
SENSORIA Patterns: Augmenting Service Engineering
with Formal Analysis, Transformation and Dynamicity?

Martin Wirsing1, Matthias Hölzl1, Lucia Acciai2, Federico Banti2, Allan Clark3,
Alessandro Fantechi2, Stephen Gilmore3, Stefania Gnesi4, László Gönczy5, Nora

Koch1, Alessandro Lapadula2, Philip Mayer1, Franco Mazzanti4, Rosario Pugliese2,
Andreas Schroeder1, Francesco Tiezzi2, Mirco Tribastone3, and Dániel Varró5

1 Ludwig-Maximilians-Universität München, Germany
2 Università degli Studi di Firenze

3 University of Edinburgh, Scotland
4 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” of CNR

5 Budapest University of Technology and Economics

Abstract. The IST-FET Integrated Project SENSORIA is developing a novel
comprehensive approach to the engineering of service-oriented software systems
where foundational theories, techniques and methods are fully integrated into
pragmatic software engineering processes. The techniques and tools of SEN-
SORIA encompass the whole software development cycle, from business and
architectural design, to quantitative and qualitative analysis of system proper-
ties, and to transformation and code generation. The SENSORIA approach takes
also into account reconfiguration of service-oriented architectures (SOAs) and
re-engineering of legacy systems.
In this paper we give first a short overview of SENSORIA and then present a
pattern language for augmenting service engineering with formal analysis, trans-
formation and dynamicity. The patterns are designed to help software developers
choose appropriate tools and techniques to develop service-oriented systems with
support from formal methods. They support the whole development process, from
the modelling stage to deployment activities and give an overview of many of the
research areas pursued in the SENSORIA project.

1 Introduction

Service-oriented computing is a paradigm where services are understood as au-
tonomous, platform-independent computational entities that can be described, pub-
lished, categorised, discovered, and dynamically assembled for developing massively
distributed, interoperable, evolvable systems and applications. These characteristics
have been responsible for the widespread success that service-oriented computing en-
joys nowadays: many large companies invest efforts and resources in promoting ser-
vice delivery on a variety of computing platforms, mostly through the Internet in the
form of Web services. Soon there will be a plethora of new services as required for
e-government, e-business, and e-science, and other areas within the rapidly evolving
Information Society.
? This work has been partially sponsored by the project SENSORIA, IST-2 005-016004.

However, service-oriented computing and development today is mostly done in a
non-systematic, ad-hoc way. Full-fledged theoretical foundations are missing, but they
are badly needed for trusted interoperability, predictable compositionality, and for guar-
anteeing security, correctness, and appropriate resource usage.

The IST-FET Integrated Project SENSORIA addresses the problems of service-
oriented computing by building, from first-principles, novel theories, methods and tools
supporting the engineering of software systems for service-oriented overlay computers.
Its aim is to develop a novel comprehensive approach to the engineering of service-
oriented software systems where foundational theories, techniques and methods are
fully integrated into pragmatic software engineering processes. The SENSORIA ap-
proach to service-oriented software development encompasses the whole development
process, from systems in high-level languages, to deployment and re-engineering, with
a particular focus on qualitative and quantitative analysis techniques, and automatic
transformation between different development artifacts.

However, the broad range and the depth of the methods developed as part of the
SENSORIA project means that it may be difficult for developers to identify the tech-
nique or tool that solves a particular problem arising in the development process, unless
the developers are familiar with the whole range of scientific results of the project. To
ameliorate this problem we are developing a catalogue of patterns that can serve as
an index to our results and that illustrates, in a concise manner, the advantages and
disadvantages of the individual techniques.

The structure of the paper is as follows: after a short overview of the SENSORIA
project we explain the reasons for using patterns to present the SENSORIA results. Pat-
terns are referenced in the usual format, with the pattern name followed by the page
number of the pattern in parenthesis, e.g., Service Modelling describes the pattern
named “Service Modelling” on page 6.

We then introduce several patterns ranging from the early design stage to deploy-
ment: Service Modelling, Service Specification and Analysis, Functional Service Ver-
ification, Sensitivity Analysis, Scalability Analysis, Declarative Orchestration, Declar-
ative Service Selection, and Model-Driven Deployment. The last section summarises
other results of the SENSORIA project and concludes.

2 The SENSORIA Project

SENSORIA is one of the three Integrated Projects of the Global Computing Initiative of
FET-IST, the Future and Emerging Technologies action of the European Commission.
The SENSORIA Consortium consists of 12 universities, three research institutes and
four companies (two SMEs) from seven countries6.

6 LMU München (coordinator), Germany; TU Denmark at Lyngby, Denmark; Cirquent GmbH
München, S&N AG, Paderborn (both Germany); Budapest University of Technology and Eco-
nomics, Hungary; Università di Bologna, Università di Firenze, Università di Pisa, Università
di Trento, ISTI Pisa, Telecom Italia Lab Torino, School of Management Politecnico di Milano
(all Italy); Warsaw University, Poland; ATX Software SA, Lisboa, Universidade de Lisboa
(both Portugal); Imperial College London, University College London, University of Edin-
burgh, University of Leicester (all United Kingdom).

Fig. 1. SENSORIA approach: high-level models in UML4SOA are transformed into mathemat-
ical models based on the foundational calculi; qualitative and quantitative analsys can then be
performed on these models.

2.1 The SENSORIA Approach

SENSORIA is focusing on global services that are context adaptive, personalisable, and
may require hard and soft constraints on resources and performance, and takes into
account the fact that services have to be deployed on different, possibly interoperating,
platforms, to provide novel and reusable service-oriented systems.

To this end, SENSORIA is generalising the concept of service in such a way that

– it is independent from the particular global computer and from any programming
language;

– it can be described in a modular way, so that security issues, quality of service
measures and behavioural guarantees are preserved under composition of services;

– it supports dynamic, ad-hoc, “just-in-time” composition;
– it can be made part of an integrated service-oriented approach to business mod-

elling.

