
Service Engineering: The Sensoria Model Driven Approach

Martin Wirsing, Matthias Hölzl, Nora Koch, Philip Mayer, Andreas Schroeder
Institut für Informatik, Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 München, Germany

[wirsing, hoelzl, kochn, mayer, schroeda]@pst.ifi.lmu.de

Abstract

Service engineering and Service-Oriented
Architectures (SOAs) have recently been embraced by
both industry and research, as they promise high
reusability and maintainability, and a flexible
environment for future changes in business requirements
and workflows. In this paper, we present a model-driven
service engineering approach called the SENSORIA
Development Approach (SDA). The SENSORIA project has
developed a number of formal techniques that support
service engineering, e.g., quantitative or qualitative
analyses of service artifacts. The main contribution of the
SDA is the integration of these techniques in a process for
engineering service-oriented systems.

1. Introduction

The aim of the IST-FET project SENSORIA [1] is the

development of a novel comprehensive approach to the
engineering of service-oriented software systems where
foundational theories, techniques and methods are fully
integrated into pragmatic software engineering processes.

Within SENSORIA, a development approach for service
engineering has been developed which we call the
SENSORIA Development Approach (SDA). The SDA is
intended to support model-driven engineering by
including formal methods and tools at the appropriate
steps, thus building a formally underpinned development
approach. The SDA is discussed in section 2.

The SENSORIA Development Approach is tool-
supported: All tools are integrated into a common
integration platform, the SENSORIA Development
Environment (SDE), which is described in section 3.

We conclude in section 4.

2. The Sensoria Development Approach

The SENSORIA Development Approach (SDA) follows
the patterns described in the OMG’s Model Driven
Architecture [2], which is “an approach to using models
in software development” [3]. The SDA, like MDA,
builds computational independent models (CIMs),
platform independent models (PIMs) and platform
specific models (PSMs). In addition, the SDA contributes

formal methods, notations, and tools to the engineering
process. Figure 1 gives an overview of the SDA approach.

Figure 1: The SDA Approach

As can be seen in the figure, the first point of interest
is building the business model. The requirements
engineering approach Tropos [4] has been selected for
building the CIM business model. Tropos is well suited
for requirements analysis of services as it allows for a
uniform treatment not only of the system functional
requirements, but also of its non-functional requirements.
It can easily be integrated in the proposed approach, as
Tropos is a model-based and transformational approach.

A Tropos characteristic is to distinguish between early
and late requirements engineering. The early requirements
analysis is concerned with the understanding of a problem
evaluating organizational aspects. The result achieved in
this first stage is an organizational model including actors

and dependencies among them. The goal of the late
requirements analysis is the description of the operational
environment, i.e. the functionality of the system.

In the next step, we deal with service artifacts on a
platform independent level, defining, through UML
models, both the static and dynamic structure of the
service-oriented system. We employ the UML4SOA [5]
notation for modeling service artifacts, which has been
developed as part of the SENSORIA project. The
UML4SOA profile defines several stereotypes and
constraints for working with SOA artifacts. For example,
we extend UML activity diagrams with stereotypes for
modeling service orchestrations, in particular for service-
to-service communication (send, receive, among others)
for long running transactions (scopes, compensation
handlers, and primitives for invoking compensation), and
event handling.

Besides the usual benefits of graphical models – i.e.,
they are easy to create, understand, and can be used for
communicating with non-technical people – the
UML4SOA models also enjoy formal support by means
of analysis tools. WS-Engineer [6] is a tool for analyzing
the problem of engineering software components as
services and the interaction behavior between them in a
qualitative fashion. In particular, WS-Engineer focuses on
service process analysis for service interaction
verification and validation, service composition and
choreography obligations, and scenario-based synthesis of
service components. The techniques used are verification
on the one-hand, i.e. the question whether a model is built
correctly, analysis of properties of interest (deadlock,
liveness, fluent, etc.), and validation and simulation on the
other hand, i.e., the question of whether the system is the
right solution for the problem by animating models back
to designers.

The PEPA tool [7], along with the SENSORIA
Reference Markovian Calculus (SRMC), has the goal of
capturing non-functional properties, in particular
performance aspects, early in the life-cycle. Non-
functional properties are specified on UML models and
transformed into the stochastic process algebra PEPA for
analysis. Results of the analysis are back-annotated to the
models, or displayed in the form of graphs.

One of the benefits of model-driven approaches is the
fact that platform-dependent models, or at least parts of
them, can be generated from the platform-independent
models. In our case, transformers are available which
convert the platform-independent UML models into
platform-specific models of the target languages, which
can be serialized down to code.

