
Patterns of Cross-Language Linking in Java
Frameworks

Philip Mayer and Andreas Schroeder
Chair for Programming and Software Engineering

Ludwig-Maximilians-Universität München, Germany
{mayer,schroeder}@pst.ifi.lmu.de

Abstract—The term Cross-Language Linking refers to the
ability to specify, locate, navigate, and keep intact the con-
nections between artifacts defined in different programming
languages used for building one software application. Although
understanding cross-language links and keeping them intact
during development and maintenance activities is an important
productivity issue, there has been little research on understanding
the characteristics of such connections. We have thus built
a theory from case studies, specifically, three theory-selected
Java cross-language frameworks, each of which links artifacts
written in the Java programming language to artifacts written
in a declarative, framework-specific domain specific language.
Our main contribution is to identify, from these experiences,
common patterns of cross-language linking in the domain of Java
frameworks with DSLs, which besides their informative nature
can also be seen as requirements for designing and building a
linking language and tooling infrastructure.

Index Terms—Cross-language, artifact linking, semantic mod-
els, language design, patterns, case study

I. INTRODUCTION

The use of multiple programming languages to build one
software system is common for most applications today [1].
Usually, a multitude of languages is used in the development,
deployment, and maintenance of software — this includes
imperative, functional, and object-oriented general-purpose
languages, database querying languages, UI specification lan-
guages, system configuration languages, and a multitude of
even more domain-specific languages [2].

The languages in such Multi-Language Software Applica-
tions (MLSAs) [3] do not stand alone. Rather, they integrate
and reference each others artifacts to implement the desired
system behavior. This creates cross-language semantic links
[4] between artifacts of different languages, and the system
depends on the integrity of such links for correct operation.

Cross-language links are by definition out of scope for tools
written for any one programming language. It has been argued
that the lack of explicit support for cross-language links is
detrimental to developer productivity and overall stability of
the system [1], [4], [5], [6]. An experiment with students [7]
has already shown that using a support tool for such polyglot
programming is beneficial for developers.

Different approaches to handling cross-language links have
been discussed in the literature for different purposes such
as analysis, code understanding, and refactoring [4]. These
approaches differ with regard to which frameworks are tar-
geted and how the rules governing cross-language links are

described. What is clear is that formulating such rules, and
even more creating a formal language for expressing such
rules, is a complex task — especially if the aim of the language
is enabling not only analysis and program understanding, but
refactoring as well.

We believe that this task requires a thorough understanding
of the structure of cross-language links, which has not yet
been studied in a rigorous way. In the paper at hand, we
describe our efforts to contribute to this understanding. We first
carve out a subdomain of this area, namely frameworks based
on Java with their own respective domain specific languages.
Then, we look at the properties cross-language links exhibit
in real-world, industrial Java frameworks that make use of
cross-language linking — and try to describe and generalize on
these properties. We do not, in this work, address other cross-
language links such as between two general-purpose languages
or between two declarative, domain-specific languages.

Using the approach for building theory from case studies
[8], we have investigated three theory-selected cross-language
frameworks, each of which links artifacts written in the Java
programming language to artifacts written in a declarative,
framework-specific domain specific language. Our main con-
tribution is to identify common patterns of cross-language
linking in this context, which besides their informative nature
can also be seen as requirements for designing a linking
language and tooling infrastructure.

This paper is structured as follows: We first describe our
research method in Sect. II. Afterwards, we discuss the steps
we have followed in more detail (Sect. III). The patterns of
cross-language linking are reported in Sect. IV. We discuss
our findings in Sect. V, present related work in Sect. VI, and
follow up with a conclusion in Sect. VII.

II. RESEARCH METHOD

Our research aim is understanding how links between arti-
facts written in different programming languages are formed,
what their characteristics are, and how they can be described.
To gather such knowledge, we have chosen to use the research
method for building theory from case studies, as outlined by
Eisenhardt [8].

As we have pointed out in the introduction, the term cross-
language link is very general and can basically be applied to
link artifacts between any two languages; restricting to formal
languages obviously does not help. Although our overarching



aim is to get an understanding of all cross-language linking
efforts, we acknowledge that we cannot, as of yet, describe
the characteristics and categories of such links in general.

Instead, we start smaller: Following the method of Eisen-
hardt, we have attempted to identify a population or sub-area to
focus our efforts on. We have decided to define our population
as consisting of software frameworks which a) are written
in the Java programming language; b) offer their services to
developers in the Java programming language; and c) include
a domain-specific, declarative language in which parts of the
system are written and whose artifacts affect, or are affected
by, Java artifacts. The research quesion we finally chose to
address for this work is:

What are the characteristics of cross-language links between
Java and domain-specific DSLs in Java frameworks? How

can we describe and categorize their properties?

The reason for selecting this subset is threefold. First, Java
is a well-known programming language with both academic
and industrial relevance. Second, there are many open-source
frameworks and applications in the Java world which are
amenable to analysis. Thirdly, there exists good tool support
in the form of IDEs for both Java and for many of the Java
frameworks which can be easily extended.

Having selected our population, the question of sampling
arises. As Eisenhardt points out, theory building from case
studies requires focusing the effort on useful cases for the
theory — thus, instead of random sampling, theoretical sam-
pling is used. Surveying the area of frameworks with the
above features, we have identified the three general areas with
different purposes in which DSLs are common. These areas
are a) UI specification, b) system configuration, and c) data
querying. There are several DSL-enabled Java frameworks in
each area, rendering those areas representative for the type of
cross-language interactions we intend to look at.