The results of SENSORIA include a comprehensive service ontology, and mod-
elling languages for service-oriented systems based on UML [32] and SCA [21,40]. We
have also defined a number of process calculi for service-oriented computing, such as
SCC [6], a session-oriented general purpose calculus for service description; Sock [26],
a three layered calculus inspired by the Web Services protocol stack; and COWS [30],
the Calculus for the Orchestration of Web Services.

These foundational process calculi serve as a base for higher-level formalisms to
specify and analyse service-oriented systems, such as process calculi and languages for
coordination, quality of service and service-level agreements [10,13], or type systems
for services, e.g., for data exchange [31] or resource usage [3].

Fig. 2. SENSORIA tools, see [39] for the current list.

SENSORIA is also addressing the important areas of languages, frameworks, tools
and techniques for qualitative and quantitative analysis. Qualitative analysis methods
are successfully applied, e.g., to the areas of cryptography, security and trust [4,35,37],
whereas calculi, logics and methods for quantitative analysis such as StoKlaim [16],
MoSL [15], and PEPA [27] can be used in areas such as scalability or performance
analysis [7].

Further work of SENSORIA concerns service contracts for checking the compliance
of protocols and for automatic discovery and composition [8,9], new techniques for
specifying and verifying the dynamic behaviour of services, including spatial logics
and the verification of fault-tolerant systems [11,25], and programming- and modelling-
level approaches to software architectures [22].

Moreover, SENSORIA is proposing a model-driven approach for service-oriented
software engineering [41,32] that starts from high-level specifications in languages like
SRML or UML4SOA and uses model transformation techniques [17,2] to generate both
suitable input for the analysis tools, and executable services.

The development of mathematical foundations and mathematically well-founded
engineering techniques for service-oriented computing constitutes a main research part
of SENSORIA. Another important research direction focuses on making these founda-
tions available for designers and developers by creating systematic and scientifically
well-founded methods of service-oriented software development (cf. Fig. 1). The pro-
posed approach is to build high-level models, e.g., in UML4SOA which can then be
transformed into mathematical models based on the foundational calculi. Because of
the precise definition of these calculi it is then possible to perform qualitative and quan-
titative analysis on the transformed models in order to gain valuable information about
the quality, security, and performance of the system in the early stages of system de-
velopment. Since the results of static analysis are transformed into annotations for the
original high-level model, the designer does not have to be concerned with the for-
malisms used in the analysis process.

To facilitate the practical application of the results, SENSORIA is developing a
service-based suite of tools (cf. Fig. 2) that support the new language primitives, the

Q
u

al
it

at
iv

e
an

d
Q

u
an

ti
ta

ti
ve

 A
n

al
ys

is

Service-Oriented Modeling

Model-driven
Development

R
e-

En
gi

ne
er

in
g

Le
ga

cy
 S

ys
te

m
s

Core Calculi for Service Computing

Model-driven
Deployment

Legacy System Global ComputerGlobal Computer

Fig. 3. SENSORIA research themes

analysis techniques, re-engineering of legacy software into services [14] and other as-
pects of service development and deployment [23,34]. The tool suite gives continuous
feedback on the usefulness and applicability of the research results; it is also a starting
point for the design of new industrial support tools for service-oriented development.

Another main element of SENSORIA is the set of realistic case studies for differ-
ent important application areas including telecommunications, automotive, e-university,
and e-business. Most of the case studies are defined by the industrial SENSORIA part-
ners to provide continuous practical challenges for the new techniques of Services En-
gineering and demonstrate the research results.

The interplay of the different research themes and activities of SENSORIA are illus-
trated in Fig. 3: Service-oriented modelling provides specifications and models which
are transformed by model-driven development into the core calculi for service comput-
ing. Model-driven deployment is used for implementing services on different platforms.
Legacy systems can be transformed into services using systematic re-engineering tech-
niques. Qualitative and quantitative analysis back the service development process and
provide the means to guarantee functional and non-functional properties of services and
service aggregates.

The impact of SENSORIA on the development of services will be to bring mathemat-
ically well-founded modelling technology within the reach of service-oriented software
designers and developers. By offering these techniques and tools, we hope to allow
adopters to move to a higher and more mature level of SOA software development.
In particular, we hope to contribute to an increased quality of service of SOA applica-
tions, measured both in qualitative and quantitative terms. As SENSORIA methods are
portable to existing platforms, application of these methods is possible while keeping
existing investments.

2.2 A Pattern-Based Approach to Service Engineering

The SENSORIA project is investigating many issues of engineering SOAs. One of the
challenges is to make the research results available in a way that is useful not only as the
basis for future research but also for software developers seeking to apply the research
results. To this end we are developing a pattern language that describes which problems
are addressed by the various SENSORIA tools and techniques, how they solve the prob-
lems they address, and which forces determine whether a technique is appropriate for a
given situation or not.

The SENSORIA patterns are not limited to implementation issues, they encompass
a wide range of abstraction levels, from implementation-oriented patterns in the spirit
of [24] to architectural or process patterns. We structure the patterns in a way that ap-
proximately follows the “Pattern Language for Pattern Writing” presented in [33], but
add some pattern elements that seem to be helpful for describing patterns specifically
related to service-oriented software engineering. For readers familiar with the pattern
community, it should be noted that we use the pattern format as an expository tool; our
patterns are not necessarily obtained by “mining” existing applications for patterns.

Several elements have to be contained in each pattern: a pattern name; a context
in which the pattern is applicable; a concise description of the problem solved by the
pattern; the forces that determine the benefits and drawbacks of using the pattern; the
solution proposed and the consequences resulting from the use of the solution. Further-
more each pattern has to be accompanied by examples. Several optional sections can
be used to clarify the pattern, e.g., related patterns, code or model samples, or tools to
support the pattern. For space reasons we have omitted some of the mandatory elements
from some of the patterns in this paper.

3 Service Modelling

Context. Systems built on SOAs add new layers of complexity to software engineer-
ing, as many different artifacts must work together to create the sort of loosely coupled,
adaptive, fault-tolerant systems envisioned in the service domain. It is therefore impor-
tant to apply best practices already in use for older programming paradigms to services
as well; in particular, modelling of systems on a higher level of abstraction should be
used to get a general idea of the solution space. Modelling services should be possible
in a language which is both familiar to software architects and thus easy to use, but also
contains the necessary elements for describing SOA systems in a straightforward way.

