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Abstract

Service oriented computing is an accepted architectural style for developing large,
distributed software systems. A particular promise of such architectures is service
orchestration, i.e. the ability to combine existing services to create more complex
functionality, thereby yielding new services. In this paper, we discuss application-
level protocol compliance checking of service orchestrations and service protocols
using the semantic domain of modal input/output automata (MIOs). Based on a
practical example, we motivate and introduce new notions of refinement and com-
patibility, and prove that they constitute a valid interface theory. With this domain-
specific interface theory, we provide a framework for application-level analysis of
service orchestrations, thus complementing existing work on compatibility analysis.
Our theory is tool-supported through the MIO Workbench, a verification tool for
modal input/output automata.
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1 Introduction

With the advent of Service-Oriented Architectures (SOAs), the enterprise software land-
scape has been transformed from interactions of proprietary, closed components to an open
and standardised communication between individual, self-describing components called ser-
vices. Of particular importance in this context is the composition of individual services
to form a new service, which has come to be known as service orchestration. Using tech-
niques from the model-driven community, service-based systems can be modelled in UML
or other user-friendly, graphical or non-graphical languages and later be transformed to
platform-specific models and code.

Using models opens up the possibility of verifying system correctness early in the de-
velopment process, where design problems can be more easily dealt with. In this paper,
we are interested in one aspect of such verification, namely checking protocol compliance
of service orchestrations – a question to be asked on the application layer of the SOA stack
(which, in lower levels, also includes the network, operating system, and middleware).

Our aim is supporting end users, i.e. developers of SOA systems, by providing assistance
with regard to two questions:

• Does an orchestration (implementation) follow a certain protocol?

• Are two protocols compatible?

For answering these questions, we introduce a formal framework – an interface theory
based on modal input/output automata (MIOs) [19], which enables us to precisely specify
both SOA systems and the questions asked of them. The theory must be able to address
the following requirements:

A Focus on Orchestrations A service orchestration is characterised by the fact that
it describes the interactions of multiple existing services, thereby forming one or more new
services. In general, an orchestration uses many existing services, requiring each of them
to fulfil a certain protocol, which is thus a required protocol of the orchestration; secondly,
it may also provide multiple services itself, leading to multiple provided protocols of an
orchestration. We are interested in verifying if an orchestration adheres to each protocol
individually, and whether two such protocols are compatible. This is in the same spirit
as Knapp et al. [18], who apply the same approach in the context of component-based
software engineering.

Application-Level Protocol Breach Analysis Correctly implementing a given pro-
tocol in a service orchestration is not an easy task. Our aim, therefore, is supporting de-
velopers in this task by providing application-level protocol breach analysis. This type of
analysis focusses exclusively on protocol actions, which corresponds to the layer of abstrac-
tion the developer is interested in. It explicitly does not cover lower-level implementation
issues such as race conditions.
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Assured Compositionality Thirdly, the analysis of service protocols and orchestrations
should have some tangible result for the developer. An important point of service-oriented
architectures is the ability to switch between different services with a minimum amount of
effort. Therefore, the analysis should give us the assurance that if an orchestration works
with a certain protocol, it can work with any service implementation which corresponds to
the same protocol. This property has come to be known as independent implementability.

Our contribution in this paper is the definition of an appropriate interface theory for
checking protocol compliance of service protocols and orchestrations, which meets all the
requirements mentioned above. We have successfully applied this theory to several case
studies in the EU project Sensoria [32]. As a running example, we therefore use a scenario
from one of the case study of Sensoria. The scenario we present here is taken from the
eUniversity domain, and models thesis management, i.e. the process of coordinating a
student thesis (bachelor, master, diploma).

ThesisManagement

EOffice
tutor

student

eoffice

<<use>>

StudentTutor

Figure 1: A service orchestration

Figure 1 shows the architectural sketch: An orchestration (ThesisManagement) pro-
vides two services (Student and Tutor) and requires one external service (EOffice).

The remaining sections are organised as follows. In Section 2, we recall the fundamental
notion of interface theories and their most important properties, and moreover, modal I/O
automata which serve as the formal basis of our approach. Then, in Section 3, we recapit-
ulate the standard definition of weak modal refinement which is shown to be insufficient
for our needs. As a remedy, we define a new refinement notion called strict-observational
modal refinement which supports analysis of service orchestrations (Sect. 3.1). In the same
fashion (Sect. 3.2), we address compatibility of protocols: an existing weak compatibility
notion is shown not to be satisfactory; instead, we define a new notion of compatibil-
ity which is geared towards formulating application-level protocol conformance. Then
(Sect. 3.3) we prove that the new notions of refinement and compatibility together with
an adequate composition operator form a valid interface theory. In Section 4, we compare
our approach with related work. We conclude in Section 5.
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2 Interface Theories and Modal I/O Automata

In this section, we recall preliminaries on interface theories, their most important properties
as well as modal I/O automata which will serve as specification domain throughout this
paper.

2.1 Interface Theories

As our goal is checking protocol compliance of service protocols and service orchestrations,
we need a precise way for specifying whether two service protocols match (protocol com-
patibility) and whether an implementation correctly implements its protocol (refinement).
The latter notion of refinement is also used to relate abstract and more concrete protocol
specifications, i.e. it allows for a step-wise refinement of protocols towards a concrete imple-
mentation. Interface theories or interface languages are commonly used to precisely define
these notions. Our notion of an interface theory is inspired by de Alfaro and Henzinger’s
work in [5, 6].

Interface theories are tuples I = (A,≤,∼,⊗) consisting of a specification domain A, a
reflexive and transitive refinement relation ≤ ⊆ A×A, a symmetric compatibility relation
∼ ⊆ A × A, and a partial composition operator ⊗ : A × A → A. If two interfaces are
compatible then their composition is defined, i.e. for all S, T ∈ A, if S ∼ T then S ⊗ T is
defined. Moreover, interface theories impose the following requirements on their refinement
and compatibility relation:

(1) Preservation of compatibility under refinement:

for all S, T, T ′ ∈ A,

if S ∼ T and T ′ ≤ T then S ∼ T ′.

(2) Compositionality:

for all S, T, T ′ ∈ A,

if S ⊗ T defined and T ′ ≤ T then S ⊗ T ′ defined and S ⊗ T ′ ≤ S ⊗ T .

These properties imply independent implementability, which is the basis for a top-down
design of services and service protocols: In order to refine a given composed interface S⊗T
towards an implementation, it suffices to independently refine S and T , say, to S ′ and T ′,
respectively; then the refinements S ′ and T ′ are compatible and their composition (which
is defined) refines the interface S ⊗ T .