We have then selected one case from each area, i.e. one
framework to investigate further and to ground our theory
in. In addition to their being part of our population, the
frameworks were selected using the following rationale: a) it
should be a well-known framework which is in industrial use;
b) there should be a reference documentation available online,
and c) there should be open-source applications available for
testing. The following frameworks have been chosen:

• Android UI framework. Widely used on mobile devices,
the Android UI framework is surely both well-known and
in industrial use. The entire documentation is available
online, and there are several open-source applications
available which use the UI framework.

• Spring Inversion-Of-Control. The Spring IOC container,
used for identifying beans and configuring them, is part
of the Spring framework, a well-known and widely used
Java enterprise framework. There is comprehensive doc-
umentation online and there are several large-scale open-
source applications available for testing.

• Hibernate Query Language. The Hibernate Query Lan-
guage (HQL), part of the Hibernate Object-Relational

Mapper, is used to query objects from a database by
referencing Java entities and their properties. Again,
Hibernate is well-known, used in industry, documented
online, and there are open-source applications available
which can serve as a test-bed for our theory.

Having selected our cases, we then proceeded to the main
steps of theory building. As discussed by Eisenhardt, these
steps, which include data collection, data analysis, shaping
hypotheses, and enfolding literature, are partially overlapping
and are iterated until it is possible to reach closure.

During our work, we have realized that a good way of actu-
ally writing down our theory is using a pattern language, i.e.
formulating patterns of cross-language linking which describe
the properties of cross-language links. To reach a grounded,
saturated list of patterns, we have performed the following
steps in iteration:

• Reading the framework documentation to compile a
textual description of which artifacts are linked by the
framework in which way. We call these descriptions rules.
In a way, these rules are a handbook for how to establish
and check links.

• Implementing the descriptions in Java, running them on
open-source demo applications, and checking the results
manually against the code to ensure their correctness.

• Harmonizing these descriptions across the cases, i.e.
trying to find common themes.

• Annotating (what Eisenhardt calls coding) the textual
descriptions with what were at first structural findings
and which were to become the patterns later on, to make
sure each pattern is actually grounded in all cases.

• Fleshing out the patterns with descriptions and cross-
references to enable them to stand alone, back-referencing
to the textual linking descriptions.

To our knowledge, this is the first attempt to describe the
characteristics of cross-language links in Java frameworks as
described above.

III. FRAMEWORKS, RULES, AND APPLICATIONS

Our attempts to discover which cross-language links exist
in the three frameworks and how to describe them can be
split into three steps. The first of these is establishing a way
of talking about language artifacts by using semantic models
(discussed in section III-A). Based on this, we can write down,
in plain text, where, how, and what to link in each case in
the form of rules (section III-B). Finally, these rules can be
implemented and tested against actual code written using the
frameworks, which is discussed in section III-C.

A. Language Metamodels

When setting out to describing the cross-language links, it
quickly becomes apparent that we need some way of precisely
specifying which artifacts, and links between artifacts, are
being discussed. A good way of doing this is by using semantic
models [2], i.e. meta-models of programming languages which
capture the domain of the language on a higher and more



Fig. 1. Spring IOC (top) and Java model fragments (bottom)

conceptual level than an abstract syntax tree, and usually using
a graph-based, fully resolved structure.

Unfortunately, such models are available for very few
languages. While we have been able to find one for Java
(MoDisco, [9]), none are available for the domain-specific
languages of our three example cases. We have thus created
semantic models for each of them using the eCore meta-
modeling facility. These models target the languages them-
selves, i.e. are without a specific cross-language focus, and
represent a fully resolved graph of the source artifacts.

A small fragment of the graphical representation of both
our Spring model and the MoDisco Java model can be seen
in Fig. 1. The Spring IOC model fragment depicted specifies
the existing attributes and relations between Spring beans, their
properties and injected values, and is a subset of the full Spring
IOC model. Similarly, the MoDisco model fragment describes
how (in MoDisco) class declarations contain methods and
fields that may be linked to Spring properties.

B. Framework Cross-Language Rules

With these models in place, we have set out to create a
textual description of the cross-language links for each of
the frameworks. Over the course of several months, these
rules went through different iterations. During this process, all
relevant sentences have been annotated (coded) with patterns
again and again, a process which has finally yielded the
patterns discussed in the next section.

The rules cover several pages for each case: The largest
being Android (9 pages), followed by Spring (8 pages), and

finally HQL (3 pages). We thus cannot discuss each in detail
here. Rather, we will outline the basic idea for each of the
three cases. An extract from an actual rule is shown in Fig. 2,
which describes how bean properties are linked to Java method
declarations or field declarations, and makes use of the Spring
IOC and Java model fragments shown in Fig. 1.

Spring IOC: The Spring IOC container allows defining,
mostly in XML but also through Java annotations, so-called
beans, which are (usually named) instances of a Java type
that is managed and configured by the Spring framework.
A bean instantiation may take three forms: A constructor
based bean is instantiated directly using a Java constructor;
a factory-class based bean uses a class with a (static) factory
method to retrieve the instance, and a factory-bean based
class uses a (non-static) factory method in another bean. A
bean specification may include constructor arguments, i.e.
values which are given to the constructor or factory method as
parameters. Furthermore, each bean specification may include
properties, which contain values to be set on the instantiated
bean using setter methods or directly on fields. Values can be
either basic or again beans or references to beans.