You are designing a system which is based on a SOA. The system is intended to
offer services to multiple platforms and makes use of existing services and artifacts
on multiple hosts which must be integrated to work together in order to realise the
functionality of the system.

Problem. When designing SOA systems, it is easy to get lost in the detail of technical
specifications and implementations. Providing an overview of the service oriented ar-
chitecture to realise is therefore crucial for effective task identification, separation, and
communication in large projects. In this context, using a familiar, easy-to-understand,
and descriptive language is a key success factor.

Forces.

– The amount of specifications and platforms in the SOA environment makes it diffi-
cult to get a general idea of the solution space.

– Modelling the whole system in an abstract way gives a good overview of the tasks to
be done, but does not directly yield tangible results. For small systems and projects,
it is necessary to tailor this modelling task or even to skip it altogether.

– The model must be updated to reflect the architecture if it changes during imple-
mentation, or new requirements appear.

– The model is platform independent, and may be used to generate significant parts
of the system. In case the system’s target platform is not fixed or may experience
changes, the workload involved in system re-implementation can be reduced con-
siderably.

– Having a global architectural view eases the task of understanding the SOA envi-
ronment considerably. This fact is of major significance if the SOA environment is
to be extended by another team of software engineers or at a later date.

– The envisioned target platform(s) and language(s) should be supported by the mod-
elling approach such that code generation may be used.

Solution. Use a specialised (graphical) modelling language to model the system and
employ these models as far as possible for generating the system implementation.
There are several languages which might be employed for this kind of task. One of
the most widespread languages in the software engineering domain for modelling tasks
is the Unified Modelling Language (UML). As UML itself however does not offer
specific constructs for modelling service-oriented artifacts, it needs to be extended us-
ing its built-in profile mechanism. One profile for service oriented architectures is the
UML4SOA profile [32], which enables modelling of both the static and the dynamic
aspects of service-oriented systems. UML4SOA features specialised constructs for ser-
vices, service providers and descriptions in its static part, as well as service interactions,
long-running transactions, and event handling in its dynamic part. UML4SOA is also
part of a model driven development approach for SOA, MDD4SOA, which in turn of-
fers tools for generating code from UML4SOA models.

Consequences. A positive result of modelling a service-oriented system in a high-level
way is that it gives a better idea of how the individual artifacts fit together. This is
of particular importance in larger projects and for communication between developers
and/or the customer. By using transformations, the models can also be employed for
generating skeletons to fill with the actual implementation. However, the effort involved
in creating readable models should not be underestimated. Also, care should be taken to
only model aspects relevant on the design level instead of implementing the complete
system on the modelling level.

A problem arising when specifying systems by models and applying model transfor-
mations to generate implementation fragments is the problem of model/implementation
divergence. Therefore, special care must be taken that models are kept consistent with
the implementation.

Fig. 4. UML4SOA activity diagram example

Tools. The use of a UML profile has the advantage that all UML CASE tools that
support the extension mechanisms of the UML can be used, i.e. there is no need for
the development of specific and proprietary tools. The UML4SOA profile may be pro-
vided already for the UML tool of choice, or may be defined by the means provided
by the platform. In the SENSORIA project, the UML4SOA profile was defined for the
Rational Software Modeler (RSM) and MagicDraw. MDD4SOA provides executable
transformations for models from both UML tools to code skeletons of various target
platforms, including the Web service platform and the Java platform. The transformers
are integrated into the Eclipse environment.

Example. We illustrate the process by modelling an excerpt of a service-oriented eU-
niversity system: the management process of a student thesis, which is specified from
the announcement of a thesis topic by a tutor to the final assessment and student notifi-
cation. Figure 4 shows part of the orchestration process, namely the registration of the
thesis and the compensation in case of cancellation.

The UML2 activity diagram shows several stereotypes from the UML4SOA profile:

– A scope is a UML StructuredActivityNode that contains arbitrary ActivityNodes,
and may have an associated compensation handler.

– Specialised actions have been defined for sending and receiving data. In particular,
a send is an UML CallBehaviourAction that sends a message; it does not block.
A receive is a UML AcceptCallAction, receiving a message, which blocks until a
message is received.

– Service interactions may have interaction pins for sending or receiving data. In
particular, lnk is an UML Pin that holds a reference to the service involved in the
interaction, snd is a Pin that holds a container with data to be sent, and rcv is a Pin
that holds a container for data to be received.

– Finally, specialised edges connect scopes with handlers. For example, compensa-
tion is a UML ActivityEdge to add compensation handlers to actions and scopes.

Our profile also contains elements for event- and exception handling; they are not
included here for lack of space. For a complete overview see [32].

4 Service Specification and Analysis

Context. You are designing a service-oriented system that has to operate in an open-
ended computational environment. The system is supposed to rely on autonomous and
possibly heterogeneous services, hence different services may be implemented by dif-
ferent languages. Information about actual implementation of some services may be not
accessible and only the services interactive behavior is known.

Problem. Specify a service-oriented system and verify that it guarantees some desirable
behavioural properties.

Forces.

– Process calculi have been proved able to define clean semantic models and lay
rigorous methodological foundations for service-based applications and their com-
position.

– Process calculi enjoy a rich and elegant meta-theory and are equipped with a large
set of analytical tools, such as e.g. typing systems, behavioural equivalences and
temporal logics, that support reasoning on process specification.

– The additional cost and development effort incurred by using process calculi is only
justified for systems with particularly high quality or security requirements.

– The use of process calculi requires highly trained personnel.

Solution. Use a service-oriented process calculus for formally specifying the system
under consideration. Analyse the formal specification of the system by using suitable
analytical tools.

Consequences. Process calculi, being defined algebraically, are inherently composi-
tional and, therefore, convey in a distilled form the paradigm at the heart of service-
oriented computing. On the other hand, a formal specification of service-oriented sys-
tems based on process calculi permits using powerful analysis tools to guarantee rele-
vant properties.

