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Abstract

Service oriented computing is an accepted architectural style for developing large, distributed software
systems. A particular promise of such architectures is service orchestration, i.e. the ability to combine
existing services to create more complex functionality, thereby yielding new services. In this paper, we
discuss application-level protocol compliance checking of service orchestrations and service protocols using
the semantic domain of modal input/output automata (MIOs). Based on a practical example, we motivate
and introduce new notions of refinement and compatibility, and prove that they constitute a valid interface
theory. With this domain-specific interface theory, we provide a framework for application-level analysis
of service orchestrations, thus complementing existing work on compatibility analysis. Our theory is tool-
supported through the MIO Workbench, a verification tool for modal input/output automata.

Keywords: protocol compliance, interface theory, refinement, compatibility, modal input/output
automata, SOA, services, service orchestrations, service protocols, protocol breach

1 Introduction

With the advent of Service-Oriented Architectures (SOAs), the enterprise software
landscape has been transformed from interactions of proprietary, closed components
to an open and standardised communication between individual, self-describing
components called services. Of particular importance in this context is the compo-
sition of individual services to form a new service, which has come to be known as
service orchestration. Using techniques from the model-driven community, service-
based systems can be modelled in UML or other user-friendly, graphical or non-
graphical languages and later be transformed to platform-specific models and code.

Using models opens up the possibility of verifying system correctness early in the
development process, where design problems can be more easily dealt with. In this
paper, we are interested in one aspect of such verification, namely checking protocol
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compliance of service orchestrations – a question to be asked on the application
layer of the SOA stack (which, in lower levels, also includes the network, operating
system, and middleware).

Our aim is supporting end users, i.e. developers of SOA systems, by providing
assistance with regard to two questions:

• Does an orchestration (implementation) follow a certain protocol?
• Are two protocols compatible?

For answering these questions, we introduce a formal framework – an interface
theory based on modal input/output automata (MIOs) [19], which enables us to
precisely specify both SOA systems and the questions asked of them. The theory
must be able to address the following requirements:

A Focus on Orchestrations
A service orchestration is characterised by the fact that it describes the inter-

actions of multiple existing services, thereby forming one or more new services. In
general, an orchestration uses many existing services, requiring each of them to fulfil
a certain protocol, which is thus a required protocol of the orchestration; secondly,
it may also provide multiple services itself, leading to multiple provided protocols
of an orchestration. We are interested in verifying if an orchestration adheres to
each protocol individually, and whether two such protocols are compatible. This is
in the same spirit as Knapp et al. [18], who apply the same approach in the context
of component-based software engineering.

Application-Level Protocol Breach Analysis
Correctly implementing a given protocol in a service orchestration is not an

easy task. Our aim, therefore, is supporting developers in this task by providing
application-level protocol breach analysis. This type of analysis focusses exclusively
on protocol actions, which corresponds to the layer of abstraction the developer is
interested in. It explicitly does not cover lower-level implementation issues such as
race conditions.

Assured Compositionality
Thirdly, the analysis of service protocols and orchestrations should have some

tangible result for the developer. An important point of service-oriented architec-
tures is the ability to switch between different services with a minimum amount of
effort. Therefore, the analysis should give us the assurance that if an orchestra-
tion works with a certain protocol, it can work with any service implementation
which corresponds to the same protocol. This property has come to be known as
independent implementability.

Our contribution in this paper is the definition of an appropriate interface the-
ory for checking protocol compliance of service protocols and orchestrations, which
meets all the requirements mentioned above. We have successfully applied this the-
ory to several case studies in the EU project Sensoria [32]. As a running example,
we therefore use a scenario from one of the case study of Sensoria. The scenario we
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present here is taken from the eUniversity domain, and models thesis management,
i.e. the process of coordinating a student thesis (bachelor, master, diploma).

ThesisManagement

EOffice
tutor

student

eoffice

<<use>>

StudentTutor

Figure 1. A service orchestration

Figure 1 shows the architectural sketch: An orchestration (ThesisManagement)
provides two services (Student and Tutor) and requires one external service
(EOffice).

