of ser-
vice composition development, accessible to engineers such
that they can analyse compositions from different viewpoints
(depending on the context of analysis). An overall integrated
service behaviour analysis approach is suggested in Figure 1.
The core of the approach is transforming some design or
implementation artifact to relevant and detailed models for
analysis (Model Generation). All inputs are provided from
the perspective of a service engineer. We consider analysis of
service orchestrations and choreography given input as design
specifications (e.g. MSCs and UML2 diagrams), choreography
policies (in the form of WS-CDL policies) and component
descriptions (in the form of WSDL documents). Analysis in
the approach provides features to compare each of these either
as model validation (through animation) or verification through
model property traces. Each feature considers behaviour anal-
ysis for a different element of service compositions.

Artifact Design Impl. Arch. Deploy.
Orchestration MSC WS-BPEL Process Engine

Interface Function WSDL RPC Host
Choreography MSC WS-CDL Policy Engine

Resources UML** Threads Runtime Server

TABLE I
ASPECTS OF ANALYSIS FOR SERVICE COMPOSITION BEHAVIOUR

Fig. 1. WS-Engineer Approach to Service Composition Analysis

A. Analysis Features, Properties and Results

Service Design: Analysis of service composition design is
achieved through the analysis of service specifications and in
particular, the service behaviour specifications provided by the
engineers. For example in our approach we provide analysis of
MSCs describing the service composition specification. Infact,
service design models can be used later with service im-
plementations to formally model check that implementations
fulfil their design specifications or vice-versa to check which
behaviour sequences are supported by the design but not by the
implementation. Here the engineer builds the MSC diagrams
of service interactions and can check for implied scenarios
(those scenarios which are not directly specified but emerge
from the merging of scenarios). Such scenarios can be marked
as ’positive’ (accepted) or ’negative’ (declined). They are then
included or specifically omitted from design traces.

Service Implementations: Analysis of service composition
implementations has focused on two areas. Firstly, the process
of orchestration is analysed for safety (given varied properties
of interest). Typically, this will be a check for deadlock
freedom given the constraints imposed within the orchestration
(such as linked sequences of operation or interactions specified
in a concurrent process block). Secondly, orchestrations can be
used as roles within a choreography (e.g. as part of a policy
described in WS-CDL). Thus, the analysis of orchestrations
can be checked with the property of a choreography role spec-
ification. Our work on service compatibility and obligations
analysis [11] considered this area of analysis. Many of the
approaches to orchestration analysis use WS-BPEL as a source
input, and WSDL as the service interfaces. We described some
of these tools earlier in section II. Our approach includes
features to consider analysis of implementation against design,
interaction in terms of collaborating orchestrations (linking
interfaces and methods for service communication), and obli-
gations between orchestrations and choreography.

Service Architecture and Deployment: We have described
the analysis so far in terms of behaviour and interaction
analysis. There is also a key issue of designing a suitable
architecture configuration to host the service compositions
(orchestrations, orchestration engine and server). Therefore,
another consideration of analysis for service compositions
is that of deployment. We specifically consider service de-
sign, implementation and architecture configuration in the
analysis of deployment constraints. Constraints are imposed

by the configuration of resources, such as threadpools on
the orchestration host server. To facilitate verification of
service architectures and deployment environments our ap-
proach covered service composition analysis with resource
constraints [12], which takes UML2 Deployment Diagrams
(specifying orchestration processes, service hosts, servers and
resource threadpools) and can check whether the behaviour of
the processes collaborating on a particular configuration will
lead to an exhausted resource usage. The result of this analysis
is that design choices made in the architecture configuration
can introduce deadlock situations when the processes are
deployed for runtime.

B. Implementation in WS-Engineer

We have built an implementation of the analysis features
mentioned in this section as a plug-in to Eclipse. The tool
extends our previous work (as we described in section II on
the tool LTSA-WS) by automating some of the tasks involved
in analysis. The Eclipse plug-in is known as ”WS-Engineer”
and allows the user to verify designs, implementations and
deployment models. Some features of the tool are fully au-
tomated, such as verifying orchestration processes (in WS-
BPEL) against a design specification in MSC or WS-CDL
specifications. WS-Engineer however, focuses largely only on
behaviour. To cover different areas of analysis we were keen to
extend the WS-Engineer environment as one of several tools
and create an overall service analysis environment. The result
was the creation of a analysis tool-chain approach, illustrated
in Figure 2.