Various kinds of typing systems, behavioural equivalences and temporal logics can
be defined in order to deal with specific aspects of service-oriented systems. Thus, from
time to time, the appropriate kind of reasoning mechanisms to work with should be
chosen/defined depending on the property one intends to guarantee. As an example,
to ensure that a system respects the expected behaviours, type systems can work in a
complete statical manner or combine static and dynamic checks.

On the negative side, an analytical tool designed for a process calculus, in general,
cannot be directly applied to a different one but has to be properly tailored.

Example. Two examples of process calculi suitable for modelling service-oriented sys-
tems are CaSPiS [5] and COWS [28]. Two classes of properties that, for example, can
be verified on top of specifications defined by using the above calculi are progress (e.g.
a client does not get stuck because of inadequate service communication capabilities)
and confidentiality (e.g. critical data can be accessed only by authorised partners). Both
properties can be verified by using the type systems introduced in [1], for CaSPiS, and
in [29], for COWS, respectively.

Consider now a bank account service scenario where a client can ask for his bal-
ance. Specifically, upon receiving a balance request, the bank account service waits
for the client’s credentials and sends either the requested balance or an error message,
depending on the validity of the credentials.

Code Example. Consider the following CaSPiS specification of the scenario:

BA= bank account.(c : credts).if is valid(c) then 〈balance〉 else 〈err〉
C = bank account.〈cred〉.

(
(b : int). ↑ 〈true, b〉 + (e : err). ↑ 〈false, 0〉

)
Sys= C |BA

where err is a message with associated type err and the validity of credentials is
checked by means of an auxiliary function, is valid, that is private to the service
bank account.

According to the safety result in [1], client progress is guaranteed in Sys. Indeed,
supposing that bank account has associated type ?credts.(τ. !int + τ. !err), it can be
inferred that client C is well-typed. More precisely, C’s protocol has associated type
!credts.(?int + ?err), which is compliant with bank account’s type. Therefore, the
whole system Sys is well-typed.

Consider now the new system Sys′ defined below, where client C ′ does not comply
with bank account communication protocol:

C ′ = bank account. 〈cred〉. (b : int). ↑ 〈true, b〉
Sys′ = C ′ |BA .

C ′’s protocol has associated type !credts.?int, which clearly does not comply with
bank account’s type. Therefore, client progress is not guaranteed in Sys′. Actually,
Sys′ can reduce to [(b : int). ↑ 〈true, b〉|||〈err〉], where client protocol (b : int). ↑
〈true, b〉 is stuck.

The same scenario can be specified by using COWS as follows:

BA= ∗ [xclient, xcredts] bank account • balance req?〈xclient, xcredts〉.
[p, o] (p • o!〈is valid(xcredts)〉

| p • o?〈true〉. xclient • balance resp!〈balance〉
+ p • o?〈false〉. xclient • balance resp!〈err〉)

C = bank account • balance req!〈client, cred〉 | [x] client • balance resp?〈x〉
Sys= C | BA .

The type system for COWS introduced in [29] permits expressing and forcing poli-
cies regulating the exchange of data among interacting services and ensuring that, in

that respect, services do not manifest unexpected behaviours. This permits checking
confidentiality properties, e.g., that client credentials are shared only with the bank ac-
count service. The types can be attached to each single datum and express the policies
for data exchange in terms of sets of partners that are authorised to access the data.
Thus, the credentials cred, communicated by C to BA, gets annotated with the policy
{bank account}, that allowsBA to receive the datum but prevents it from transmitting
the datum to other services. The typed version of C is defined as follows

bank account • balance req!〈client, {cred}{bank account}〉
| [x] client • balance resp?〈x〉

Once the static type inference phase ends, theBA’s variable xcredts gets annotated with
the policy {bank account}, which means that the datum that dynamically will replace
xcredts will be used only by the partner bank account. In this way, the communication
can safely take place.

Suppose instead that serviceBA (accidentally or maliciously) attempts to reveal the
credentials through some “internal” operation such as pint • o!〈{xcredts}r〉, for some
set r such that pint ∈ r. Then, as result of the inference, we would get declaration of
variable xcredts annotated with r′, for some set r′ such that r ⊆ r′. Now, the commu-
nication would be blocked by a runtime check because the datum sent by C would be
annotated as {cred}{bank account} while the set r′ of the receiving variable xcredts is
such that pint ∈ r ⊆ r′ 6⊆ {bank account}.

Related Patterns. The Functional Service Verification pattern is often useful to verify
services specified according to this pattern.

5 Functional Service Verification

Context. You are designing a service-oriented system that has to operate in an open-
ended computational environment. The system should perform its tasks and should not
manifest unexpected behaviours in each state of the environment.

Problem. Current software engineering technologies for service-oriented systems re-
main at the descriptive level and do not support formal reasoning mechanisms and ana-
lytical tools for checking that systems enjoy desirable properties.

Forces.
– The functionalities required of a service must be verified at design time.
– Properties to be insured by services should be expressed at a higher level of abstrac-

tion and therefore be independent from the technical details of the implementation.
– Logics have been since long proved able to reason about complex software sys-

tems as service-oriented applications are. In particular temporal logics have been
proposed in the last twenty years, as suitable means for specifying properties of
complex systems owing to their ability of expressing notions of necessity, possibil-
ity, eventuality, etc.

– The additional cost and development effort incurred by verification may only be
justified for systems with particularly high quality or security requirements.

– Logic-based verification can only be performed by highly qualified developers.

Solution. Use a logical verification framework for checking functional properties of
services by abstracting away from the environments in which they are operating. In
particular, specify the properties of interest by using a temporal logic capable of captur-
ing specific aspects of services, e.g. the logic SocL [20]. Define a formal specification
of the system under consideration by using a process calculus, e.g. COWS [28], and, on
top of this specification, define more abstract views by appropriately classifying system
actions. Finally, verify the formulae over the abstract views of the system by using a
model checker, e.g. the on-the-fly model checker CMC [20].