2.2 Modal I/O Automata

Modal I/O automata (MIOs) have first been introduced by Larsen et al. [19]. We have
chosen MIOs as the specification domain of our interface theory; they provide us with a
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formal basis to support the analysis of service protocols and service orchestrations. De-
spite the fact that modalities in our interface specifications are not necessarily required in
this work, the may- and must-modalities for transitions modelling allowed and required
behaviour, respectively, is useful for representing standardised contracts in our theory.

Definition 1 [Modal I/O Transition System [19]] A modal I/O transition system
(MIO) S = (statesS, startS, (inS, outS, intS), 99KS,−→S) consists of a set of states statesS,
an initial state startS ∈ statesS, disjoint sets inS, outS, intS of input, output, and internal
transitions, respectively, where extS = inS ] outS denotes the set of external actions and
actS = extS ] intS denotes the set of all actions; furthermore, a may-transition relation
99KS ⊆ statesS × actS × statesS, and a must-transition relation −→S ⊆ statesS × actS ×
statesS such that both transition relations satisfy −→S ⊆ 99KS (syntactic consistency). S
is called implementation if −→S = 99KS.

The external alphabet (or signature) of a MIO S is denoted by αext(S) = (inS, outS).
Alphabet equality and inclusion of two given MIOs S and T is defined by component-wise
equality and inclusion, respectively. Modal I/O transition systems are particular modal
transition systems which, in their original form introduced by Larsen and Thomsen [21],
do not distinguish between input, output, and internal actions.

A syntactical requirement for two MIOs that are supposed to communicate with each
other is that overlapping of actions only happens on complementary types.

Definition 2 [Composability [19]] Two MIOs S and T are called composable if (inS ∪
intS) ∩ (inT ∪ intT ) = ∅ and (outS ∪ intS) ∩ (outT ∪ intT ) = ∅.

The set of shared labels of two composable MIOs S and T is defined by shared(S, T ) =
(outS ∩ inT ) ] (inS ∩ outT ).

Existing interface theories, using MIOs as the specification domain, include various
notions of refinement and compatibility [2, 19, 20, 11]. However, as we point out in the
following section, none of these are adequate for the requirements listed above. We therefore
complement these existing notions with a new interface theory which is adapted for checking
service orchestrations.

3 An Interface Theory for Checking Service Protocol

Compliance

In this section we introduce existing notions of modal refinement and compatibility and
give our new definitions of strict-observational modal refinement and compatibility. We
motivate this again by our running example from the eUniversity domain introduced above,
this time modelled as MIOs, as shown in Fig. 2. Input labels are suffixed with a question
mark (? ) and output labels with an exclamation mark (! ).

In the centre-right of the figure, the orchestration ThesisManagement is shown, which
provides two services (left) which each have their own protocol (Tutor and Student), and
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s.update?

s.complete?

e.cancel?

s.abort!

Orchestration

ThesisManagement

t.assessThesis!

Required Protocol 

EOffice

e.cancel?

e.status?

s.update?

s.abort!

Provided Protocol 

Student

Provided Protocol 

Tutor

t.assessThesis!
s.complete?

refines

refines

refines

s.complete?

Figure 2: The eUniversity example

requires one external service EOffice (right; the examination office). The workflow is as
follows. A student works on a thesis, providing updates. Once she is done, the thesis is
marked complete and the tutor assesses it. There is one catch, though – the examination
office may cancel the thesis if some formal requirements are not met. In this case, the
student is notified of the problem.

Note that the EOffice protocol additionally specifies a call which is not implemented
in the orchestration – a liberty given by the protocol as the call is modelled as a may-
transition.

3.1 Strict-Observational Modal Refinement

We first try to analyse this service orchestration with existing interface theories for modal
I/O automata. The closest to our own definitions of refinement and compatibility for MIOs
are weak refinement and compatibility, complemented by the notion of hiding. We shall
introduce these now, before moving on to the discussion of our interface theory.

Modal refinement [21] is usually defined in a contravariant way. The basic idea of
modal refinement is that any required (must-)transition in the abstract specification must
also occur in the concrete specification. Conversely, any allowed (may-)transition in the
concrete specification must be allowed by the abstract specification. Moreover, in both
cases the target states must conform to each other. Modal refinement has the following
consequences: A concrete specification may leave out may-transitions, but is required to
keep all must-transitions, and moreover, it is not allowed to perform more transitions than
the abstract specification admits.

The basic form of modal refinement requires that every transition that is taken into
account must be simulated immediately. There are many application areas in which this
definition is too strong [17]. It can be weakened by distinguishing between external and
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internal actions and allowing an external action to be enclosed in internal actions. In this
case, we speak of weak transitions.

For denoting weak transitions, given a MIO S and an action a ∈ extS, we write s
a−→
∗
Ss
′

iff there exist states s1, s2 ∈ statesS such that

s(
τ−→S)∗s1

a−→Ss2(
τ−→S)∗s′

where t(
τ−→T )∗t′ stands for finitely many transitions, labelled with internal actions, leading

from t to t′; possibly no action and in this case t = t′. Here and later on, the action τ
always denotes an arbitrary internal action. Moreover, we write

s
â−→
∗
Ss
′ iff either s

a−→
∗
Ss
′ and a ∈ extS, or s(

τ−→S)∗s′.

Both notations are analogously used for may-transitions. Using this notion of weak tran-
sitions, we can define weak modal refinement.1

Definition 3 [Weak Modal Refinement, adapted from [17]] Let S and T be MIOs
such that αext(S) = αext(T ). S weakly modally refines T , denoted by S ≤∗m T , iff there exists
a relation R ⊆ statesS × statesT containing (startS, startT ) such that for all (s, t) ∈ R, for
all a ∈ actS ∪ actT ,

1. if t
a−→T t

′ then there exists s′ ∈ statesS such that s
â−→
∗
Ss
′ and (s′, t′) ∈ R,

2. if s
a

99KSs
′ then there exists t′ ∈ statesT such that t

â
99K

∗

T t
′ and (s′, t′) ∈ R.

Now, let us consider checking our eUniversity system: We want to assess whether the
orchestration really adheres to all of the specified protocols. A first attempt at checking
refinement fails due to incompatible alphabets – the orchestration, implementing more
than one service, will always have more actions than the service protocol being checked.
A possible solution for this problem is hiding (see, e.g., [28]), i.e. internalising all actions
not belonging to the protocol under consideration.

However, this still does not capture our intention of application-level verification. In-
stead of detecting errors that may lead to a deadlock under one combination of “non-
relevant” actions, we are interested in protocol breaches that must lead to a deadlock
under all combinations of “non-relevant” actions – i.e., situations in which the protocol
cannot be followed by the orchestration.