The remaining sections are organised as follows. In Section 2, we recall the
fundamental notion of interface theories and their most important properties, and
moreover, modal I/O automata which serve as the formal basis of our approach.
Then, in Section 3, we recapitulate the standard definition of weak modal refine-
ment which is shown to be insufficient for our needs. As a remedy, we define a
new refinement notion called strict-observational modal refinement which supports
analysis of service orchestrations (Sect. 3.1). In the same fashion (Sect. 3.2), we ad-
dress compatibility of protocols: an existing weak compatibility notion is shown not
to be satisfactory; instead, we define a new notion of compatibility which is geared
towards formulating application-level protocol conformance. Then (Sect. 3.3) we
prove that the new notions of refinement and compatibility together with an ade-
quate composition operator form a valid interface theory. In Section 4, we compare
our approach with related work. We conclude in Section 5.

2 Interface Theories and Modal I/O Automata

In this section, we recall preliminaries on interface theories, their most important
properties as well as modal I/O automata which will serve as specification domain
throughout this paper.

2.1 Interface Theories

As our goal is checking protocol compliance of service protocols and service orches-
trations, we need a precise way for specifying whether two service protocols match
(protocol compatibility) and whether an implementation correctly implements its
protocol (refinement). The latter notion of refinement is also used to relate abstract
and more concrete protocol specifications, i.e. it allows for a step-wise refinement
of protocols towards a concrete implementation. Interface theories or interface lan-
guages are commonly used to precisely define these notions. Our notion of an
interface theory is inspired by de Alfaro and Henzinger’s work in [5,6].

Interface theories are tuples I = (A,≤,∼,⊗) consisting of a specification domain
A, a reflexive and transitive refinement relation ≤ ⊆ A×A, a symmetric compati-
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bility relation ∼ ⊆ A ×A, and a partial composition operator ⊗ : A×A → A. If
two interfaces are compatible then their composition is defined, i.e. for all S, T ∈ A,
if S ∼ T then S ⊗ T is defined. Moreover, interface theories impose the following
requirements on their refinement and compatibility relation:

(1) Preservation of compatibility under refinement:

for all S, T, T ′ ∈ A,
if S ∼ T and T ′ ≤ T then S ∼ T ′.

(2) Compositionality:

for all S, T, T ′ ∈ A,
if S ⊗ T defined and T ′ ≤ T then S ⊗ T ′ defined and S ⊗ T ′ ≤ S ⊗ T .

These properties imply independent implementability, which is the basis for a
top-down design of services and service protocols: In order to refine a given com-
posed interface S⊗T towards an implementation, it suffices to independently refine
S and T , say, to S′ and T ′, respectively; then the refinements S′ and T ′ are com-
patible and their composition (which is defined) refines the interface S ⊗ T .

2.2 Modal I/O Automata

Modal I/O automata (MIOs) have first been introduced by Larsen et al. [19]. We
have chosen MIOs as the specification domain of our interface theory; they pro-
vide us with a formal basis to support the analysis of service protocols and service
orchestrations. Despite the fact that modalities in our interface specifications are
not necessarily required in this work, the may- and must-modalities for transitions
modelling allowed and required behaviour, respectively, is useful for representing
standardised contracts in our theory.

Definition 2.1 [Modal I/O Transition System [19]] A modal I/O transition
system (MIO) S = (statesS , startS , (inS , outS , intS), 99KS ,−→S) consists of a set
of states statesS , an initial state startS ∈ statesS , disjoint sets inS , outS , intS
of input, output, and internal transitions, respectively, where extS = inS ] outS
denotes the set of external actions and actS = extS ] intS denotes the set of all
actions; furthermore, a may-transition relation 99KS ⊆ statesS×actS×statesS , and
a must-transition relation −→S ⊆ statesS×actS×statesS such that both transition
relations satisfy −→S ⊆ 99KS (syntactic consistency). S is called implementation if
−→S = 99KS .