The main cross-language links in this case are a) linking
a bean specification to a Java type, and b) linking properties
to Java setters or fields and linking constructor arguments to
constructor and factory method parameters.

Hibernate Query Language: The Hibernate Query Lan-
guage is an SQL-like language for querying a (relational)
database, but using Java entities, entity property names, and
navigation style. Thus, the FROM clause in HQL references
Java entities, giving them aliases in the process (for exam-
ple, FROM User u). As in the example, an entity can be
referenced by simple name (named entity reference); another
possibility is inferring the type by navigating properties (for
example, IN(blog.user) u, where blog is an entity alias
and user a property access) (inferred entity reference). The
same kind of navigation as in this example can also be used in
other parts of the query, for example when selecting elements
using WHERE, and can involve multiple levels of navigation;
we call such expressions path expressions; all except the first
one being attribute accesses.

The two main cross-language links in this case are a)
linking named or inferred entity references to Java entities
(i.e. properly annotated Java types), and b) linking attribute
accesses to Java fields.

Android UI: The Android UI framework allows specifying
the user interface of Android apps using an XML dialect.
The interface is separated into layouts, each within its own
XML file; each layout file contains widgets which may have
(String) identifiers attached. Layouts are loaded explicitly,
usually with one of two methods (setContentView and
inflate); within a layout, a widget can be located using the
findViewById method. The parameters of these methods
are constants generated by an SDK tool whose names corre-
spond to the layout file names and widget IDs, respectively.
A widget returned by findViewById can be directly cast
to the corresponding (known) Java type for the widget type.



Fig. 2. Spring Rule: Linking Beans

Again, we have two main cross-language links in this case:
a) layout references are linked to layout files; and b) widget
references are linked to widget declarations — the latter within
the correct layout and with the correct type.

C. Implementing and Testing Adapters and Rules

Textually writing down the cross-language linking rules for
the cases outlined in the previous subsection proved very
useful since the freedom in using a non-formal language
prevented us from following any one language paradigm too
strictly. However, such a description is not executable. Thus,
to validate our ideas, we have additionally implemented the
language metamodels and support routines as well as the rules
themselves in Java and applied them to real-life, open source
applications implemented in each of the three frameworks
discussed above.

We have chosen three applications for this purpose. The first
is Apache OpenMeetings1, an open-source web conferencing
system which uses the Spring IOC container; the second is
JTrac2, an issue tracking system which uses Hibernate and
HQL queries for database; and finally Wordpress for Android3,
an Android interface for the blogging software Wordpress. The
size of both applications in lines of code (LOC) and number of
artifacts in our semantic models (Artifacts) is shown in Tbl. I.

The implementation consists of two parts; firstly, the lan-
guage support; second, the linking rules themselves.

1Version 2.0.0, http://openmeetings.apache.org/
2Version 2.1.0, http://www.jtrac.info/
3Version 2.3.3, http://android.wordpress.org/

TABLE I
MLSAS: LINES OF CODE

App. (Framework) LOC/Artifacts (Java) LOC/Artifacts (DSL)
OpenMeetings (Spring) 55698 / 238391 405 / 377
JTrac (HQL) 17737 / 82317 27 / 375
Wordpress for Android 20609 / 97007 3633 / 1173

TABLE II
MLSAS: CROSS-LANGUAGE LINKS DISCOVERED

Framework Top-level links (a) Second-level links (b)
Spring 133 (beans) 79+9 (propert. / constr.)
HQL 30+3 (named / inferred ent.) 79 (attributes)
Android 36 (layouts) 172 (widgets)

Regarding the language support, we use language adapters
written in Java to implement a) creating an instance of a
metamodel from source, and b) being able to navigate back
to the source given an artifact. In case of Java, the first is
readily provided by MoDisco, while the second is greatly
helped by its management of text source positions. In the case
of Spring and AndroidUI, we make use of the XML editor
of the Web Tools Platform (WTP) of Eclipse to implement
our own adapter. HQL, finally, uses the HQL AST parser of
the Hibernate Eclipse plugin. We have manually checked that
all (main, see previous section) artifacts reported in the model
instances are actually there in source (and only those); and
that back-navigation was possible for all artifacts.

Regarding the rules themselves, we have attempted to
translate the textual descriptions we created as directly to Java
as possible. The rules are implemented in Eclipse plugins and
make use of the generated EMF language models and language



Name Match
Count Match
Pos. Match

Direct Acccess
Recursive Access

Error
Warning

Info

Set / Not Set
Count Match
Instance Of

Const. Match
Artif. Match

In-Lang.
Cross-
Lang.

For and 
Find

Choice
Link 
Dep.

Context Linking Report

Conditional Structural Reporting

Cross-Language Patterns

Fig. 3. Pattern Hierarchy

adapters discussed above. We do not use any domain-specific
languages in this implementation since this is, in our mind, a
next step after this work.

We have run the linking implementation on the applications
listed above, which has resulted in links and reports. We have
manually checked all generated links and link reports against
the source code to ensure that the Java implementation was
correct, and thus, by extension, our textual descriptions. Tbl. II
shows a count of the cross-language links discovered, reduced
to the main links we have identified in the previous section.