Consequences. The fact that the verification of properties is done over the abstract
views of the system has many important advantages. On the one hand, it enables defin-
ing and working with many different abstract views of a system, thus reducing the
complexity of the model of the system to be analysed. On the other hand, it enables
defining service properties in terms of typical service actions (request, response, can-
cel, . . .) and in a way that is independent of the actual specification of the service, both
with regards to the process calculus used and with regards to the actual actions’ names
used in the specification. As a further consequence, it permits to identify classes of
functional properties that services with similar functionalities must enjoy.

Example. Consider the following general properties that express two desirable at-
tributes of services:

– responsiveness: the service under analysis always guarantees a response to each
received request;

– availability: the service under analysis is always capable to accept a request.

Consider now a bank service scenario where a client can charge its credit card with
some amount. Specifically, consider a client that tries to charge his credit card 1234
with two different amounts, Euros 100 and 200, by performing two requests in paral-
lel. An abstract view of the above system can be obtained by properly identifying the
system actions corresponding to requests, responses and failure notifications of the in-
teraction between the bank service and the client, and by specifying the system states
where the service is able to accept a request. This way, the two general properties can
be verified over the abstract system specification.

Code Example. The two properties presented in the previous section can be expressed
as SocL formulae as follows:

– responsiveness: AG(accepting_request(charge))
– availability: AG[request(charge,$id)]

AF{response(charge,%id)
or fail(charge,%id)} true

where charge indicates the interaction between the bank service and the client, while
the variable id is used to correlate responses and failure notifications to the proper
accepted requests.

A COWS specification of the scenario is

let
Bank = * [CUST] [CC] [AMOUNT] [ID]

bank.charge?<CUST,CC,AMOUNT,ID>.
[p#][o#] (p.o!<>

| p.o?<>. CUST.chargeOK!<ID>
+ p.o?<>. CUST.chargeFail!<ID>)

Client = bank.charge!<client,1234,100,id1>
| (client.chargeOK?<id1>.nil

+ client.chargeFail?<id1>.nil)
| bank.charge!<client,1234,200,id2>

| (client.chargeOK?<id2>.nil
+ client.chargeFail?<id2>.nil)

in
Bank() | Client()

end

Once prompted by a request, the service Bank creates one specific instance to serve
that request and is immediately ready to concurrently serve other requests. Two differ-
ent correlation values, id1 and id2, are used to correlate the response messages to the
corresponding requests. Notably, for the sake of simplicity, the choice between approv-
ing or not a request for charging the credit card is here completely non-deterministic.
An abstract view of the system can be obtained by applying the following rules:

Abstractions {
Action charge<*,*,*,$1> -> request(charge,$1)
Action chargeOK<$1> -> response(charge,$1)
Action chargeFail<$1> -> fail(charge,$1)
State charge -> accepting_request(charge)

}

The first rule prescribes that whenever the concrete actions bank.charge!<cli
ent,1234,100,id1> and bank.charge!<client,1234,200,id2> are ex-
ecuted, then they are replaced by the abstract actions request(charge,id1) and
request(charge,id2), respectively. Variables “$n” (with n natural number) can
be used to defined generic (templates of) abstraction rules. Also the wildcard “*” can be
used for increasing flexibility. The other rules act similarly. Notably, communications
internal to the bank service are not transformed and, thus, become unobservable.

Related Patterns. The Service Specification and Analysis pattern is often useful to
specify services that should be verified.

Tools. The tool CMC can be used to prove that the bank service specified above
exhibits the desired characteristics to be available and responsive. A prototypical
version of CMC can be experimented via a web interface available at the address
http://fmt.isti.cnr.it/cmc/.

6 Sensitivity analysis

Context. You are analysing a service-oriented system in order to identify areas where
the system performance can be improved with relatively little effort. There are many po-
tential ways in which the system can be modified including optimising software com-
ponents, purchasing new hardware or infrastructure, re-deploying existing hardware
resources for other purposes, and many other possibilities.

Problem. Identify a low-cost method of improving system performance.

Forces.

– The impact of changes on system performance can be hard to predict. Improving the
efficiency of one component will not necessarily lead to an improvement overall.
Optimisations which are applied in the wrong place may even lead to the overall
performance being reduced.

– Some changes are expensive, others cheap. One change might require replacing a
large part of the communication network, another might require rewrites of com-
plex software, whereas one might require only reducing a delay such as a timeout.

– Given the many possible changes one could make it is infeasible to try each of them
and compare the relative increase (or decrease) in performance.

Solution. Develop a high-level quantitative model of the service and experiment on
the model in order to determine the changes which have the greatest positive impact.
Of these, identify those which can be implemented with lowest cost, and carry out
this implementation. The quantitative model can be evaluated using a modelling tool
such as a simulator or a Markov chain solver computing the transient and passage-
time measures which relate to user-perceived performance, together with the use of
parameter sweep across the model to vary activity rates.

Consequences. The analysis has the potential to identify useful areas where optimisa-
tions can be applied. The numerical evaluation may be long-running but it is entirely
automatic. The quantitative evaluation has the potential to generate many analysis re-
sults which need to be considered and assessed by a domain expert.

Example. This pattern is applied in [13] to investigate an automotive accident assis-
tance service. A framework for experimentation and analysis allows many instances
of a Markov chain solver to be executed and the results combined to identify how the
service can most easily meet its required service-level agreement.

Related Patterns. The Service Specification and Analysis pattern is complementary in
the sense that it uses similar methods to analyse behaviour.

Tools. The SENSORIA Development Environment hosts formal analysis tools which
allow service engineers to perform parameter sweep across models of services ex-
pressed in the PEPA process algebra [27]. The PEPA model is automatically compiled
into a continuous-time Markov chain and passage-time analysis is performed using the
ipclib analysis tools [12].

7 Scalability analysis

Context. You are a large-scale service provider using replication to scale your service
provision to support large user populations. You need to understand the impact on your
service provision of changes in the number of servers which you have available or
changes in the number of users subscribed to your service.

Problem. Understanding the impact of changes on a large-scale system.

Forces.