The external alphabet (or signature) of a MIO S is denoted by αext(S) =
(inS , outS). Alphabet equality and inclusion of two given MIOs S and T is de-
fined by component-wise equality and inclusion, respectively. Modal I/O transition
systems are particular modal transition systems which, in their original form intro-
duced by Larsen and Thomsen [21], do not distinguish between input, output, and
internal actions.

A syntactical requirement for two MIOs that are supposed to communicate with
each other is that overlapping of actions only happens on complementary types.
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Definition 2.2 [Composability [19]] Two MIOs S and T are called composable
if (inS ∪ intS) ∩ (inT ∪ intT ) = ∅ and (outS ∪ intS) ∩ (outT ∪ intT ) = ∅.

The set of shared labels of two composable MIOs S and T is defined by
shared(S, T ) = (outS ∩ inT ) ] (inS ∩ outT ).

Existing interface theories, using MIOs as the specification domain, include var-
ious notions of refinement and compatibility [2,19,20,11]. However, as we point
out in the following section, none of these are adequate for the requirements listed
above. We therefore complement these existing notions with a new interface theory
which is adapted for checking service orchestrations.

3 An Interface Theory for Checking Service Protocol
Compliance

In this section we introduce existing notions of modal refinement and compatibility
and give our new definitions of strict-observational modal refinement and compati-
bility. We motivate this again by our running example from the eUniversity domain
introduced above, this time modelled as MIOs, as shown in Fig. 2. Input labels are
suffixed with a question mark (? ) and output labels with an exclamation mark (! ).

s.update?

s.complete?

e.cancel?

s.abort!

Orchestration

ThesisManagement

t.assessThesis!

Required Protocol 

EOffice

e.cancel?

e.status?

s.update?

s.abort!

Provided Protocol 

Student

Provided Protocol 

Tutor

t.assessThesis!
s.complete?

refines

refines

refines

s.complete?

Figure 2. The eUniversity example

In the centre-right of the figure, the orchestration ThesisManagement is shown,
which provides two services (left) which each have their own protocol (Tutor and
Student), and requires one external service EOffice (right; the examination office).
The workflow is as follows. A student works on a thesis, providing updates. Once she
is done, the thesis is marked complete and the tutor assesses it. There is one catch,
though – the examination office may cancel the thesis if some formal requirements
are not met. In this case, the student is notified of the problem.

Note that the EOffice protocol additionally specifies a call which is not imple-
mented in the orchestration – a liberty given by the protocol as the call is modelled
as a may-transition.
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3.1 Strict-Observational Modal Refinement

We first try to analyse this service orchestration with existing interface theories
for modal I/O automata. The closest to our own definitions of refinement and
compatibility for MIOs are weak refinement and compatibility, complemented by the
notion of hiding. We shall introduce these now, before moving on to the discussion
of our interface theory.

Modal refinement [21] is usually defined in a contravariant way. The basic idea
of modal refinement is that any required (must-)transition in the abstract spec-
ification must also occur in the concrete specification. Conversely, any allowed
(may-)transition in the concrete specification must be allowed by the abstract spec-
ification. Moreover, in both cases the target states must conform to each other.
Modal refinement has the following consequences: A concrete specification may
leave out may-transitions, but is required to keep all must-transitions, and more-
over, it is not allowed to perform more transitions than the abstract specification
admits.

The basic form of modal refinement requires that every transition that is taken
into account must be simulated immediately. There are many application areas
in which this definition is too strong [17]. It can be weakened by distinguishing
between external and internal actions and allowing an external action to be enclosed
in internal actions. In this case, we speak of weak transitions.