IV. PATTERNS

The main results of this work is our theory of the structure of
cross-language links, presented in the form of patterns in this
section. As discussed in the methods section, these patterns
have been extracted in an iterative process from the data, i.e.
the rules written for our three cases, and thus reflect how these
rules are structured. We believe these patterns to be of two
main uses.

• For Program Understanding. First, we came to realize
that the domain of cross-language linking, as it exists
today in Java frameworks with domain specific languages,
is quite complex. Thus, these patterns aid in understand-
ing the intricacies of linking artifacts in MLSAs.

• As Language Requirements. Second, it would be bene-
ficial in the future to be able to specify cross-language
linking rules not in plain text or in a generic language
such as Java, but in a domain-specific language making
them easier to write and read while still keeping them
machine-readable. The patterns presented here serve as
requirements for such a language.

We have identified eight distinct patterns organized into
three categories. All patterns occur in all cases in different
quantities. An overview of all patterns is shown in Fig. 3,
while a numerical listing of the patterns as they occur in our
three case applications is shown in Tbl. III.

In this section, we list all identified patterns. For each
pattern, the name is given in the title. We add a description,
examples, and other patterns to consider. A discussion is found
in the subsequent section.

Structural Patterns

We begin with the structural patterns, since they form the
framework for all other patterns. All four of these patterns can
be combined in various ways and interleave each other.

A. For and Find

Name & Description: For and Find is actually two patterns,
which refer to the two steps involved in searching for artifacts.
We usually begin with iterating all elements of a certain type
(the for part), looking for one other artifact which matches (the
find part). This pair shares its semantics, on a more abstract
level, with for all and exists from first order logic. This is, not
surprisingly, a common theme which can be found at multiple
locations in all three of our cases.

However, the cases show that a simple for-then-find does
not suffice in practice. Rather, depending on the language
structure, we see different combinations of for and find.

Still, each linking process starts with a for for the element
to be linked and will end with a find for the target element,
even if additional for steps are involved to make sure the target
element is the right one.

Examples: Spring necessitates that we find the proper
factory method for a factory-based bean, given a number of
constructor arguments. Here, for all beans, we find one method
where we must check for all Spring constructor arguments that
we find one formal parameter in the corresponding method
(for-find-for-find). All of this is a prerequisite to just linking
a bean to a class.

In HQL, linking entities requires finding a class declaration
with a certain name and a certain annotation. Since a class
may have many annotations, this translates to a for-find-find.

The simplest example can be found in the Android frame-
work, where we must go through all MethodInvocations (for)
looking for an interesting method (say, setContentView). Once
we have found that, we can directly find one matching Lay-
outFile (for-find).

See also: This pattern is the core structural pattern which
encloses all others. One should note that all of the other
patterns may occur after any element in a chain of for and
find, not only after the last one.

B. Choice

Name & Description: The Choice pattern name refers to
the fact that for many links, there are multiple linking options
in cross-language linking. It could also be named Switch or
Disjunction.

Cross-language frameworks allow for a large amount of
linking options: For one source artifact, depending on con-
ditions both on the source and target side, there might be
different artifacts or artifact properties to look for in the target,
and different artifacts or artifact properties to compare with
one another. Choices of how to link can occur at any point in
the for-find hierarchy — after the initial for, but even after the
last find. This might create a quite intricate tree of options,
some leading to successful links, some to problems, and some
to simply ignoring an element.

The find part of for-find and the choice pattern serve dif-
ferent purposes. In the former, we want to select one element
from a uniform list based on some conditions, stopping as
soon as we find one. In choice, we generally select a linking
path (not just one artifact) based on conditions of an artifact.



TABLE III
PATTERN OCCURRENCES

Pattern Name Category Spring HQL Android
In-Language Comparative 73 16 72
Cross-Language Comparative 11 2 2
For and Find Structural 20 6 6
Choice Structural 40 15 25
Dependency Structural 4 2 1
Context Structural 82 38 67
Establishing Links Reporting 18 4 5
Reporting Problems Reporting 16 5 9

Examples: In Spring, we begin with three options depend-
ing on the existing properties of the bean — which leads to
different checking options in the case of constructor-based,
static-factory-based, and dynamic-factory-based beans. This is
an example of a source option (i.e. on the source side) based
on artifact properties.

An interesting case of a target option can be found at another
place in Spring, when we try to match bean properties. In this
case, there are no source options, but a bean property can be
either matched to a Java setter method or a Java field. However,
one of those must be available.

In HQL, we have path expressions in which a Java field is
referenced, possibly via many other fields (via chaining). Such
expressions need to be resolved recursively, and at each point,
we may have to deal with different artifacts (in particular,
entity references and field accesses).

In Android we start out with generic method invocation
artifacts and narrow our artifacts down based on method name
and defining class. What exactly is linked on the source side
also depends on the method expression — i.e. whether the
method sets a layout for the entire class (setContentView) or
returns an element which is assigned to a variable (inflate).

See also: A choice is always coupled with a condition, i.e.
one of the conditional patterns shown in Fig. 3. Within our
cases, all choices were based on in-language conditions.

C. Link Dependency

Name & Description: The name Link Dependency refers
to relationships between links. The hierarchical nature of the
languages we talk about usually means that some artifacts can
– or may – only be linked if other artifacts, usually their par-
ents, have already been linked before. In other words, linking
(or checking) some artifacts requires that a link between some
other artifacts has been established before.

A link dependency only works one-way: Some (child)
artifacts can only be linked if some other (parent) artifacts
have already been linked, but a link failure on the children
does not affect the parent link.