The interface theory we are looking for must therefore differ from the ones discussed
above. This is seen in the example: The orchestration does not refine the student pro-
tocol under weak refinement, even with hiding, as s.complete? is no longer possible after
e.cancel? – an action that is not relevant for the student protocol – has been received.
The refinement analysis will report this problem, and hide the more significant error which

1We have adapted the definition of weak modal refinement [17] to MIOs; moreover, we have slightly
generalised the definition by allowing the considered MIOs to differ with respect to their sets of internal
actions.
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is shown in dashed/dotted grey: The second s.complete? message in the implementation
is a breach of the application-level protocol, as s.complete? is not allowed after s.abort!
in the student protocol, even when ignoring “non-relevant” actions. Without the second
s.complete? call, we want to consider the orchestration a refinement of the student proto-
col.

The initial problem indicated above (s.complete? not being possible after e.cancel? )
is not detected by our refinement notion, which allows us to focus on finding protocol
breaches. This problem can be dealt with using other analysis techniques such as interface
theories building on weak refinement [2].

To capture our idea of application-level protocol breaches, we first define the notion of
action-weak transitions. Given a MIO S, a set of actions L ⊆ actS, and an action a ∈ actS,

we write s
a−→

/(L)

S s′ iff either s
a−→Ss

′ or there exist n ≥ 1, states s1, . . . , sn ∈ statesS, and
actions b1, . . . , bn ∈ (actS \ L) such that

s
b1−→Ss1 . . . sn−1

bn−→Ssn
a−→Ss

′.

The intuition of an action-weak transition is that a single relevant action is performed,
which may be preceded by irrelevant actions not in L. Moreover, we write s

a−→
/

Ss
′ to

abbreviate s
a−→

/(extS)

S s′. The same notions are analogously used for may-transitions.
We now adapt weak modal refinement to satisfy our needs, i.e. we only want to consider

relevant actions during refinement of MIOs. The basic idea for our refinement is to skip
leading actions unrelated to the protocol under investigation. First, the refining MIOs may
have more actions than the refined one, and second, in both directions in the definition we
focus on the external actions of the more abstract MIO since these actions are the relevant
ones.

Definition 4 [Strict-Observational Modal Refinement] Let S and T be MIOs such
that αext(S) ⊇ αext(T ). S strict-observationally refines T , denoted by S ≤so T , iff there
exists a relation R ⊆ statesS×statesT containing (startS, startT ) such that for all (s, t) ∈ R,
for all actions a ∈ extT ,

1. if t
a−→

/

T t
′ then there exists s′ ∈ statesS such that s

a−→
/(extT )

S s′ and (s′, t′) ∈ R,

2. if s
a

99K
/(extT )

S s′ then there exists t′ ∈ statesT such that t
a

99K
/

T t
′ and (s′, t′) ∈ R.

Note that strict-observational refinement only uses the modal aspects of MIOs and can
thus also be defined for modal transition systems in their original form (cf. [21], not dis-
tinguishing between input/output/internal actions).

Strict-observational modal refinement can be proved to be a preorder on MIOs, i.e. it
is reflexive and transitive.

Lemma 1 Strict-observational modal refinement ≤so is reflexive and transitive.
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A proof of this lemma and all following lemmata and theorems can be found in [27].
Going back to our example, we had the problem that under weak refinement, the

s.complete? call is reported as an error, as it is no longer accepted after e.cancel?. With
strict-observational refinement, e.cancel? is no longer relevant for the refinement check
between the student protocol and the orchestration. As a result, the only problem reported
is the protocol breach due to the s.complete? call shown in dashed/dotted grey in the
orchestration of Fig. 2.

3.2 Strict-Observational I/O Compatibility

Now we focus on our second aim which concerns compatibility checks. Consider Fig. 3,
which is a replica of Fig. 2, however this time with complements of the protocols given
before. The question is whether the protocols are compatible with their complements and
whether the protocols are compatible with the orchestration.

s.update?

s.complete?

e.cancel?

s.abort!

Orchestration

ThesisManagement

t.assessThesis!

Provided Protocol 

EOffice

e.cancel!

s.update!

s.complete!
s.abort?

Required Protocol 

Student

Required Protocol 

Tutor

t.assessThesis?

are compatible

are compatible

are compatible

Figure 3: The eUniversity example (2)

Let us first formally define the notion of compatibility. As the closest match to our
approach, we introduce weak compatibility [2], which moderates the usual notion of strong
compatibility [19] by requiring that an output (issued by a may- or must-transition) must be
accepted with a corresponding input (by a must-transition), which may, however, possibly
be preceded by internal actions.2

Definition 5 [Weak Modal Compatibility, adapted from [2]] Let S and T be com-
posable MIOs. S and T are called weakly modally compatible, written S ∼wc T , iff there
exists a relation R ⊆ statesS×statesT containing (startS, startT ) such that for all (s, t) ∈ R,

2The definition of weak compatibility slightly differs from the one in [2] for technical reasons but is in
fact equivalent.
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1. for all a ∈ (outS ∩ inT ), if s
a

99KSs
′ then ∃t′ ∈ statesT .t

a−→
/

T t
′ and (s′, t′) ∈ R,

2. for all a ∈ (outT ∩ inS), if t
a

99KT t
′ then ∃s′ ∈ statesS.s

a−→
/

Ss
′ and (s′, t′) ∈ R,

3. for all a ∈ (intS ∪ extS \ shared(S, T )), if s
a

99KSs
′ then (s′, t) ∈ R,

4. for all a ∈ (intT ∪ extT \ shared(S, T )), if t
a

99KT t
′ then (s, t′) ∈ R.

Using weak modal compatibility, it is easy to see that the protocols and their com-
plements in our example (Figs. 2 and 3) are compatible. However, the goal is to achieve
preservation of compatibility under refinement – unfortunately, checking the Student pro-
tocol against the orchestration using weak modal compatibility yields a similar violation
as observed before during our discussion of refinement: After having taken the e.cancel?
transition, which is external to the orchestration but not shared with the protocol, the
s.update? transition of the protocol can no longer be taken. This problem cannot be
alleviated by hiding as hiding does not affect weak modal compatibility in any relevant
way (moving external labels to internals, see Def. 5, (iii) and (iv)). Instead, the idea is to
reduce the set of state pairs considered during compatibility checking.

Again, we want to consider all three protocols to be compatible with the orchestration,
in each case only considering the protocol-observable actions as before. We define strict-
observational I/O compatibility to reach this goal.