For denoting weak transitions, given a MIO S and an action a ∈ extS , we write
s

a−→
∗
Ss
′ iff there exist states s1, s2 ∈ statesS such that

s( τ−→S)∗s1
a−→Ss2( τ−→S)∗s′

where t( τ−→T )∗t′ stands for finitely many transitions, labelled with internal actions,
leading from t to t′; possibly no action and in this case t = t′. Here and later on,
the action τ always denotes an arbitrary internal action. Moreover, we write

s
â−→
∗
Ss
′ iff either s a−→

∗
Ss
′ and a ∈ extS , or s( τ−→S)∗s′.

Both notations are analogously used for may-transitions. Using this notion of weak
transitions, we can define weak modal refinement. 4

Definition 3.1 [Weak Modal Refinement, adapted from [17]] Let S and T

be MIOs such that αext(S) = αext(T ). S weakly modally refines T , denoted by
S ≤∗m T , iff there exists a relation R ⊆ statesS × statesT containing (startS , startT )
such that for all (s, t) ∈ R, for all a ∈ actS ∪ actT ,

(i) if t a−→T t
′ then there exists s′ ∈ statesS such that s â−→

∗
Ss
′ and (s′, t′) ∈ R,

(ii) if s
a

99KSs
′ then there exists t′ ∈ statesT such that t

â
99K
∗
T t
′ and (s′, t′) ∈ R.

Now, let us consider checking our eUniversity system: We want to assess whether
the orchestration really adheres to all of the specified protocols. A first attempt at

4 We have adapted the definition of weak modal refinement [17] to MIOs; moreover, we have slightly
generalised the definition by allowing the considered MIOs to differ with respect to their sets of internal
actions.

6



Mayer, Schroeder, Bauer

checking refinement fails due to incompatible alphabets – the orchestration, im-
plementing more than one service, will always have more actions than the service
protocol being checked. A possible solution for this problem is hiding (see, e.g., [28]),
i.e. internalising all actions not belonging to the protocol under consideration.

However, this still does not capture our intention of application-level verification.
Instead of detecting errors that may lead to a deadlock under one combination of
“non-relevant” actions, we are interested in protocol breaches that must lead to a
deadlock under all combinations of “non-relevant” actions – i.e., situations in which
the protocol cannot be followed by the orchestration.

The interface theory we are looking for must therefore differ from the ones
discussed above. This is seen in the example: The orchestration does not refine
the student protocol under weak refinement, even with hiding, as s.complete? is
no longer possible after e.cancel? – an action that is not relevant for the student
protocol – has been received. The refinement analysis will report this problem, and
hide the more significant error which is shown in dashed/dotted grey: The second
s.complete? message in the implementation is a breach of the application-level
protocol, as s.complete? is not allowed after s.abort! in the student protocol, even
when ignoring “non-relevant” actions. Without the second s.complete? call, we
want to consider the orchestration a refinement of the student protocol.

The initial problem indicated above (s.complete? not being possible after
e.cancel? ) is not detected by our refinement notion, which allows us to focus on
finding protocol breaches. This problem can be dealt with using other analysis
techniques such as interface theories building on weak refinement [2].

To capture our idea of application-level protocol breaches, we first define the
notion of action-weak transitions. Given a MIO S, a set of actions L ⊆ actS , and

an action a ∈ actS , we write s a−→
/(L)

S s′ iff either s a−→Ss
′ or there exist n ≥ 1, states

s1, . . . , sn ∈ statesS , and actions b1, . . . , bn ∈ (actS \ L) such that

s
b1−→Ss1 . . . sn−1

bn−→Ssn
a−→Ss

′.

The intuition of an action-weak transition is that a single relevant action is per-
formed, which may be preceded by irrelevant actions not in L. Moreover, we write

s
a−→
/

Ss
′ to abbreviate s

a−→
/(extS)

S s′. The same notions are analogously used for
may-transitions.

We now adapt weak modal refinement to satisfy our needs, i.e. we only want
to consider relevant actions during refinement of MIOs. The basic idea for our
refinement is to skip leading actions unrelated to the protocol under investigation.
First, the refining MIOs may have more actions than the refined one, and second,
in both directions in the definition we focus on the external actions of the more
abstract MIO since these actions are the relevant ones.