– Large user populations represent success: this service is considered by many people
to be important or even vital. Scale of use is a tangible and quantifiable measure of
value and being able to support large-scale use is an indicator of quality in planning,
execution and deployment in service provision. Maintaining a large-scale system
attracts prestige, attention and acclaim.

– Large user populations represent heavy demand. The service must be replicated in
order to serve many clients. Replication represents cost in terms of hosting provi-
sion, hardware and electricity bills. Service providers would like to reduce service
provision while continuing to serve large user populations.

– Modelling would help with understanding the system but large-scale systems are
difficult to model. Conventional discrete-state quantitative analysis methods are
limited by the the size of the probability distribution vector across all of the states
of the system. Discrete-state models are subject to the well-known state-space ex-
plosion problem. It is not possible simply to use a very large Markov chain model
to analyse this problem.

Solution. Develop a high-level model of the system and apply continuous-space anal-
ysis to the model. A continuous-space model can make predictions about a large-scale
system where a discrete-state model cannot.

Consequences. TO DO

Related Patterns. The Sensitivity Analysis pattern is closely related in that it is possible
to use the parameter sweep employed there to perform dimensioning for large-scale
systems (i.e. determining whether a planned system has enough capacity to serve an
estimated user population).

Tools. The SENSORIA Development Environment hosts analysis tools which allow ser-
vice engineers to perform continuous-space analysis on models expressed in the PEPA
process algebra [27]. The PEPA model is automatically compiled into a set of coupled
ordinary differential equations and the initial value problem is evaluated using numeri-
cal integration. This predicts the number of users in different states of using the service
at all future time points. Static analysis, compilation and integration are performed us-
ing the PEPA Eclipse Plug-in Project [36].

8 Declarative Orchestration

Context. You are designing a service-oriented system that has to operate in an open-
ended, changing environment in which the presence of certain services cannot be guar-
anteed. The system should perform its tasks to the maximum extent possible in each
state of the environment, possibly by utilising features of the environment that were not
present when the system was designed.

Problem. Design a service-oriented system that can operate in an open-ended, changing
environment.

Forces.

– A pre-determined orchestration of services cannot adapt to significant, unforeseen
changes in the environment.

– Specifying orchestrations for all possible changes is not feasible in some environ-
ments.

– Not having a pre-determined orchestration makes it more difficult to reason about
the system.

– If the environment is too different from the one for which a system was originally
designed it may no longer be possible to fulfil the system’s function.

– Services have to provide a rich semantic description to be usable for declarative
orchestrations.

Solution. Define an ontology for the problem domain that is rich enough to capture the
capabilities of services. Specify the results of combining several services in a declar-
ative manner, e.g., as plan components or logical implications. Use a reasoning com-
ponent such as an planner, model checker, or a theorem prover to create orchestrations
from these specifications and a description of the current environment.

Consequences. Declarative orchestrations can adapt to large changes in the environ-
ment without manual reconfiguration. They can easily incorporate information about
new kinds of services and use them to fulfil their tasks.

On the negative side, declarative orchestration depends on an expressive domain
model for which the reasoning process is often computationally expensive and time
consuming, and also on the availability of rich semantic descriptions of unknown ser-
vices. It is often difficult to control the behaviour of systems built on top of reasoning
components and to ensure their correctness.

Related Patterns. Unless the environment is extremely unpredictable, a system de-
signed according to Declarative Service Selection can often satisfy similar requirements
while remaining easier to understand and analyse.

9 Declarative Service Selection

Context. You have designed an orchestration for a service-oriented system. During run-
time, a number of services with similar functionality but different cost, reliability and
quality trade-offs are available that can fulfil the requirements of the orchestration.

Problem. Find an optimal combination of services, taking into account the current
situation and user preferences.

Forces.

– The functionality required of the services is determined by the orchestration.
– The services available at run-time are not known during design-time.
– Different services with the same functionality can be differentiated according to

other Quality of Service metrics.

Solution. Define a context-aware soft-constraint system that ranks solution according
to their quality. Model user preferences using a partial order between the criteria de-
scribed by individual soft constraints when possible, otherwise build a more complex
mapping from the values of individual constraints to an overall result that describes
the user preferences. A soft-constraint solver can the compute the optimal combination
of services or a “good enough” combination of services computable in a certain time
frame.

Consequences. The specification of the problem can be given without reference to a
solution algorithm, thus the communication with domain experts and users is simplified.
The computation of the quality of different combinations of services and the preference
given to each individual characteristic are decoupled from each other. A soft-constraint
solver provides a general mechanism to compute the desired combination of services.

On the other hand, the choice of evaluation functions is restricted by the theories that
the soft-constraint solver can process. A general-purpose mechanism such as a solver is
often less efficient than a well-tuned specialised implementation.

10 Model-Driven Deployment

Context. You are designing a service configuration where non-functional requirements
(security, reliable messaging, etc.) play an important role. Models are designed in UML
while the underlying standards-compliant platform have to be parametrised at a very
low abstraction level (e.g. using specific APIs or XML formats).

Problem. There is a big semantical gap between the modelling and deployment con-
cepts. Platforms and concepts are changing rapidly, interoperability is not guaranteed
between low level models.

Forces. A service configuration is typically designed in high level modelling languages
such as UML. The configuration of the underlying implementation platforms, however,
needs the deep technical knowledge of related standards and product specific know-
how. Services have to be redeployed, refactored and moved between runtime environ-
ments. Moreover, non-functional properties should be handled differently for different
classes of users. It should be avoided to have the service designer specify the detailed
technical requirements, he should rather work with predefined profiles.

Solution. We propose a multiple-step model driven workflow where separate model
transformations implement the PIM2PSM and PSM2code mappings, as defined in the
MDA approach. Services have to be modelled either in a specialised UML dialect or in a
Domain Specific Editor. First, relevant parts of the model are filtered out and stored in a
simplified representation format (neglecting e.g. tool-specific information). Then differ-
ent Platform Independent Models are created for the different aspects of non-functional
requirements, e.g. security, reliable messaging, component deployment, etc. Up to this
step, platform requirements do not affect the process. Platform Specific Models con-
tain implementation-specific attributes, taken from the PIM and predefined parameter
libraries. Finally, structured textual code (e.g. XML descriptors) is generated.