It should be noted that naturally, many artifact links are
fundamentally dependent on other artifacts, be it their parents
or their children: Without them fulfilling some conditions, no
link is established. This is however not a link dependency, but
a combination of the context and conditional patterns.

Link dependencies occur in all cases. Their number is
usually small but important nonetheless.

Examples: In Spring, we can only match bean properties if
the bean has been matched to a class before, since we would
otherwise have no reference to look for methods or fields.
Furthermore, beans may be nested or referenced, which also
requires previous links.

HQL shows an interesting dependency pattern: In a query,
an entity may either be referenced directly (by name) or
indirectly (by attribute access to another entity). Thus, a link to
a dependent entity must have been established before linking
an indirectly referenced entity, which is again a prerequisite
for other attribute accesses.

The Android case is rather simple: Linking widget refer-
ences to widgets is only possible if a layout reference has been
linked to a layout before, so we only have one dependency.

See Also: Successfully linking an artifact may also depend
on conditions placed on other artifacts — not links. This is a
combination of one of the two conditional patterns placed on
a context artifact. See below for these three patterns.

D. Context

Name & Description: The context pattern — one of the
most occurring patterns — describes that linking artifacts
usually requires conditions not only on those artifacts, but also
on their context, i.e. referenced artifacts which may include
children or parents in the model.

From a high-level perspective, linking elements in two
languages is as simple as “for all bean specifications, find
a class declaration such that”. Mostly, however, selecting the
artifacts which are eligible for linking requires more context
in the sense of where an element is located in the model, i.e.
in the model hierarchy, as indicated by references between
artifacts.

Given the nature of language models, the hierarchy in which
elements are placed is usually a containment tree with side
references turning it into a graph. Thus, there is always a
notion of a container, and of children, which has turned out
to be helpful to write down context conditions in many cases.

We can distinguish context access by simple references
(direct access) and by recursive references (recursive access).
A directly accessed artifact is a previously known, fixed
number of steps away from its source, while a recursive access
involves an arbitrarily deep navigation to a target element.

It is important to note that cleverly picking artifacts can
greatly reduce these navigation steps, but it will rarely be
possible to do without.

Examples: A classical example occurs in Spring: To find a
certain class, we must check its fully qualified name — which
means recursively scanning the packages of the type, although
those are not linked and are not important for any other reason.

In HQL we need to make sure that a referenced class
is actually annotated with the Entity annotation type, which
involves navigating the type parameters of the class.

Finally, when linking Android artifacts, we have to navigate
from method invocation to the invoked method declaration to
the type it is declared in to find out how to link an artifact —
but neither the declaration nor the type are linked.



See also: Context accesses occur inside of conditional
patterns, whether they are placed inside of a choice pattern
or used to directly used to decide whether an artifact qualifies
for a link.

Conditional Patterns

Conditional patterns occur inside the structural patterns and
deal with conditions: An element, or an element property, is
compared either within one language (with a constant, for
example) or across languages (with an artifact property in
another language) to decide how to continue.

E. Intra-Language Conditions

Name & Description: Most of the conditions we place on
artifacts and artifact properties in cross-language linking are
not, themselves, cross-language. Rather, to find the correct
artifacts we want to link, both in the source and target lan-
guage, we require intra-language conditions, i.e. only affecting
artifacts in one language, which select the correct artifacts for
us.

Intra-language conditions do just that: They compare one
artifact, or (more often) a property value of an artifact, to
a value. We can distinguish the following forms of intra-
language checking:

• Type check By far the most common application is type
checking — i.e. whether a certain artifact has a certain
type. This is mostly due to the object-oriented structure
of the semantic models used, and the fact that choices
are often made based on the type of an element.

• Constants Comparisons with constants are the second
most common type of comparisons. The constants com-
pared are either taken from the language (for example,
Java enum values) or simple values such as strings or
numbers.

• Set/Not Set Sometimes it is important to know whether
some property is set or not set to continue.

• Counting It may also be important to select an artifact
based on the count of elements in one of its (collection)
properties.

• Artifact Match Besides comparing values of properties of
artifacts, we can also directly compare artifacts by object
identity.

It should be noted that intra-language conditions can be used
both on the source and on the target side, and both on artifacts
to be linked and on contextual elements.

Examples: Examples for intra-language conditions abound.
Some examples from Spring include the question of whether
the class, factoryMethod and factoryBean attributes of a bean
are set or that, in a method declaration, the return type
is an instance of PrimitiveTypeVoid, an enum-constant-like
singleton class from the Java model.

HQL rules include the condition that the name of an anno-
tation type must equal Entity. Another example is deciding,
based on the type of an element in an attribute reference
expression, how to resolve it.

Finally, in Android, we have the condition that the count of
a method’s parameters must be exactly 1, and that the element
at index 0 must be an instance of SingleVariableAccess.

See Also: The high number of intra-language comparisons
matches those of applications of the context pattern. The dif-
ference in numbers between in-language and cross-language
conditions is also quite high; both of which shows that a lot
of contextual conditions need to hold true for a link to be
successfully established.

F. Cross-Language Conditions

Name & Description: Cross-language conditions are those
conditions we require all of the other conditions and patterns
to get to: Finally comparing artifacts from two different
languages with one another. In the end, this is surprisingly
simple and involves only three types of checking: Matching
names, matching counts, or matching positions of elements.