Definition 6 [Strict-Observational I/O Compatibility] Let S and T be composable
MIOs, and let L be the set shared(S, T ) of shared labels of S and T . S and T are called
strict-observationally I/O compatible, written S ∼so T , iff there exists a relation R ⊆
statesS × statesT containing (startS, startT ) such that for all (s, t) ∈ R,

1. for all a ∈ (outS∩ inT ), if s
a

99K
/(L)

S s′ then there exists t′ ∈ statesT such that t
a−→

/(L)

T t′

and (s′, t′) ∈ R,

2. for all a ∈ (outT ∩ inS), if t
a

99K
/(L)

T t′ then there exists s′ ∈ statesS such that s
a−→

/(L)

S s′

and (s′, t′) ∈ R.

Considering again the example of compatibility between the orchestration and the stu-
dent protocol, strict-observational I/O compatibility treats e.cancel? and t.assessThesis!
differently, as both actions are not defined in the student protocol. e.cancel? is only rele-
vant as a prefix to s.abort!, while t.assessThesis! is not considered at all. We therefore get
a positive compatibility result between ThesisManagement and Student as expected.

Lemma 2 Strict-observational I/O compatibility ∼so is symmetric.



12

3.3 Interface Theory

With strict-observational modal refinement and compatibility in place, we can now come
back to our initial goal of defining a domain-specific interface theory targeted at checking
protocol compliance in SOA systems.

In order to prove that MIOs together with strict-observational modal refinement and
strict-observational I/O compatibility forms an interface theory, we need an appropriate
notion of composition for MIOs, called strict-observational composition and denoted by
⊗so, which is adapted to our strict-observational view. Then we show that indeed Iso =
(MIO,≤so,∼so,⊗so), where MIO is the domain of all modal I/O automata, satisfies
preservation of compatibility and compositionality.

Definition 7 [Strict-Observational Composition] Two composable MIOs S1 and S2

can be strict-observationally composed to a MIO S1 ⊗so S2 defined by

• statesS1⊗soS2 = statesS1 × statesS2,

• startS1⊗soS2 = (startS1 , startS2),

• inS1⊗soS2 = (inS1 \ outS2) ] (inS2 \ outS1),

• outS1⊗soS2 = (outS1 \ inS2) ] (outS2 \ inS1),

• intS1⊗soS2 = intS1 ∪ intS2 ∪ shared(S1, S2).3

The transition relations are given by

1. for all ai ∈ shared(S1, S2), 1 ≤ i ≤ n, if there exists c ∈ (extS1 \ shared(S1, S2)) and

s1
a1−→

/

S1
. . .

an−→
/

S1
s′1

c−→
/

S1
s′′1, and s2

a1−→
/

S2
. . .

an−→
/

S2
s′2,

then (s1, s2)
c−→S1⊗soS2

(s′′1, s
′
2) (if n = 0 then s1 = s′1 and s2 = s′2),

2. for all ai ∈ shared(S1, S2), 1 ≤ i ≤ n, if there exists c ∈ (extS2 \ shared(S1, S2)) and

s1
a1−→

/

S1
. . .

an−→
/

S1
s′1, and s2

a1−→
/

S2
. . .

an−→
/

S2
s′2

c−→
/

S2
s′′2,

then (s1, s2)
c−→S1⊗soS2

(s′1, s
′′
2) (if n = 0 then s1 = s′1 and s2 = s′2),

3. and (iv), two similar rules for may-transitions (99K).

The intuition of this composition operator is to capture non-shared external actions c,
which may be prefixed by a number of shared actions a1 . . . an (or none at all): any path
only involving transitions with shared labels do not appear as synchronised actions in the
composition; in fact, compositions S1 ⊗so S2 do not contain any internal actions at all. In
particular, any communication failures of two composed MIOs which are not compatible
(i.e. a shared output is not received) does not emerge in the composed MIO.

3This is a correction to the publication necessary for the proof of associativity of strict-observational
composition.
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Strict-observational composition satisfies associativity and commutativity which is a
basic requirement for any reasonable composition operator.4

Lemma 3 Strict-observational composition ⊗so is commutative and associative.

First, we show that strict-observational compatibility is preserved under strict-observational
modal refinement.

Theorem 1 [Preservation of Compatibility] Let S, T , T ′ be MIOs, and let S, T and
S, T ′ be composable. If S ∼so T , T ′ ≤so T and shared(S, T ) = shared(S, T ′), then it
follows that S ∼so T ′.

Compositionality is the prerequisite for independent implementability of services and
their modular verification.5

Theorem 2 [Compositionality] Let S, T , T ′ be MIOs, and let S, T and S, T ′ be com-
posable. If T ′ ≤so T and shared(S, T ) = shared(S, T ′), then S ⊗so T ′ ≤so S ⊗so T .

Independent implementability is a direct consequence of preservation of compatibility
under refinement and compositionality of refinement. Even more than in traditional soft-
ware architectures, SOA systems benefit from this property due to the inherent distribution
of services and orchestrations in the service-based application landscape.

Corollary 1 [Independent Implementability] Let S, T , T ′ be MIOs, and let S, T and
S ′, T ′ be composable. If S ∼so T , T ′ ≤so T , S ′ ≤so S and shared(S, T ) = shared(S ′, T ′),
both S ′ ∼so T ′ and S ′ ⊗so T ′ ≤so S ⊗so T follow.

Proof 1 First, it can be easily shown that

shared(S, T ) = shared(S, T ′) = shared(S ′, T ′).

By Thm. 1, it follows S ∼so T ′, and by Lem. 2, T ′ ∼so S. Again by Thm. 1 and Lem. 2,
it follows that S ′ ∼so T ′. Second, we show S ′ ⊗so T ′ ≤so S ⊗so T . We apply Thm. 2 to get
S ⊗so T ′ ≤so S ⊗so T . Moreover, by Thm. 2, it follows T ′⊗so S ′ ≤so T ′⊗so S. Since ⊗so is
commutative (Lem. 3) and ≤so transitive (Lem. 1), it holds that S ′ ⊗so T ′ ≤so S ⊗so T .

This concludes our work to form an appropriate interface theory for protocol compliance
checking of service orchestrations. As we have illustrated with our practical example, Iso =
(MIO,≤so,∼so,⊗so) is indeed a suitable semantic framework for checking refinement and
compatibility of service protocols and orchestrations. The strict-observational interface

4For commutativity to hold, we assume that two MIOs are considered equal if they have the same
(internal and external) alphabet and there exists a bijection between the state spaces such that both may-
and must-transition relations are preserved.

5Interestingly, note that if αext(T ) = αext(T
′), then S ⊗so T

′ ≤so S ⊗so T is equivalent to S ⊗so T
′ ≤m

S ⊗so T where ≤m is strong modal refinement [21].
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theory provides SOA developers with a tool for checking protocol implementation and
compatibility on an application level, which can be used in addition to existing interface
theories, e.g. building on weak refinement and compatibility.