Consequences. The method has the potential to connect high level models to low level
runtime representations. Transformation chain targets server configurations with exten-
sions for reliable messaging and security.

Example. Examples are the UML4SOA for modelling, VIATRA2 framework for trans-
formation and Apache Axis (using Rampart and Sandesha modules) and IBM Web-
Sphere as relevant industrial platforms. The method is used in different scenarios of the
project.

Tools. The input of transformation is UML2 models in UML4SOA (designed e.g. in
Rational Software Architect (RSA)). The transformation is integrated in the SENSORIA
Development Environment while the output consist of descriptor files and client stubs.

11 Related Work

The idea of using patterns to describe common problems in software design and de-
velopment was popularised by the so-called “Gang of Four” book [24]. Since its pub-
lication a wide range of patterns and pattern languages for many areas of software
development has been published, see, e.g, the Pattern Languages of Programs (PLoP)
conferences and the associated Pattern Languages of Program Design volumes, or the
LNCS Transactions on Pattern Languages of Programming.

The area of patterns for SOA has recently gained a lot of attention, and several col-
lections of design patterns for SOA have been recently published or announced [19,38].
The article [18] provides a short introduction. However these patterns address more
general problems of SOA, while our patterns are focused on the formally supported
techniques provided by SENSORIA. Therefore, our patterns can serve as an extension
of, rather than as a replacement for, other pattern catalogues.

12 Conclusions and Further Work

In this paper, we have presented some results of the IST-FET EU project SENSORIA,
in the form of a pattern language. The patterns address a broad range of issues, such

as modelling, specification, analysis, verification, orchestration, and deployment of ser-
vices. We are currently working on systematising and extending the collection of pat-
terns in these areas, and we will also be developing patterns for areas which are not
currently addressed, e.g., business process analysis and modelling.

This pattern catalogue is a useful guide to the research results of the SENSORIA
project: as already mentioned in Section 2.1, we are investigating a broad range of
subjects and without some guidance it may not be easy for software developers to find
the appropriate tools or techniques.

However, the patterns presented in this paper only present a very brief glimpse at
the research of the SENSORIA project. Important research areas include a new gener-
alised concept of service, modelling languages for services based on UML and SCA,
new semantically well-defined modelling and programming primitives for services, new
powerful mathematical analysis and verification techniques and tools for system be-
haviour and quality of service properties, and novel model-based transformation and
development techniques. The innovative methods of SENSORIA are being demonstrated
by applying them to case studies in the service-intensive areas of e-business, automotive
systems, and telecommunications.

By integrating and further developing these results SENSORIA will achieve its over-
all aim: a comprehensive and pragmatic but theoretically well founded approach to
software engineering for service-oriented systems.

References

1. L. Acciai and M. Boreale. A Type System for Client Progress in a Service-Oriented Cal-
culus. In Concurrency, Graphs and Models, volume 5065 of Lecture Notes in Computer
Science, pages 642–658. Springer, 2008.

2. András Balogh and Dániel Varró. Advanced Model Transformation Language Constructs in
the VIATRA2 Framework. In ACM Symposium on Applied Computing — Model Transfor-
mation Track (SAC 2006), pages 1280–1287, Dijon, France, April 2006. ACM Press.

3. Massimo Bartoletti, Pierpaolo Degano, Gianluigi Ferrari, and Roberto Zunino. Types and
effects for Resouce Usage Analysis. Foundations of Software Science and Computation
Structures, FOSSACS’07, 4423, 2007.

4. Maurice H. ter Beek, Corrado Moiso, and Marinella Petrocchi. Towards Security Analyses of
an Identity Federation Protocol for Web Services in Convergent Networks. In Proceedings
of the 3rd Advanced International Conference on Telecommunications (AICT ’07). IEEE
Computer Society, Los Alamitos, CA, 2007.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured
Service Programming. In Proc. of Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS2008), volume 5051 of Lecture Notes in Computer Science, pages 19–38.
Springer, 2008.

6. Michele Boreale, Roberto Bruni, Luis Caires, Rocco De Nicola, Ivan Lanese, Michele Loreti,
Francisco Martins, Ugo Montanari, Antonio Ravara, Davide Sangiorgi, Vasco Vasconcelos,
and Gianluigi Zavattaro. SCC: a Service Centered Calculus. In M. Bravetti and G. Zavattaro,
editors, Proceedings of WS-FM 2006, 3rd International Workshop on Web Services and For-
mal Methods, volume 4184 of Lecture Notes in Computer Science, pages 38–57. Springer
Verlag, 2006.

7. Mario Bravetti, Stephen Gilmore, Claudio Guidi, and Mirco Tribastone. Replicating web
services for scalability. In G. Barthe and C. Fournet, editors, Proceedings of the Third Inter-
national Conference on Trustworthy Global Computing (TGC’07), volume 4912 of LNCS,
pages 204–221. Springer-Verlag, 2008.

8. Mario Bravetti and Gianluigi Zavattaro. A Theory for Strong Service Compliance. In Amy
L. Murphy andJan Vitek, editor, Proceedings of COORDINATION 2007, volume 4467 of
Lecture Notes in Computer Science, pages 96–112, Paphos, Cyprus, 2007. Springer.

9. Mario Bravetti and Gianluigi Zavattaro. Contract based Multi-party Service Composition.
In Farhad Arbab and Marjan Sirjani, editors, International Symposium on Fundamentals
of Software Engineering, International Symposium, FSEN 2007, Tehran, Iran, April 17-19,
2007, Proceedings, volume 4767 of Lecture Notes in Computer Science, Iran, Tehran, 2007.
Springer.

10. Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A Constraint-Based Language for Spec-
ifying Service Level Agreements. In R. De Nicola, editor, Proc. of the 16th European Sym-
posium on Programming (ESOP 2007), volume 4421 of Lecture Notes in Computer Science,
pages 18–32. Springer, 2007.

11. Vincenzo Ciancia and Gianluigi Ferrari. Co-Algebraic Models for Quantitative Spatial Log-
ics. In Quantitative Aspects of Programming Languages (QAPL’07), 2007.