The most common type are name comparisons — either
of simple names directly retrieved from two artifacts, names
which have been built by contextual navigation, such as fully
qualified Java names, or names with are concatenations of
several strings, for example for forming a Java bean setter
name out of the constant string “set” and the first-letter-
uppercased version of another name.

There are two additional types of comparisons: The first is
matching counts of elements — this occurs, for example, when
matching method parameters. The second type is matching
positions, which also occurs when matching parameters, where
two elements must be at the same index in a collection.

With the small number of cross-language comparisons, it
is easy to forget that context is relevant as well and is, in a
way, also a cross-language requirement. The cross-language
conditions are just the tip of the iceberg.

Examples: In Spring, we compare fully qualified names of
classes to the class property of a bean, or the name of a prop-
erty to either a field name or the properly constructed name of
a setter method. When checking constructor arguments, indices
(positions) matter if the index property is set on an argument.

HQL queries directly use the simple names of Java classes
for reference. Similarly, names of attributes are used to refer-
ence Java fields.

In the Android case, both layouts and widget ids are strings,
which can be used to compare against file names (layout id
concatenated with “.xml”) and the IDs extracted from widgets
defined in XML elements.

See Also: All of the structural patterns as well as the intra-
language conditions are preconditions for this pattern. Usually,
the outcome of a cross-language pattern determines the final
verdict on whether or not a link is established.

Reporting Patterns

One interesting insight about cross-language linking is that
establishing links and reporting problems are hard to press
into a single structural pattern. As indicated by the last two
pattern categories, there are many different facets for linking,
different options and navigation possibilities until we reach



the target element we are interested in, and even the source
element might need to be identified properly before we start.

Establishing of links and reporting problems is thus less of
a conjugated action in cross-language linking than would ini-
tially seem. We have therefore purposefully separated linking
and reporting as distinct patterns.

G. Linking
Name & Description: Linking means stating that artifacts

from two different languages were matched, i.e. a connection
or link is created between them.

When discussing actual cross-language links, we need to
consider use cases — i.e., how will the links be used by the
system and/or by the user? In particular, we have to address
two aspects when thinking of links:

• Firstly, one artifact may need to be linked to multiple
other artifacts. It is important to distinguish between these
artifacts, especially when they have the same type, for
example by assigning an identifier. This is necessary not
only because they may serve different purposes in the
framework but also for the end user (who may wish to
navigate or view the links and understand why they were
established).

• Secondly, one artifact may not always be linked to the
same target type. Depending on linking options, the target
may be one of several artifacts from different locations
in the target model. Also, during the investigation of a
link, different source artifact types may also play a role,
so neither side is fixed a priori.

Another important thing to consider with multiple links is
their dependency relationship. If a link is based on another
link, this fact should be registered for reporting. If a link
cannot be established (see next pattern) but has a successful
parent artifact link, this fact should be noted as well as it may
help with finding the fault.

Examples: In the case of Spring, we link, for example, a
bean specification to a Java type. If the bean specification is
factory-based, we also link the factory method, and possibly
even more methods based on additional options. It becomes
important here to distinguish these links since they serve
different purposes.

With regard to links, HQL is the most classic of cases: An
entity reference — whether direct or indirect — is linked to a
Java class, while property references are linked to Java fields.

In the Android framework, we have the interesting situation
that for a layout link, the source artifact is not always of the
same type. In one case we link a class (if it is a subclass of
Activity or View); in another we link a variable (in case the
layout was inflated). As target, however, we can always use
either a layout file or a widget.

See also: In many cases, but not always, the linking pattern
occurs together with the report pattern and at the end of a long
branching tree of structural linking patterns and conditions.

H. Report
Name & Description: Reporting means any kind of infor-

mation given to developers in case one or more links could

not be established. The basic form of such a report is an error,
indicating that a partner could not be found for an artifact. This
is the classic opponent to the link pattern. However, during
our work it has turned out that in many cases, warnings may
be important to be reported as well, and in some cases, even
informational reports.

The report pattern may initially sound suspiciously technical
— after all, some reporting must always be done to keep the
user informed. However, we believe that the report pattern is
indeed a pattern in its own right for the following reasons:

First, it is important to note that due to the many options
and requirements during linking, many alternatives may be
investigated, leading do various outcomes for the individual
artifacts considered: We could create a link, we could fail, or
we could simply ignore an element. Here, the report pattern
is necessary for distinguishing between failing and ignoring.

Second, in case a link is established based on a number
of conditions, it is not always the case that it is an error,
warning, or informational message if those same conditions
fail. This decoupling from link and report is our main reason
for distinguishing between them: Implementors and designers
of a possible linking language should be aware of this issue.

Still, the report pattern does have some technical aspects,
since it is important to help developers quickly understand
why a link failed, and where to look for a remedy. For this
reason, we suggest that problem reports not only include the
offending artifact, but a context and a reason as well.

Examples: In Spring, a basic example for an error is a bean
for which the corresponding class could not be found. An
example for a warning report is a property which references
another bean which could not be resolved (an instance of
the dependency pattern). In this case, a warning notifies the
developer that the property could not be checked further due
to an error in another link.

In HQL, we use error reports if, for a named entity, the
corresponding class cannot be found. Another example is a
missing attribute in an otherwise defined class. HQL links
are also interdependent, and recursively so. Thus, if we can
link some of the elements but get stuck at some point, the
context will make it easier for a developer to understand where
investigate.