C. Tool-Chain Integrated Analysis

In this section we have described some common analysis
features with reference to the behaviour of service com-
positions. Clearly, such analysis features may be required
to be undertaken either alone or as a sequence of actions.
We have developed an integration platform, known as the
SENSORIA Development Environment (SDE) which acts as
host for different analysis tools. These different types of
analysis tools effectively add a third dimension to the features
listed in table I. Thus, where we have described the ”Service-
Engineer” approach in terms of behaviour, there is also timing,
performance and other types of analysis which can be carried
out on service compositions. We believe that the SDE (fully
described in section V) will highly benefit the service engineer
in carrying out analysis features such as those described in this
section.

V. THE SENSORIA DEVELOPMENT ENVIRONMENT

The SENSORIA Development Environment (SDE) [13] is
a service modelling, development, and analysis platform built
into the industry-standard Eclipse IDE [14]. The aim of the
SDE is to provide the various tools required for developing
services in one consistent and integrated environment, offering
state-of-the-art research techniques in an easy-to-use fashion to
developers. Advantages of the SDE over other tool integration
platforms include: An SOA Architecture - The SDE itself

Fig. 2. Integrated Approach to Service Composition Analysis

is based on a Service-Oriented Architecture, allowing easy
integration of tools and querying the platform for available
functionality. The analysis tools hosted in the SDE are pre-
sented as discoverable, technology independent services. A
Focus On Usability - Sophisticated analysis tools are often
based on mathematical models and formal languages. To
allow developers to use such tools without requiring them to
understand the underlying formal semantics, the SDE employs
automated model transformations which translate between
high-level models and formal specifications, thus closing the
gap between those two worlds. A Composition Infrastructure
- As development of services is a highly individual process
and may required several steps and iterations, the SDE offers
a composition infrastructure which allows developers to define
commonly used workflows as an orchestration of other tools.

In the next sections, we will detail the SDE platform
and how it addresses the criteria outlined in section II. The
SDE and plug-ins, including the WS-Engineer tool are also
available for download at: http://www.sensoria-ist.eu.

A. Framework

The SDE is built on the Eclipse platform and its underlying
service-oriented OSGi framework [15]. It contains three core
features by which it extends the Eclipse platform, thus creating
a generic modelling, development and analysis environment:

Firstly, the SDE contains a registration and discovery service
in the spirit of a UDDI registry. Upon installation, a tool
is registered with its offered functionality in the form of
public API functions. The functions offered by each tool are
made available for querying and execution by the SDE core.
Secondly, the SDE allows scripting of all available functions,
which enables developers to create new tools with new public
API functions to be used like any other tool (i.e. the scripts
become services themselves). In this fashion, tools inside the
SDE may be combined on various levels with different com-
plexity. Scripts may be available from tool authors for bridging
the gaps between their tool and others, or may be written from
scratch by the users themselves. Figure 3 illustrates a script
between the WS-Engineer tool and PEPA tool for safety and
performance analysis of a WS-BPEL orchestration. Finally,
the SDE contains a generic infrastructure for working with
tool APIs. Through various integrated tools, the SDE currently
offers functionality which falls into three major categories:

Modeling Functionality: This includes graphical editors for
familiar modelling languages such as UML, as supported
by industry-standard tools such as the Rational Software

function checkBPEL(bpel) {
// transform BPEL to SRMC (input to srmc tool)
bpel2srmc = sCore.findToolById("bpel2srmc");
srmcCode = bpel2srmc.transform(bpel);
// perform analysis with PEPA/SRMC tool
srmc = sCore.findToolById("srmc");
markovChain = srmc.getMarkovChain(srmcCode);
distribution = srmc.getSteadyState(markovChain);
throughput = srmc.getThroughput(markovChain);
// back annotation
bpel2srmc.reflect(bpel, distribution, throughout);