We have implemented strict-observational refinement, compatibility, and composition
in the MIO Workbench [2], an Eclipse-based verification tool which includes an editor
for MIOs and is able to depict relations and problematic paths directly on the graphical
MIO representation. The workbench also implements the standard notions of refinement
and compatibility (strong, weak, and may-weak refinement as well as strong, weak, and
friendly environment compatibility, cf. [2, 19]), which allows a direct comparison between
the individual interface theories.

4 Related Work

The general study of interface theories was started by de Alfaro and Henzinger in [5,
9]. Their well-known interface theory called interface automata essentially builds on the
formalism of input/output automata [24, 25, 14] accompanied with notions of refinement
(defined by alternating simulation) and compatibility [4]. This theory has recently been
generalized to an interface theory based on modal input/output transition systems [19, 20]
which uses modal automata [21, 17] for modelling interface behaviour. However, less
attention has been paid to refinement between interfaces with different alphabets. Recently,
the approach proposed in [29, 30] deals with alphabet extension by adding self-loops for
the new actions to all states of the automaton. It is easy to see (same argument as given
in Sect. 3.1) that this solution is not adequate to handle our situations. In [11] Fischbein
et al. propose branching alphabet refinement of modal transition systems to cope with the
problem of unintuitive implementations allowed by weak modal refinement. However, their
refinement is classic in the sense that it considers single transitions in the preconditions,
which is too strict for our application area.

Action refinement [15] is a flexible notion of refinement which is based on refining
actions when changing the abstraction level: An action of an abstract specification can be
decomposed into a sequence of low-level actions specifying the system in more detail. We
differ from this notion as all of our actions reside on the same abstraction level, yet we
only consider some of them depending on the current viewpoint.

There is also an extensive body of knowledge on semantics and analysis of Web ser-
vice orchestrations based on industry standards like BPEL; [31] provides a decent overview.
However, to the best of our knowledge, no approach so far has considered early application-
level verification as a precursor to existing approaches. Instead, the focus lies on analysis
of specific aspects of service orchestrations. Both [22] and [26] analyse BPEL compositions
through transformations to petri-nets. Their composition analysis assumes a friendly en-
vironment in the sense of [4], but is not geared towards application-level analysis of service
orchestrations. Fu et al. [13] present a translation of a composition of BPEL processes to
Promela, the input language of the SPIN model checker [16]. However, due to the interac-
tion semantics of the translation, application-level verification is not feasible. Two further



15

approaches that are closer to ours use calculi to specify the underlying labelled transition
systems: [3] explicitly focusses on strong notions of compliance and compatibility. For
calculi-based model-checking approaches like [10], the same reasoning as for [13] applies:
application-level verification is prohibited by the composition semantics of the language.

Regarding tool support, the MIO Workbench differs from existing tools such as MTSA
[7, 8], TICC [1], or Tempo [23] by explicitly considering both modality and input/output
aspects of MIOs. Compared to SOA verification tools such as WS-Engineer [12], the MIO
Workbench is more experimental: Based on input given directly as MIOs, it allows different
(pluggable) interface theories to be applied to investigate both the model and the theories
themselves.

5 Conclusion

The development of large, distributed software systems is increasingly carried out by using
service-oriented architectures, in which services form the basic building blocks of the system
to be composed to form new services, a process which is known as orchestration. By using a
model-driven approach to SOA development, models of services and service orchestrations
are available early in the development process, where they can be analysed and verified to
increase overall system quality.

In this paper, we have investigated protocol compliance checking for service orchestra-
tions. We have placed particular focus on detecting protocol breaches, allowing service
engineers to directly work with their models on the application-level. Our approach is
based on the semantic domain of modal I/O automata and supported by a new interface
theory we call strict-observational as it focusses on externally visible actions from the view-
point of a certain protocol. We have given formal definitions of this theory, and shown
that it indeed constitutes a valid interface theory for domain-specific formal analysis of
service-oriented systems.

We have successfully used strict-observational refinement and compatibility for checking
the case studies of the EU project Sensoria. A set of examples as well as full tool support
is available through the MIO Workbench available from www.miowb.net.

As future work, we intend to include the strict-observational theory into our larger
framework of interface theories already discussed in [2].
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Johannes Grünbauer, David Harel, and C. A. R. Hoare, editors, Engineering Theories
of Software-intensive Systems, volume 195 of NATO Science Series: Mathematics,
Physics, and Chemistry, pages 83–104. Springer, 2005.

[7] Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Sebastián Uchitel. MTSA:
The Modal Transition System Analyser. In 23rd Int. Conf. Automated Software En-
gineering, ASE 2008, pages 475–476. IEEE Computer Societey, 2008.

[8] Nicolás D’Ippolito, Dario Fischbein, Howard Foster, and Sebastián Uchitel. MTSA:
Eclipse support for modal transition systems construction, analysis and elaboration. In
Li-Te Cheng, Alessandro Orso, and Martin P. Robillard, editors, OOPSLA Workshop
Eclipse Technology eXchange, ETX 2007, pages 6–10. ACM Press, 2007.

[9] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana Petrov. In-
terface theories with component reuse. In Luca de Alfaro and Jens Palsberg, editors,
8th Int. Conf. Embedded software, EMSOFT 2008, pages 79–88. ACM Press, 2008.

[10] Alessandro Fantechi, Stefania Gnesi, Alessandro Lapadula, Franco Mazzanti, Rosario
Pugliese, and Francesco Tiezzi. A model checking approach for verifying COWS
specifications. In J. L. Fiadeiro and P. Inverardi, editors, 11th Int. Conf. Fundamental



17

Approaches to Software Engineering, FASE 2008, volume 4961 of LNCS, pages 230–
245. Springer, 2008.

[11] Dario Fischbein, Vı́ctor A. Braberman, and Sebastián Uchitel. A Sound Observational
Semantics for Modal Transition Systems. In Martin Leucker and Carroll Morgan,
editors, 6th Int. Colloquium Theoretical Aspects of Computing, ICTAC 2009, volume
5684 of LNCS, pages 215–230. Springer, 2009.

[12] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer. WS-Engineer: A
Model-Based Approach to Engineering Web Service Compositions and Choreography.
In Luciano Baresi and Elisabetta Di Nitto, editors, Test and Analysis of Web Services,
pages 87–119. Springer, 2007.

[13] Xian Fu, Tevfik Bultan, and Jianwen Su. Analysis of Interacting BPEL Web Services.
In 3rd Int. Conf. on Web Services, ICWS 2004, pages 621–630. IEEE Computer
Society, 2004.