With regard to Android, failure to find a widget identifier
referenced from Java in the proper layout file must yield
an error report. It is important to attach this report to the
previously linked layout, since it is only in this context that
the report is understandable for developers. An example for an
informational report in Android is a widget which is referenced
from Java but not assigned to a variable: In this case, the
widget cannot be not checked for the correct type.

See also: The report pattern often occurs in combination
with the link pattern and is based on some final, often cross-
language, condition which has either failed or succeeded.
However, especially in the case of warning and informational
reports, the report pattern may occur during context evaluation
and thus at a different place than the linking pattern.



V. DISCUSSION

In this section, we discuss the results of our study, in
particular in light of the research question outlined in Sect. II.

A. Main Findings

A first main observation of our study has been the com-
plexity of cross-language bindings. While cross-language rules
often appear to be simple from first glance at the framework
description, actually writing down the rules reveals an often
intricate, rich structure of cross-language links.

This becomes apparent when we look at the patterns iden-
tified, and at the number of occurrences for each pattern. Five
patterns deal with issues that are not directly cross-language:
This includes all of the structural patterns as well as the in-
language conditional pattern. When looking at the numbers,
the highest counts can be found for the context pattern, the
in-language comparative pattern, and the choice pattern — in
all three cases. All three of these patterns do not compare
across languages, do not link artifacts, and do not report on
errors — they simply establish which structure, on both sides
of the language gulf, must be available for linking to proceed.

Among the patterns with the lowest number of occurrences
is the pattern of cross-language conditions. The actual relation
between the found artifacts is a last step after establishing
the structure, and is very often (but not always) established
through string equality.

This finding has important implications for the future goal
of creating a formal language specifically geared at modeling
cross-language links. What such a language must support,
specifically, is dealing with structure: Allowing context navi-
gation, placing constraints on non-linked artifacts which may
be recursively removed from the linked artifacts, and allowing
for nested options at each structural level.

A second finding is that while some of the patterns identified
seem quite obvious, many are not. Surely, the most obvious
patterns in our catalog are the for and find pattern and the
cross-language conditional pattern — corresponding to search-
ing for artifacts and directly comparing them. By contrast,
what may be easily overlooked are patterns such as choice and
dependency: The amount of options in cross-language linking
is quite high, and the relationship between different types of
links is important both for better understanding links and for
structuring them for output.

It is also worth pointing to the fact that we have identified
linking and reporting as patterns in their own right which are
a) distinct from one another and b) distinct from the other
patterns. We have attempted both to integrate the patterns
into one and to integrate the patterns with others; specifically,
the for and find pattern. However, the structure of the cross-
language links in our cases did not allow this: It is simply not
the case that problem reports always occur at the same place
as links, and they also do not always occur at a successful or
unsuccessful find.

Both of this implies that we should watch out, in the future,
for these less-obvious patterns and pattern relationships when
discussing cross-language links.

A third finding relates to the relationship between link
descriptions and languages. Our whole work in this study is
based on the assumption that we deal with language artifacts
“as is”: We use semantic models for each language which
directly reflect the (semantic, not syntactic) language structure
in all its complexity. In other words, the semantic models
have not been created specifically for cross-language linking
purposes, which would have allowed reducing complexity
of links by moving it into the source extraction process
(performed by language adapters).

We stress this point because only using language constructs
and artifacts as they appear in the original language drags all
aspects of cross-language linking out into the open, which we
feel is important in terms of understanding them. We must
deal with the fact that languages have a certain structure not
under our control, and so do the semantic models which reflect
these structures.

To sum up, the explicit formulation and characterization
of cross-language links for our three cases has been most
informative for us, and we hope that our patterns help others
in understanding the nature of cross-language links as well.

B. Threats to Validity

The scope of our theory, i.e. our patterns, is fundamentally
restricted by first the chosen population and second the three
frameworks we have used as our cases.

As usual in building theory from case studies, our cases have
been selected based on theoretical grounds, and not by random
sampling. We believe that our three frameworks are quite
representative of their areas of application and are well-known
and used in the community, ensuring applicability. However, it
may well be possible that frameworks which support similar
features follow a completely different structure for linking,
which could be tested by successfully or unsuccessfully dis-
covering the patterns in yet more cases.

All patterns identified can be found in all three frameworks,
and in equal numbers relative to one another — despite
their rather different application areas. This indicates that
the patterns are indeed applicable across different framework
goals. In addition, we take this fact as a good sign that the
patterns identified are not flukes. In this context, it should be
pointed out the count of patterns within each case will vary
depending on how the rules are written down, and should not
be considered as absolute numbers, but as relative within each
case.

Whether the theory is applicable to other frameworks within
the population, and especially outside our population, has to
be validated. This requires further testing, which is possible
by assuming that the patterns are predictions about how other
cross-language links are structured and testing these predic-
tions against the reality of other cross-language frameworks.

Our theory can be further tested by attempting to create a
dedicated linking language for describing the links (instead of
using Java) and evaluating how helpful the patterns have been
in this regard (which we plan to do).



VI. RELATED WORK

We can identify three areas of related work for our pattern
description. The area most directly related is other approaches
to characterizing and classifying aspects of cross-language
linking. A second area concerns the approach to linking, i.e.,
what exactly is being linked. Finally, there are works which
deal with tools for cross-language linking.