Definition 3.2 [Strict-Observational Modal Refinement] Let S and T be
MIOs such that αext(S) ⊇ αext(T ). S strict-observationally refines T , denoted by
S ≤so T , iff there exists a relation R ⊆ statesS × statesT containing (startS , startT )
such that for all (s, t) ∈ R, for all actions a ∈ extT ,

(i) if t a−→
/

T t
′ then there exists s′ ∈ statesS such that s a−→

/(extT )

S s′ and (s′, t′) ∈ R,
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(ii) if s
a

99K
/(extT )

S s′ then there exists t′ ∈ statesT such that t
a

99K
/

T t
′ and (s′, t′) ∈ R.

Note that strict-observational refinement only uses the modal aspects of MIOs
and can thus also be defined for modal transition systems in their original form
(cf. [21], not distinguishing between input/output/internal actions).

Strict-observational modal refinement can be proved to be a preorder on MIOs,
i.e. it is reflexive and transitive.

Lemma 3.3 Strict-observational modal refinement ≤so is reflexive and transitive.

A proof of this lemma and all following lemmata and theorems can be found in
[27].

Going back to our example, we had the problem that under weak refinement, the
s.complete? call is reported as an error, as it is no longer accepted after e.cancel?.
With strict-observational refinement, e.cancel? is no longer relevant for the refine-
ment check between the student protocol and the orchestration. As a result, the
only problem reported is the protocol breach due to the s.complete? call shown in
dashed/dotted grey in the orchestration of Fig. 2.

3.2 Strict-Observational I/O Compatibility

Now we focus on our second aim which concerns compatibility checks. Consider
Fig. 3, which is a replica of Fig. 2, however this time with complements of the
protocols given before. The question is whether the protocols are compatible with
their complements and whether the protocols are compatible with the orchestration.

s.update?

s.complete?

e.cancel?

s.abort!

Orchestration

ThesisManagement

t.assessThesis!

Provided Protocol 

EOffice

e.cancel!

s.update!

s.complete!
s.abort?

Required Protocol 

Student

Required Protocol 

Tutor

t.assessThesis?

are compatible

are compatible

are compatible

Figure 3. The eUniversity example (2)

Let us first formally define the notion of compatibility. As the closest match to
our approach, we introduce weak compatibility [2], which moderates the usual no-
tion of strong compatibility [19] by requiring that an output (issued by a may-
or must-transition) must be accepted with a corresponding input (by a must-
transition), which may, however, possibly be preceded by internal actions. 5

5 The definition of weak compatibility slightly differs from the one in [2] for technical reasons but is in fact
equivalent.
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Definition 3.4 [Weak Modal Compatibility, adapted from [2]] Let S and
T be composable MIOs. S and T are called weakly modally compatible, written
S ∼wc T , iff there exists a relation R ⊆ statesS× statesT containing (startS , startT )
such that for all (s, t) ∈ R,

(i) for all a ∈ (outS ∩ inT ), if s
a

99KSs
′ then ∃t′ ∈ statesT .t

a−→
/

T t
′ and (s′, t′) ∈ R,

(ii) for all a ∈ (outT ∩ inS), if t
a

99KT t
′ then ∃s′ ∈ statesS .s

a−→
/

Ss
′ and (s′, t′) ∈ R,

(iii) for all a ∈ (intS ∪ extS \ shared(S, T )), if s
a

99KSs
′ then (s′, t) ∈ R,

(iv) for all a ∈ (intT ∪ extT \ shared(S, T )), if t
a

99KT t
′ then (s, t′) ∈ R.