[14] Stephen J. Garland and Nancy Lynch. Using I/O Automata for Developing Dis-
tributed Systems. In In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 285–312. Cambridge University Press, 2000.

[15] Roberto Gorrieri and Arend Rensink. Action refinement. In J. A. Bergstra, A. Ponse,
and S. A. Smolka, editors, Handbook of Process Algebra, chapter 16, pages 1047–1147.
Elsevier, 2001.

[16] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.
Addison-Wesley Professional, 2003.
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A Proofs

Lemma 4 Let S be a MIO and a ∈ actS. If s
a−→

/(L)

S s′ and L′ ⊆ L then s
a−→

/(L′)

S s′.

Proof 2 of Lem. 4 Let s
a−→

/(L)

S s′ and L′ ⊆ L. By definition of −→/(L), we must distinguish
two cases.

1. s
a−→Ss

′. Here, s
a−→

/(L′)

S s′ holds.

2. there exist n ≥ 1, states s1, . . . , sn ∈ statesS, and actions b1, . . . , bn ∈ (actS \L) such
that

s
b1−→Ss1 . . . sn−1

bn−→Ssn
a−→Ss

′.

Since L′ ⊆ L, it holds for all bi that bi ∈ (actS \ L′). From this we can deduce that

s
a−→

/(L′)

S s′ holds.

Proof 3 of Lem. 1 (Reflexivity and Transitivity of Refinement)
As reflexivity of refinement is easy to show, we focus on showing transitivity.

Let S ≤so U and U ≤so T , we have to show that S ≤so T . We can assume a strict-
observational modal refinement R1 for S and U , and a strict-observational modal refine-
ment R2 for U and T . We now define a relation R ⊆ statesS × statesT by

R = {(s, t) | ∃u ∈ statesU .(s, u) ∈ R1 ∧ (u, t) ∈ R2}.

We show that R is a strict-observational modal refinement for S and T. First, it holds
that (startS, startT ) ∈ R. Now, we have to show (i) and (ii) from Definition 4 of strict-
observational modal refinement.

1. (Protocol to Implementation). Assume (s, t) ∈ R and

t
a−→

/

T t
′

for some a ∈ extT (only consider externals as per definition of ≤so). By definition of
R, there exists u ∈ statesU such that (s, u) ∈ R1 and (u, t) ∈ R2. From R2 it follows
that there exists a state u′ ∈ statesU such that

u
a−→

/(extT )

U u′

and (u′, t′) ∈ R2. It follows that we have

u
b1−→

/

U . . .
bn−→

/

U û
a−→

/

Uu
′

for some n ≥ 0 (if n = 0 then u = û) and for some bi ∈ extU \ extT , 1 ≤ i ≤ n
(if n > 0). By assumption we know (s, u) ∈ R1. By induction on the number of
transitions between u and û in this trace we can show that there exist transitions

s
b1−→

/(extU )

S . . .
bn−→

/(extU )

S ŝ
a−→

/(extU )

S s′
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such that (s′, u′) ∈ R1. By Lemma 4 and because of bi /∈ extT we get

s
a−→

/(extT )

S s′,

thus, by definition of R, we get (s′, t′) ∈ R.

2. (Implementation to Protocol). The proof for the other direction is very similar.

Proof 4 of Thm. 1 (Preservation of Compatibility)
Assume S ∼so T and T ′ ≤so T . We have to show that S ∼so T ′. From the first assump-

tion it follows that there exists a strict-observational I/O compatibility relation RC between
S and T . From the second assumption it follows that there exists a strict-observational
modal refinement relation RT for T ′ and T . We define a relation R ⊆ statesS × states ′T as
follows:

R = {(s, t′) | ∃ t ∈ statesT . (t′, t) ∈ RT ∧ (s, t) ∈ RC}
We first show that (startS, startT ′) ∈ R. As S ∼so T , we know that (startS, startT ) ∈

RC. As T ′ ≤so T , we know that (startT ′ , startT ) ∈ RT . It follows that (startS, startT ′) ∈ R
from the definition of R.

Now, assume (s, t′) ∈ R. We have to show (i) and (ii) from Definition 6 of strict-
observational I/O compatibility. Let L = shared(S, T ) = shared(S, T ′).

1. (S to T ′). Assume

s
a!
99K

/(L)

S s

for some a ∈ (outS ∩ inT ′). Per definition of R, there exists a t ∈ T with (t′, t) ∈ RT

and (s, t) ∈ RC. Because (s, t) ∈ RC and s
a!
99K

/(L)

S s we know that

t
a?−→

/(L)

T t and (s, t) ∈ RC .

• If also t
a?−→

/

T t then because of (t′, t) ∈ RT it follows t′
a?−→

/(extT )

T ′ t
′

and (t
′
, t) ∈

RT . By Lemma 4 also t′
a?−→

/(L)

T ′ t
′

since L ⊆ extT . Per definition of R we get
(s, t

′
) ∈ R.

• Otherwise there exists bi ∈ extT \ L, 1 ≤ i ≤ n, such that

t
b1−→

/

T . . .
bn−→

/

T t̂
a?−→

/

T t.

By a stepwise application of refinement we get

t′
b1−→

/(extT )

T ′ . . .
bn−→

/(extT )

T ′ t̂′
a?−→

/(extT )

T ′ t
′

such that (t
′
, t) ∈ RT . Similar to above (since L ⊆ extT ), by Lemma 4 we get

t′
b1−→

/(L)

T ′ . . .
bn−→

/(L)

T ′ t̂
′ a?−→

/(L)

T ′ t
′

and because bi /∈ L it follows that t′
a?−→

/(L)

T ′ t
′
.
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2. (T ′ to S). Assume

t′
a!
99K

/(L)

T ′ t
′

for some a ∈ (outT ′ ∩ inS). Per definition of R, there exists a t ∈ T with (t′, t) ∈ RT

and (s, t) ∈ RC.

• If also t′
a!
99K

/(extT )

T ′ t
′

then we get t
a!
99K

/

T t and (t
′
, t) ∈ RT . By Lemma 4 also

t
a!
99K

/(L)

T t. By compatibility it follows s
a?−→

/(L)

S s, (s, t) ∈ RC, and hence (s, t
′
) ∈

R.

• Otherwise there exist bi ∈ extT \ L, 1 ≤ i ≤ n, such that

t′
b1
99K

/(extT )

T ′ . . .
bn
99K

/(extT )

T ′ t̂′
a!
99K

/(extT )

T ′ t
′
.