Regarding the first area, we are not aware of any work
which directly attempts to characterize cross-language link
patterns. However, there is other work on structuring the area
of cross-language linking on a higher abstraction level than
what we have looked at. The taxonomy of multi-language
development environments in [10] forms a description of the
entire cross-language linking problem area. We specialize in
one of their addressed areas, namely the discussion of relation
types. A similar approach to categorizing the choices to be
made when analyzing multi-language applications is shown
in [11]; again, our work is a deep dive into one of their
categories, namely requisites on how to perform (automated)
identification of references. Linguistic architectures [12] are
a modeling approach to aid understanding of the structural
relationship of languages taking part in certain MLSAs. In
this context, our work specifically addresses how complex
intermodel mappings between artifacts look like and how they
might be established. It will be interesting in the future to
discuss the nature of cross-language links (i.e. whether they
are correspondences, realizations, simple references, etc.), and
how our patterns can be used in this context.

In the second related area, cross-language linking may use
different entity types as the start- and endpoints of links. As
discussed above, we have used (semantic) meta-models to be
able to talk about the languages involved: We are relating
artifact from different per-language models to one another.
The same approach of one meta-model per language has
been used in [1]. However, there are other options: Regular
expressions and heuristics [5] have been used for directly
linking source code (i.e., text). There is also the option of using
just one model for all languages involved, for example by
using text fragments as model elements [10]; or using higher-
level artifacts such as methods, fields, etc., for example by
using tree grammars [13], [14]. The individual benefits and
shortcomings of these approaches have not yet been compared
in any rigorous way.

Finally, there are several works which deal with tools for
cross-language analysis and refactoring. We refer the reader
to our discussion of these in section III of [4].

VII. CONCLUSION

This paper has reported our work on understanding cross-
language links and link types that occur in Java application
frameworks in industrial use. By using a theory from case
studies research approach, we have identified eight patterns
of cross-language linking based on descriptions of the rules
governing the links established by three frameworks from the
Java world. For validation, the rules have been implemented
in Java and applied to three example applications.

We believe that the patterns identified are helpful for two
reasons. First, they describe a previously undocumented aspect
of multi-language software applications and give insights
into the complex nature that cross-language links exhibit in
practice.

Second, they form requirements for any language intended
to allow developers to formulate cross-language checking
rules. In particular, it is our hope that researchers attempting to
create a language (and accompanying software infrastructure)
for formulating cross-language linking rules with the goal of
supporting analysis, program understanding, and refactoring
will benefit from the patterns discussed in this paper.

The semantic model implementations, language adapters,
full rule specifications, and pattern annotations mentioned in
this paper can be found online at http://www.xllsrc.net/.

ACKNOWLEDGMENT

We thank Thomas Neumeier for his contributions to the
semantic models and language adapters created for this work.

This work has been partially sponsored by the EU project
ASCENS, 257414.

REFERENCES

[1] R.-H. Pfeiffer and A. Wasowski, “Taming the confusion of languages,” in
Proceedings of the ECMFA 2011. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 312–328.

[2] M. Fowler, Domain-Specific Languages. Addison-Wesley Professional,
2010.

[3] P. Linos, W. Lucas, S. Myers, and E. Maier, “A metrics tool for multi-
language software,” in Proceedings of the SEA 2007. Anaheim, CA,
USA: ACTA Press, 2007, pp. 324–329.

[4] P. Mayer and A. Schroeder, “Cross-language code analysis and refac-
toring,” in Proceedings of SCAM 2012. IEEE, 2012, pp. 94–103.

[5] B. Cossette and R. J. Walker, “Dsketch: lightweight, adaptable depen-
dency analysis,” in SIGSOFT FSE, G.-C. Roman and K. J. Sullivan,
Eds. ACM, 2010, pp. 297–306.

[6] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel, “Hurdles in multi-
language refactoring of hibernate applications,” in ICSOFT (2), M. J. E.
Cuaresma, B. Shishkov, and J. Cordeiro, Eds. SciTePress, 2011, pp.
129–134.

[7] R.-H. Pfeiffer and A. Wasowski, “Cross-language support mechanisms
significantly aid software development,” in Proceedings of MoDELS
2012. Springer, 2012, pp. 168–184.

[8] K. M. Eisenhardt, “Building theories from case study research,”
Academy of management review, pp. 532–550, 1989.

[9] Eclipse Foundation, “Eclipse Modeling: MoDisco,” 2013,
http://www.eclipse.org/MoDisco/.

[10] R.-H. Pfeiffer and A. Wasowski, “Texmo: A multi-language development
environment,” in Proceedings of ECMFA 2012. Springer, 2012, pp.
178–193.

[11] H. Lochmann and A. Hessellund, “An integrated view on modeling with
multiple domain-specific languages,” in Proceedings of SE 2009, 2009,
pp. 1–10.

[12] J.-M. Favre, R. Lämmel, and A. Varanovich, “Modeling the linguistic
architecture of software products,” in Model Driven Engineering Lan-
guages and Systems. Springer, 2012, pp. 151–167.

[13] D. Strein, H. Kratz, and W. Lowe, “Cross-language program analysis
and refactoring,” in Proceedings of SCAM 2006. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 207–216.

[14] D. Strein, R. Lincke, J. Lundberg, and W. Löwe, “An extensible meta-
model for program analysis,” IEEE Trans. Softw. Eng., vol. 33, no. 9,
pp. 592–607, Sep. 2007.