Using weak modal compatibility, it is easy to see that the protocols and their
complements in our example (Figs. 2 and 3) are compatible. However, the goal is to
achieve preservation of compatibility under refinement – unfortunately, checking the
Student protocol against the orchestration using weak modal compatibility yields
a similar violation as observed before during our discussion of refinement: After
having taken the e.cancel? transition, which is external to the orchestration but
not shared with the protocol, the s.update? transition of the protocol can no longer
be taken. This problem cannot be alleviated by hiding as hiding does not affect
weak modal compatibility in any relevant way (moving external labels to internals,
see Def. 3.4, (iii) and (iv)). Instead, the idea is to reduce the set of state pairs
considered during compatibility checking.

Again, we want to consider all three protocols to be compatible with the orches-
tration, in each case only considering the protocol-observable actions as before. We
define strict-observational I/O compatibility to reach this goal.

Definition 3.5 [Strict-Observational I/O Compatibility] Let S and T be
composable MIOs, and let L be the set shared(S, T ) of shared labels of S and
T . S and T are called strict-observationally I/O compatible, written S ∼so T , iff
there exists a relation R ⊆ statesS × statesT containing (startS , startT ) such that
for all (s, t) ∈ R,

(i) for all a ∈ (outS ∩ inT ), if s
a

99K
/(L)

S s′ then there exists t′ ∈ statesT such that

t
a−→
/(L)

T t′ and (s′, t′) ∈ R,

(ii) for all a ∈ (outT ∩ inS), if t
a

99K
/(L)

T t′ then there exists s′ ∈ statesS such that

s
a−→
/(L)

S s′ and (s′, t′) ∈ R.

Considering again the example of compatibility between the orchestration and
the student protocol, strict-observational I/O compatibility treats e.cancel? and
t.assessThesis! differently, as both actions are not defined in the student proto-
col. e.cancel? is only relevant as a prefix to s.abort!, while t.assessThesis! is
not considered at all. We therefore get a positive compatibility result between
ThesisManagement and Student as expected.

Lemma 3.6 Strict-observational I/O compatibility ∼so is symmetric.

9



Mayer, Schroeder, Bauer

3.3 Interface Theory

With strict-observational modal refinement and compatibility in place, we can now
come back to our initial goal of defining a domain-specific interface theory targeted
at checking protocol compliance in SOA systems.

In order to prove that MIOs together with strict-observational modal refinement
and strict-observational I/O compatibility forms an interface theory, we need an
appropriate notion of composition for MIOs, called strict-observational composition
and denoted by ⊗so, which is adapted to our strict-observational view. Then we
show that indeed Iso = (MIO,≤so,∼so,⊗so), where MIO is the domain of all
modal I/O automata, satisfies preservation of compatibility and compositionality.

Definition 3.7 [Strict-Observational Composition] Two composable MIOs S1

and S2 can be strict-observationally composed to a MIO S1 ⊗so S2 defined by

• statesS1⊗soS2 = statesS1 × statesS2 ,
• startS1⊗soS2 = (startS1 , startS2),
• inS1⊗soS2 = (inS1 \ outS2) ] (inS2 \ outS1),
• outS1⊗soS2 = (outS1 \ inS2) ] (outS2 \ inS1),
• intS1⊗soS2 = ∅.

The transition relations are given by

(i) for all ai ∈ shared(S1, S2), 1 ≤ i ≤ n, if there exists c ∈ (extS1 \ shared(S1, S2))
and s1

a1−→
/

S1
. . .

an−→
/

S1
s′1

c−→
/

S1
s′′1, and s2

a1−→
/

S2
. . .

an−→
/

S2
s′2,

then (s1, s2) c−→S1⊗soS2
(s′′1, s

′
2) (if n = 0 then s1 = s′1 and s2 = s′2),

(ii) for all ai ∈ shared(S1, S2), 1 ≤ i ≤ n, if there exists c ∈ (extS2 \ shared(S1, S2))
and s1

a1−→
/

S1
. . .

an−→
/

S1
s′1, and s2

a1−→
/

S2
. . .

an−→
/

S2
s′2

c−→
/

S2
s′′2,

then (s1, s2) c−→S1⊗soS2
(s′1, s

′′
2) (if n = 0 then s1 = s′1 and s2 = s′2),

(iii) and (iv), two similar rules for may-transitions (99K).