12. Allan Clark. The ipclib PEPA Library. In Mor Harchol-Balter, Marta Kwiatkowska, and
Miklos Telek, editors, Proceedings of the 4th International Conference on the Quantitative
Evaluation of SysTems (QEST), pages 55–56. IEEE, September 2007.

13. Allan Clark and Stephen Gilmore. Evaluating quality of service for service level agreements.
In Luboš Brim and Martin Leucker, editors, Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, pages 172–185, Bonn, Germany, August
2006.

14. Rui Correia, Carlos Matos, Reiko Heckel, and Mohammad El-Ramly. Architecture migration
driven by code categorization. In Flavio Oquendo, editor, ECSA’07, volume 4758 of LNCS,
pages 115–122. Springer, 2007.

15. Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, Michele Loreti, and Mieke Massink.
Model checking mobile stochastic logic. Theor. Comput. Sci., 382(1):42–70, 2007.

16. Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, and Mieke Massink. STOKLAIM: A
Stochastic Extension of KLAIM. Technical Report 2006-TR-01, ISTI, 2006.

17. Karsten Ehrig, Gabriele Taentzer, and Dániel Varró. Tool Integration by Model Transforma-
tions based on the Eclipse Modeling Framework. EASST Newsletter, 12, June 2006.

18. Thomas Erl. Introducing soa design patterns. SOA World Magazine, 8(6), June 2008.
19. Thomas Erl. SOA Design Patterns. Prentice Hall/Pearson PTR, 2008. To appear.
20. Alessandro Fantechi, Stefania Gnesi, Alessandro Lapadula, Franco Mazzanti, Rosario

Pugliese, and Francesco Tiezzi. A model checking approach for verifying COWS speci-
fications. In J. L. Fiadeiro and P. Inverardi, editors, Proc. of Fundamental Approaches to
Software Engineering (FASE’08), volume 4961 of LNCS, pages 230–245. Springer, 2008.

21. José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A Formal Approach to Service Com-
ponent Architecture. Web Services and Formal Methods, 4184:193–213, 2006.

22. Howard Foster, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Towards Self-Management
in Service-oriented Computing with Modes. In Proceedings of Workshop on Engineering
Service-Oriented Applications (WESOA07), Vienna, Austria, Vienna, September 2007. Im-
perial College London.

23. Howard Foster and Philip Mayer. Leveraging integrated tools for model-based analysis of
service compositions. In In Proceedings of the Third International Conference on Internet
and Web Applications and Services (ICIW 2008), Athens, Greece, 2008. IEEE Computer
Society Press.

24. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

25. László Gönczy and Dániel Varró. Modeling of Reliable Messaging in Service Oriented
Architectures. In Proc. of the International Workshop on Web Services - Modeling and
Testing, 2006.

26. Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi Zavattaro.
SOCK: A Calculus for Service Oriented Computing. In Proceedings of ICSOC’06, volume
4294 of Lecture Notes in Computer Science, pages 327–338. Springer, 2006.

27. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

28. A. Lapadula, R. Pugliese, and F. Tiezzi. A Calculus for Orchestration of Web Services. In
Proc. of 16th European Symposium on Programming (ESOP’07), volume 4421 of Lecture
Notes in Computer Science, pages 33–47. Springer, 2007.

29. A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service oriented appli-
cations. In Proc. of IPM International Symposium on Fundamentals of Software Engineering
(FSEN’07), volume 4767 of Lecture Notes in Computer Science, pages 223–239. Springer,
2007.

30. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A Calculus for Orchestration
of Web Services. In R. De Nicola, editor, Proc. of 16th European Symposium on Program-
ming (ESOP’07), volume 4421 of LNCS, pages 33–47. Springer, 2007.

31. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. Regulating data exchange in
service oriented applications. In F. Arbab and M. Sirjani, editors, Proc. of IPM International
Symposium on Fundamentals of Software Engineering (FSEN’07), volume 4767 of LNCS,
pages 223–239. Springer, 2007.

32. Philip Mayer, Andreas Schroeder, and Nora Koch. A Model-Driven Approach to Service
Orchestration. In Proceedings of the IEEE International Conference on Services Computing
(SCC 2008), IEEE. IEEE, 2008.

33. G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern writing, 1996.
34. Arun Mukhija, Andrew Dingwall-Smith, and David S. Rosenblum. QoS-Aware Service

Composition in Dino. In Proceedings of the 5th European Conference on Web Services
(ECOWS 2007), Halle, Germany, Halle, Germany, 2007. IEEE Computer Society.

35. Flemming Nielson and Hanne Riis Nielson. A flow-sensitive analysis of privacy properties.
In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice,
Italy, pages 249–264. IEEE Computer Society, 2007.

36. Web site for the pepa eclipse plugin. http://homepages.inf.ed.ac.uk/
mtribast/plugin/download.html, last accessed 2008-06-24.

37. Christian W. Probst, Flemming Nielson, and René Rydhof Hansen. Sandboxing in myKlaim.
In The First International Conference on Availability, Reliability and Security, ARES 2006,
2006.

38. Arnon Rotem-Gal-Oz. SOA Patterns. Manning, 2009. To appear.
39. Tools integrated into the SENSORIA Development Environment. http://svn.pst.

ifi.lmu.de/trac/sct/wiki/SensoriaTools.
40. Martin Wirsing, Laura Bocchi, Allan Clark, José Luiz Fiadeiro, Stephen Gilmore, Matthias

Hölzl, Nora Koch, and Rosario Pugliese. SENSORIA: Engineering for Service-Oriented
Overlay Computers, chapter 7. MIT, June 2007. submitted.

41. Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Hölzl, Alexander Knapp, Nora
Koch, and Andreas Schroeder. Semantic-Based Development of Service-Oriented Systems.
In E. Najn et al., editor, Proc. 26th IFIP WG 6.1 International Conference on Formal Meth-
ods for Networked and Distributed Systems(FORTE’06), Paris, France, LNCS 4229, pages
24–45. Springer-Verlag, 2006.