By a stepwise application of refinement we get

t
b1
99K

/

T . . .
bn
99K

/

T t̂
a!
99K

/

T t

such that (t
′
, t) ∈ RT . By Lemma 4,

t
b1
99K

/(L)

T . . .
bn
99K

/(L)

T t̂
a!
99K

/(L)

T t

and because of bi /∈ L, t
a!
99K

/(L)

T t. By compatibility it follows s
a?−→

/(L)

S s, (s, t) ∈
RC, and hence (s, t

′
) ∈ R.

Proof 5 of Lem. 3 (Commutativity and Associativity of Composition)
Commutativity is easy see as the definition of composition is symmetric. We focus here on
the associativity of composition, i.e. to show that (S⊗soT )⊗soU = S⊗so (T ⊗soU) modulo
state bijection. First, we need to show that that S is composable with T and S ⊗so T is
composable with U if and only if T is composable with U and S is composable T ⊗so U .

Assume that S is composable with T and S ⊗so T is composable with U . From the
definition of composability, it follows that

(inS ∪ intS) ∩ (inT ∪ intT ) = ∅ (i)

(outS ∪ intS) ∩ (outT ∪ intT ) = ∅ (ii)

[(inS \ outT ) ∪ (inT \ outS) ∪ intS ∪ intT ∪ (outS ∩ inT ) ∪ (outT ∩ inS)]
∩(inU ∪ intU) = ∅ (iii)

[(outS \ inT ) ∪ (outT \ inS) ∪ intS ∪ intT ∪ (outS ∩ inT ) ∪ (outT ∩ inS)]
∩(inU ∪ intU) = ∅ (iv)

By applying (A \B) ∪ (A ∩B) = A, the equations (iii) and (iv) can be simplified.

(inS ∪ inT ∪ intS ∪ intT ) ∩ (inU ∪ intU) = ∅ (v)

(outS ∪ outT ∪ intS ∪ intT ) ∩ (inU ∪ intU) = ∅ (vi)
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Now, we have to show that T is composable with U , i.e.

(inT ∪ intT ) ∩ (inU ∪ intU) = ∅ (vii)

(outT ∪ intT ) ∩ (outU ∪ intU) = ∅ (viii)

Equation (vii) follows directly from (v), and (viii) follows from (vi). Next, we need to
show that S is composable T ⊗so U , i.e.

(inS ∪ intS) ∩ (inU ∪ intU ∪ inT ∪ intT ) = ∅ (ix)

(outS ∪ intS) ∩ (outU ∪ intU ∪ outT ∪ intT ) = ∅ (x)

The left hand side of (ix) can be transformed as follows.

(inS ∪ intS) ∩ (inU ∪ intU ∪ inT ∪ intT )

= [(inS ∪ intS) ∩ (inU ∪ intU)]︸ ︷︷ ︸
=∅, from (i)

∪ [(inS ∪ intS) ∩ (inT ∪ intT )]︸ ︷︷ ︸
=∅, from (v)

Similarly, the left hand side of (x) can be transformed.

(outS ∪ intS) ∩ (outU ∪ intU ∪ outT ∪ intT )

= [(outS ∪ intS) ∩ (outU ∪ intU)]︸ ︷︷ ︸
=∅, from (ii)

∪ [(outS ∪ intS) ∩ (outT ∪ intT )]︸ ︷︷ ︸
=∅, from (vi)

Hence, S is composable T ⊗so U . The proof for the inverse direction can be shown in the
same way.

Now, as a small lemma, it is convenient to show that if S, T and U are composable,
then shared(S, T ⊗soU) = shared(S, T )] shared(S, U). By definition of shared and since
S, T and U are composable, it holds that

shared(S, T ⊗so U) = (inS ∩ outT⊗soU) ] (inT⊗soU ∩ outS)

This term can be further transformed as follows.

(inS ∩ (outT \ inU ] outU \ inT ) ] (outS ∩ (inT \ outU ] inU \ outT ))

= (inS ∩ outT \ inU) ] (inS ∩ outU \ inT ) ] (outS ∩ inT \ outU) ] (outS ∩ inU \ outT )

This last term can be simplified again since S, T and U are composable and therefore
inS ∩ inU = ∅, outS ∩ outU = ∅ inS ∩ inT = ∅, and outS ∩ outT = ∅:

(inS ∩ outT ) ] (inS ∩ outU) ] (outS ∩ inT ) ] (outS ∩ inU)

This is exactly the same as

shared(S, T ) ] shared(S, U)
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Finally, we show that

(sS, (sT , sU))
c−→S⊗so(T⊗soU)(s

′
S, (s

′
T , s

′
U))

if and only if
((sS, sT ), sU)

c−→S⊗so(T⊗soU)((s
′
S, s
′
T ), s′U)

Assume hence that
(sS, (sT , sU))

c−→S⊗so(T⊗soU)(s
′
S, (s

′
T , s

′
U))

The same must be shown for may also, but this can be shown just as below. We deal with
each of the cases according to the definition of −→S⊗so(T⊗soU).

(1) Let c ∈ extS \ extT⊗soU . By definition, there is a path wS ∈ (intS ] shared(S, T ) ]
shared(S, U))∗ in S to ŝS with

ŝS
c−→

/

Ss
′
S

Similarly, there is a path in T ⊗so U , w ⊆ wS, w ∈ (shared(S, T ) ] shared(S, U))∗

from (sT , sU) to (s′T , s
′
U). Note that w does not contain any internal actions due to

the definition of strict-observational composition. From the existence of the path w,
it follows that there are paths wT ∈ (intT ] shared(T, U) ] shared(T, S))∗ from sT
to s′T , and wU ∈ (intU ] shared(U, T ) ] shared(U, S))∗ from sU to s′U . Both wT and
wU correspond to w on shared actions. Now, considering (sS, sT ) in S ⊗so T , from the
existence of wS and wT which correspond on shared actions, we can derive that there is
a path from (sS, sT ) to (ŝS, s

′
T ), wST ∈ (shared(T, U) ] shared(S, U))∗. Furthermore,

we know that (ŝS, s
′
T )

c−→S⊗soT (s′S, s
′
T ). As wST correspond to wU on shared actions,

we can derive that

((sS, sT ), sU)
c−→(S⊗soT )⊗soU((s′S, s

′
T ), s′U)

(2) Let c ∈ extS \ extT⊗soU . By definition, there is a path wS ∈ (intS ] shared(S, T ) ]
shared(S, U))∗ in S to s′S. Similarly, there is a path in T ⊗so U , w ⊆ wS w ∈
(shared(S, T ) ] shared(S, U))∗ from (sT , sU) to (ŝT , ŝU), and a transition

(ŝT , ŝU)
c−→

/

T⊗soU(s′T , s
′
U)