The intuition of this composition operator is to capture non-shared external
actions c, which may be prefixed by a number of shared actions a1 . . . an (or none
at all): any path only involving transitions with shared labels do not appear as
synchronised actions in the composition; in fact, compositions S1 ⊗so S2 do not
contain any internal actions at all. In particular, any communication failures of two
composed MIOs which are not compatible (i.e. a shared output is not received) does
not emerge in the composed MIO.

Strict-observational composition satisfies associativity and commutativity which
is a basic requirement for any reasonable composition operator. 6

Lemma 3.8 Strict-observational composition ⊗so is commutative and associative.

First, we show that strict-observational compatibility is preserved under strict-
observational modal refinement.

6 For commutativity to hold, we assume that two MIOs are considered equal if they have the same (internal
and external) alphabet and there exists a bijection between the state spaces such that both may- and must-
transition relations are preserved.
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Theorem 3.9 [Preservation of Compatibility] Let S, T , T ′ be MIOs, and let S,
T and S, T ′ be composable. If S ∼so T , T ′ ≤so T and shared(S, T ) = shared(S, T ′),
then it follows that S ∼so T ′.

Compositionality is the prerequisite for independent implementability of services
and their modular verification. 7

Theorem 3.10 [Compositionality] Let S, T , T ′ be MIOs, and let S, T and S,
T ′ be composable. If T ′ ≤so T and shared(S, T ) = shared(S, T ′), then S ⊗so T ′ ≤so
S ⊗so T .

Independent implementability is a direct consequence of preservation of com-
patibility under refinement and compositionality of refinement. Even more than in
traditional software architectures, SOA systems benefit from this property due to
the inherent distribution of services and orchestrations in the service-based appli-
cation landscape.

Corollary 3.11 [Independent Implementability] Let S, T , T ′ be MIOs, and
let S, T and S′, T ′ be composable. If S ∼so T , T ′ ≤so T , S′ ≤so S and
shared(S, T ) = shared(S′, T ′), both S′ ∼so T ′ and S′ ⊗so T ′ ≤so S ⊗so T follow.

Proof First, it can be easily shown that

shared(S, T ) = shared(S, T ′) = shared(S′, T ′).

By Thm. 3.9, it follows S ∼so T ′, and by Lem. 3.6, T ′ ∼so S. Again by Thm. 3.9
and Lem. 3.6, it follows that S′ ∼so T ′. Second, we show S′⊗so T ′ ≤so S⊗so T . We
apply Thm. 3.10 to get S ⊗so T ′ ≤so S ⊗so T . Moreover, by Thm. 3.10, it follows
T ′ ⊗so S′ ≤so T ′ ⊗so S. Since ⊗so is commutative (Lem. 3.8) and ≤so transitive
(Lem. 3.3), it holds that S′ ⊗so T ′ ≤so S ⊗so T . 2

This concludes our work to form an appropriate interface theory for protocol
compliance checking of service orchestrations. As we have illustrated with our prac-
tical example, Iso = (MIO,≤so,∼so,⊗so) is indeed a suitable semantic framework
for checking refinement and compatibility of service protocols and orchestrations.
The strict-observational interface theory provides SOA developers with a tool for
checking protocol implementation and compatibility on an application level, which
can be used in addition to existing interface theories, e.g. building on weak refine-
ment and compatibility.

We have implemented strict-observational refinement, compatibility, and com-
position in the MIO Workbench [2], an Eclipse-based verification tool which includes
an editor for MIOs and is able to depict relations and problematic paths directly on
the graphical MIO representation. The workbench also implements the standard
notions of refinement and compatibility (strong, weak, and may-weak refinement
as well as strong, weak, and friendly environment compatibility, cf. [2,19]), which
allows a direct comparison between the individual interface theories. The MIO
workbench is available for download from http://www.miowb.net/.