The SENSORIA project includes various tools and
methods for transforming models. The VIATRA2 project
[8], for example, comes with a rule-based language for
specifying transformation between EMF [9] models. We
also have a Java-based transformation infrastructure
available [10] which has been developed specifically for

behavioral specifications (in particular, for service
orchestrations) and converts platform-independent input
models (in this case, UML) to an intermediate model
(called Intermediate Orchestration Model, or IOM), and
from there to Platform-Specific Models (PSMs).

The transformers currently handle the transformation
from UML to BPEL and WSDL files, to Java, and to the
formal language Jolie which has the backing of the SOCK
calculus [11].

3. The Sensoria Development Environment

In the previous section, we have reported on
methodologies and tools supporting the SENSORIA
Development Approach. In order to enable developers to
use those tools in combination in a coherent environment,
we have developed a specialized development
environment for service artifacts which offers service
modeling, analysis, and code generation functionality, the
SENSORIA Development Environment (SDE) [6]. The
SDE itself is based on a Service-Oriented Architecture,
allowing easy integration of tools and querying the
platform for available functionality. The tools hosted in
the SDE are presented as discoverable, technology-
independent services. As development of services is a
highly individual process and may require several steps
and iterations, the SDE offers a composition infrastructure
which allows developers to automate commonly used
workflows as an orchestration of other tools.

The SDE is based on Eclipse and its underlying OSGi
platform. As many tools in the greater area of service
orientation are available for Eclipse as well, the SDE-
enhanced Eclipse platform offers a pragmatic way of
adding formal methods to the development process.

4. Conclusion

With the number of systems built with Service-
Oriented Architectures (SOAs) on the rise, a rigorous
development process for such systems becomes
imperative. In this paper, we have presented the results of
the SENSORIA project on a development approach for
services, which we call the SENSORIA Development
Approach (SDA). The SDA supports a model-driven
approach to service engineering.

The main contribution of the SDA is the provision of
formal tools and methodologies to the engineering of
service-oriented software. In particular, we provide tools
with the backing of formal languages for both quantitative
and qualitative analyses of service artifacts.

It is our hope that the practices described in the
SENSORIA approach will find their way into mainstream
development processes such that all developers may profit
from the results in the more formal research areas of
computer science.

10. References

[1] M. Wirsing, A. Clark, S. Gilmore et al.,

"Semantic-Based Development of Service-
Oriented Systems". pp. 24–45, FORTE06, Paris,
France. 2006.

[2] OMG, "The Model Driven Architecture
(MDA)", http://www.omg.org/mda/, [2003]. Last
visited: 16.05.2008.

[3] OMG, "MDA Guide Version 1.0.1",
ftp://ftp.omg.org/pub/docs/omg/03-06-01.pdf,
[2003]. Last visited: 16.05.2008.

[4] L. Diana, and M. John, “Designing Web
Services with Tropos”, in Proceedings of the
IEEE International Conference on Web Services,
2004.

[5] P. Mayer, A. Schroeder, and N. Koch, "A
Model-Driven Approach to Service
Orchestration". Intl. Conference on Services
Computing (Short Paper, 4 pages), Honolulu,
USA. 2008.

[6] H. Foster, and P. Mayer, "Leveraging Integrated
Tools for Model-Based Analysis of Service
Compositions". Third International Conference

on Internet and Web Applications and Services
(ICIW 2008) Athens, Greece. 2008.

[7] M. Tribastone, "The PEPA Plug-in Project". pp.
53–54, 4th International Conference on the
Quantitative Evaluation of SysTems (QEST),
Edinburgh, Scotland. 2007.

[8] D. Varró, and A. Balogh, “The model
transformation language of the VIATRA2
framework”, Sci. Comput. Program., vol. 68, no.
3, pp. 214-234, 2007.

[9] Eclipse Foundation, "EMF: The Eclipse
Modeling Framework",
http://www.eclipse.org/emf, [2008]. Last visited:
28.04.2008.

[10] P. Mayer, A. Schroeder, and N. Koch, "The
UML4SOA Profile and Model Transformations",
http://www.uml4soa.eu/, [2008]. Last visited:
21.05.2008.

[11] F. Montesi, C. Guidi, and G. Zavattaro,
"Composing Services with Jolie". ECOWS’07,
Halle, Germany. 2007.

About the Author

Prof. Dr. Martin Wirsing
Institut für Informatik
Ludwig-Maximilians-Universität München

Martin Wirsing is Full Professor and Chair for Computer Science at Ludwig-
Maximilians-University of Munich, where he is also vice-chairman of the Senat.
His current research interests comprise software engineering for service-oriented
systems and for hypermedia applications and software development based on
formal methods. Currently he is the scientific co-ordinator of the Integrated EC
Project SENSORIA on semantic-based software development for service-oriented
computing. He is president of the scientific committee of INRIA France and
member of several other international scientific committees including University
of Nancy (France) and the John von Neumann Minerva Center for the
Development of Reactive Systems (Israel).