// transform to LTSA FSP (input to WS-Engineer)
bpel2ltsa = sCore.findToolById("wsengineer");
ltsaCode = bpel2ltsa.bpel2fsp(bpel);
// perform analysis with WS-Engineer
wse = sCore.findToolById("wsengineer");
result = wse.analyse(ltsaCode);

trace = null;
if (result.hasErrors()) {

trace = ltsa.mscFromLTSATrace(result.trace);
}
// return results
results = [bpel, result, trace]
return results;

}

Fig. 3. JavaScript of two Analysis Tool Features (safety and performance)
in the SDE which can then be installed as a new Analysis Service

Architect, which allow for intuitive modelling on a high level
of abstraction. However, there are also text- and tree-based
editors for use by those users who have more rarefied tastes
and would prefer to express their models in a process calculus
instead of UML.

Model Transformation Functionality: The SDE offers au-
tomated model transformation from UML to Web Service
standards to process calculi (and back) to bridge the gap
between these worlds, thereby enabling users to stay on a
modelling level while still enjoying formal analysis methods.

Formal Analysis Functionality: Finally, the SDE offers
model checking and numerical solvers for stochastic methods
based on process calculi code defined by the user or generated
by model transformation.

Figure 4 shows an example of the SDE used for checking
the safety of a BPEL process. On the left hand side, the
SDE tool browser is shown which allows developers to access
the tool registry (Modeling Functions). In the top middle,
information about the tools discussed in section IV are shown
(Transformation and Analysis). Below the tool functions are
the results of analysis (in this case a graphical trace of a
violation in the BPEL process). The functionality available
through this API has been used for generating the output in
the lower parts with the BPEL process shown above as input.
The script, such as that described previously, can enact these
steps automatically.

B. Evaluation with Criteria

As an integrated platform for service development, the SDE
offers more than the sum of its tools: Through composition,
the combined tools offer more streamlined and easy-to-use
functionality, which is reflected in the evaluation of the criteria
discussed in section II.

Ease of Learning: Through automated model transforma-
tions, the SDE enables developers to stay within their mod-

elling language of choice and still enjoy formal analysis
support. The SDE contains tools for working with UML
models, converting these models to Web Service standards like
BPEL and WSDL or to process calculi. Through the scripting
interface, the model transformations and formal analysis can
be hidden; only the results from the analysis need to be shown.

Early Payback and Support for Evolutionary Development:
The tools available within the SDE are able to deal with
various kinds of input, for example high-level UML models
(which are available early in the development phase) or
specifications in Web Service standards (which might be a
starting point for re-engineering efforts and maintenance).
Thus, analysis functionality is available at each step in the
development process, including the very first ones.

Efficiency of Users Time: Through the ability for creating
tool orchestrations, the SDE offers to repeat several steps in an
analysis in an automated fashion, thus removing the need for
the user to manually click through a complicated and tedious
process themselves. Also, some of the tools offered within
the SDE perform their analysis on a server instead of the
client, which enables them to process models more swiftly
and asynchronously, thus adding to the overall efficiency of
development.

An Increase in Benefits: The SDE contains tools of various
levels of sophistication. Many offer both simple verifications
for checking basic functionality, but also complex analyses
which require more information from the developer in order
to be carried out. As the SDE is an open platform, tools may
be installed and used as appropriate, enabling the developer
to simply plug-in more complex tools as they grow more
experienced. Finally, through the orchestration mechanism,
more complex analyses can be included by means of simply
extending a script.

Error Detection: The SDE propagates error contexts
through tool API invocations and workflow. Through the
integrated model transformations, verification results can be
translated back to the input language of the user (e.g. UML),
thus allowing a single context of representation in tool use.

Integrated Use: The core function of the SDE framework
is to integrate both development environment and tool usage.
Available tools in the SDE share common models and transfor-
mations features to provide consistent source input and output.
These tools are chained together to present a single interface.
In addition, as the SDE is based on the Eclipse platform other
plug-ins available for this platform can be utilised.