7 Interestingly, note that if αext (T ) = αext (T ′), then S ⊗so T ′ ≤so S ⊗so T is equivalent to S ⊗so T ′ ≤m

S ⊗so T where ≤m is strong modal refinement [21].
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4 Related Work

The general study of interface theories was started by de Alfaro and Henzinger in
[5,9]. Their well-known interface theory called interface automata essentially builds
on the formalism of input/output automata [24,25,14] accompanied with notions of
refinement (defined by alternating simulation) and compatibility [4]. This theory
has recently been generalized to an interface theory based on modal input/output
transition systems [19,20] which uses modal automata [21,17] for modelling interface
behaviour. However, less attention has been paid to refinement between interfaces
with different alphabets. Recently, the approach proposed in [29,30] deals with
alphabet extension by adding self-loops for the new actions to all states of the au-
tomaton. It is easy to see (same argument as given in Sect. 3.1) that this solution
is not adequate to handle our situations. In [11] Fischbein et al. propose branching
alphabet refinement of modal transition systems to cope with the problem of unintu-
itive implementations allowed by weak modal refinement. However, their refinement
is classic in the sense that it considers single transitions in the preconditions, which
is too strict for our application area.

Action refinement [15] is a flexible notion of refinement which is based on refining
actions when changing the abstraction level: An action of an abstract specification
can be decomposed into a sequence of low-level actions specifying the system in more
detail. We differ from this notion as all of our actions reside on the same abstraction
level, yet we only consider some of them depending on the current viewpoint.

There is also an extensive body of knowledge on semantics and analysis of Web
service orchestrations based on industry standards like BPEL; [31] provides a decent
overview. However, to the best of our knowledge, no approach so far has considered
early application-level verification as a precursor to existing approaches. Instead,
the focus lies on analysis of specific aspects of service orchestrations. Both [22] and
[26] analyse BPEL compositions through transformations to petri-nets. Their com-
position analysis assumes a friendly environment in the sense of [4], but is not geared
towards application-level analysis of service orchestrations. Fu et al. [13] present
a translation of a composition of BPEL processes to Promela, the input language
of the SPIN model checker [16]. However, due to the interaction semantics of the
translation, application-level verification is not feasible. Two further approaches
that are closer to ours use calculi to specify the underlying labelled transition sys-
tems: [3] explicitly focusses on strong notions of compliance and compatibility. For
calculi-based model-checking approaches like [10], the same reasoning as for the ap-
proach of [13] applies: application-level verification is prohibited by the composition
semantics of the language.

Regarding tool support, the MIO Workbench differs from existing tools such as
MTSA [7,8], TICC [1], or Tempo [23] by explicitly considering both modality and
input/output aspects of MIOs. Compared to SOA verification tools such as WS-
Engineer [12], the MIO Workbench is more experimental: Based on input given
directly as MIOs, it allows different (pluggable) interface theories to be applied to
investigate both the model and the theories themselves.

12
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5 Conclusion

The development of large, distributed software systems is increasingly carried out
by using service-oriented architectures, in which services form the basic building
blocks of the system to be composed to form new services, a process which is known
as orchestration. By using a model-driven approach to SOA development, models
of services and service orchestrations are available early in the development process,
where they can be analysed and verified to increase overall system quality.

In this paper, we have investigated protocol compliance checking for service
orchestrations. We have placed particular focus on detecting protocol breaches,
allowing service engineers to directly work with their models on the application-
level. Our approach is based on the semantic domain of modal I/O automata
and supported by a new interface theory we call strict-observational as it focusses
on externally visible actions from the viewpoint of a certain protocol. We have
given formal definitions of this theory, and shown that it indeed constitutes a valid
interface theory for domain-specific formal analysis of service-oriented systems.

We have successfully used strict-observational refinement and compatibility for
checking the case studies of the EU project Sensoria. A set of examples as
well as full tool support is available through the MIO Workbench available from
http://www.miowb.net.

As future work, we intend to include the strict-observational theory into our
larger framework of interface theories already discussed in [2].
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