Again, w does not contain any internal actions by definition of strict-observational
composition. From the existence of the path w, it follows that there are paths wT ∈
(intT ] shared(T, U)] shared(T, S))∗ from sT to ŝT , and wU ∈ (intU ] shared(U, T )]
shared(U, S))∗ from sU to ŝU . Again, both wT and wU correspond to w on shared ac-
tions. Now, considering (sS, sT ) in S⊗soT , from the existence of wS and wT which cor-
respond on shared actions, we can derive that there is a path from (sS, sT ) to (s′S, ŝT ),
wST ∈ (shared(T, U)] shared(S, U))∗. Again, it holds that wST corresponds to wU on
shared actions. Next, we need to consider the origin of c ∈ extS \ extT⊗soU .
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(a) c ∈ extT \ extU . Here, we know that ŝU = s′U , and by definition of strict obser-

vational composition also that ŝT
c−→

/

T s
′
T . Hence, (s′S, ŝT )

c−→S⊗soT (s′S, s
′
T ), and

therefore also ((s′S, ŝT ), ŝU)
c−→(S⊗soT )⊗soU((s′S, s

′
T ), s′U).

(b) c ∈ extU \ extT . Conversely, it holds that ŝT = s′T , and ŝU
c−→

/

T s
′
U . From this, it

follows directly that ((s′S, ŝT ), ŝU)
c−→(S⊗soT )⊗soU((s′S, s

′
T ), s′U).

Altogether, we have shown that

((sS, sT ), sU)
c−→(S⊗soT )⊗soU((s′S, s

′
T ), s′U)

The inverse direction can be proven in the same way, which concludes the proof for asso-
ciativity of strict-observational composition.

Proof 6 of Thm. 2 (Compositionality of Refinement)
Let S, T , T ′ be MIOs with T ′ ≤so T . From T ′ ≤so T it follows that there exists a strict-
observational refinement RT for T ′ and T . We have to prove that S ⊗so T ′ ≤so S ⊗so T
holds. Therefore, we define a relation R ⊆ (statesS × statesT ′)× (statesS × statesT ) by

R = {((s, t′), (s, t)) | (t′, t) ∈ RT}

which we show now is a strict-observational refinement relation for S ⊗so T ′ and S ⊗so T .
We immediately know by definition that ((startS, startT ′), (startS, startT )) ∈ R holds.

We now take an arbitrary pair ((s, t′), (s, t)) ∈ R, and show (i) from Definition 4 of strict-
observational modal refinement; condition (ii) can be proved in an analogous way.

Let
(s, t)

a−→
/

S⊗soT (s, t)

for some a ∈ extS⊗soT (we only consider external actions as per definition of strict-
observational modal refinement; note also that extS⊗soT does not contain shared labels).
We have to show that there exists

(s, t′)
a−→

/(extS⊗soT )

S⊗soT ′ (s, t
′
)

such that
((s, t

′
), (s, t)) ∈ R.

In S ⊗so T , all occurring actions are those which were already external in either S or T ,
i.e. not shared between S and T . Thus, either

(1) a ∈ extS, a /∈ extT , or

(2) a /∈ extS, a ∈ extT .

We deal with each of these two cases.
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(1) a ∈ extS, a /∈ extT
Given is the following:

(s, t)
a−→

/

S⊗soT (s, t)

Using the Definition 7 of ⊗so, part (i), we get

s
b1−→

/

S . . .
bn−→

/

S ŝ
a−→

/

Ss and t
b1−→

/

T . . .
bn−→

/

T t

for some n ≥ 0; either n = 0 then s = ŝ and t = t, or n > 0 then there exist
shared actions b1, . . . , bn ∈ shared(S, T ). As said before, a ∈ extS, a /∈ extT . Now,
by induction on the length n ≥ 0, we show that from the latter and the assumption
(t′, t) ∈ RT , we can get

t′
b1−→

/(extT )

T ′ . . .
bn−→

/(extT )

T ′ t
′

and (t, t
′
) ∈ RT .

Base case n = 0. Then t = t, t′ = t
′

and (t
′
, t) = (t′, t) ∈ RT by assumption.

Induction step. Assume that we have for some n

t
b1−→

/

T . . .
bn−→

/

T tn
bn+1−→

/

T t and (t′, t) ∈ RT .

By applying our induction hypothesis, we get

t′
b1−→

/(extT )

T ′ . . .
bn−→

/(extT )

T ′ t′n and (t′n, tn) ∈ RT .

From strict-observational modal refinement, we get that

t′n
bn+1−→

/(extT )

T ′ t′n+1 and (t′n+1, tn+1) ∈ RT

which concludes the proof by induction. Thus, we have shown that

t′
b1−→

/(extT )

T ′ . . .
bn−→

/(extT )

T ′ t
′

and (t, t
′
) ∈ RT .

When transforming this trace to action-weak transitions w.r.t. /(extT ′), every transi-
tion with label bi is preceded by finitely many transitions labelled with actions in extT ′ \
extT which by assumption (shared(S, T ) = shared(S, T ′)) are not in shared(S, T ′).
Hence by Definition 7 of strict-observational composition, we can successively compose
these tranformed transitions with the transitions

s
b1−→

/

S . . .
bn−→

/

S ŝ
a−→

/

Ss

yielding a transition with label a in extS⊗soT ′ preceded by finitely many transitions la-
belled with actions in extT ′ \extT . Thus, by restricting the relevant actions to extS⊗soT ,
we get

(s, t′)
a−→

/(extS⊗soT )

S⊗soT ′ (s, t
′
).

As we also have (t
′
, t) ∈ RT , we get

((s, t
′
), (s, t)) ∈ R.
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(2) (case a /∈ extS, a ∈ extT ).

Again, assume
(s, t)

a−→
/

S⊗soT (s, t)

Using the Definition 7 of ⊗so, part (i), we get

s
b1−→

/

S . . .
bn−→

/

Ss and t
b1−→

/

T . . .
bn−→

/

T t̂
a−→

/

T t

for some n ≥ 0; either n = 0 then s = ŝ and t = t, or n > 0 then there exist shared
actions b1, . . . , bn ∈ shared(S, T ). One can show, similar to the previous case, that it
holds (by induction) that there exist

t′
b1−→

/(extT )

T ′ . . .
bn−→

/(extT )

T ′ t̂′
a−→

/(extT )

T ′ t
′

and (t, t
′
) ∈ RT .

Again, by the same argument as above, we get

(s, t′)
a−→

/(extS⊗soT )

S⊗soT ′ (s, t
′
).

As we also have (t
′
, t) ∈ RT , we get

((s, t
′
), (s, t)) ∈ R.

The second part (ii) (≤so, Implementation to Protocol) can be proven in a similar way
as above, just with may-transitions instead of must-transitions.
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