VI. CONCLUSIONS

In this paper we have presented a brief background of
analysis tools for service compositions, and have discussed
a criteria for leveraging tools within integrated model-based
analysis environments. We also presented ’Service-Engineer’,
an approach which considers the main areas of service com-
positions and the analysis of different stages of develop-
ment. We believe our main contribution is to provide an
integrated analysis tool-chain development environment, and
we described the SENSORIA Development Environment in

Fig. 4. The Eclipse, SENSORIA Development Environment and Integrated Analysis Tools (such as WS-Engineer)

section V which provides a tool framework to orchestrate (as
scripts) analysis of service compositions using registered tool
services. Our future work will explore building these scripts
to perform composed analysis sets given different contexts of
service compositions. For example, a script may be executed
to verify the safety of service orchestration processes against
resource constraints, but also provide estimates of service
performance (e.g. response time) given the same architecture
configuration. Evolutionary development allows the engineer
to iteratively change parts of the service compositions repeat-
ing the analysis scripts and gaining a much richer insight in
to overall effectiveness of the design and implementation. The
authors are supported by the EU FET-IST Global Computing 2
project SENSORIA (IST-3-016004-IP-09). The original LTSA
tool was developed by Jeff Magee and Jeff Kramer of the
Department of Computing, Imperial College, London.

REFERENCES

[1] Alexandre Alves et al., “Web service business execution language (ws-
bpel) v2.0”, Oasis standard, OASIS, 2007.

[2] Nickolas Kavantzas et al., “The web service choreography description
language v1.0”, W3c recommendation, W3C, Nov. 2005.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based Verifi-
cation of Web Service Compositions”, in Proc. of the 18th IEEE Int.
Conference on Automated Software Engineering. 2003, pp. 152–161,
IEEE CS Press.

[4] J. Magee and J. Kramer, Concurrency - State Models and Java Programs
- 2nd Edition, John Wiley, 2006.

[5] Xiang Fu, Tevfik Bultan, and Jianswen Su, “Wsat: A tool for formal
analysis of web services”, in 16th International Conference on Computer
Aided Verification (CAV), Boston, MA, 2004.

[6] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel,
Marlon Dumas, and Arthur H. M. ter Hofstede, “Wofbpel: A tool for
automated analysis of bpel processes”, in ICSOC, 2005, pp. 484–489.

[7] Niels Lohmann, “A feature-complete Petri net semantics for WS-
BPEL 2.0 and its compiler BPEL2oWFN”, Informatik-Berichte 212,
Humboldt-Universität zu Berlin, Aug. 2007.

[8] Yi Qian, Yuming Xu, Zheng Wang, Geguang Pu, Huibiao Zhu, and
Chao Cai, “Tool support for bpel verification in activebpel engine”, in
The Australian Software Engineering Conference (ASWEC), Melbourne,
Australia, April 2007.

[9] IBM Corp, Best Practices for Using Websphere Business Modeller and
Monitor (REDP-4159-00), IBM RedBooks, 2006.

[10] Jeannette Marie Wing Edmund Clarke, Formal methods : state of the
art and future directions, Pittsburgh, Pa. : School of Computer Science,
Carnegie Mellon University, 1996.

[11] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer, “Com-
patibility for web service choreography”, in 3rd IEEE International
Conference on Web Services (ICWS), San Diego, CA, 2004a, IEEE.

[12] Howard Foster, Wolfgang Emmerich, Jeff Magee, Jeff Kramer, David
S. Rosenblum, and Sebastian Uchitel, “Model Checking Service
Compositions under Resource Constraints”, in the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2007), 2007.

[13] Philip Mayer and Hubert Baumeister, “Report on the sensoria case tool
(d7.4b)”, Deliverable, EU Project Sensoria, Aug. 2007.

[14] Eclipse.org, “The eclipse open development platform v3.3”, 2008,
Available from: http://www.eclipse.org.

[15] OSGi Alliance, “Osgi specification rel.4”, 2007, Available from:
http://www2.osgi.org/Specifications/.

