
2

1

Developing Secure Web-based
Applications with UML:

Methods and Tools
Jan Jürjens

Software & Systems Engineering
TU Munich, Germany

juerjens@in.tum.de

http://www.jurjens.de/jan
Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 2

Personal introduction + history

Me: Leading the Competence Center for IT-Security at
Software & Systems Engineering, TU Munich

• Extensive collaboration with industry (BMW,
HypoVereinsbank, T-Systems, Deutsche Bank,
Siemens, Infineon, …)

• PhD in Computer Science from Oxford Univ.,
Masters in Mathematics from Bremen Univ.

• Numerous publications incl. 1 book on the subject
This tutorial: part of series of 30 tutorials at

international conferences. Continuously improved
(please fill in feedback forms).

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 3

A Need for Security

Society and economies rely on computer
networks for communication, finance,
energy distribution, transportation...

Attacks threaten economical and physical
integrity of people and organizations.

Interconnected systems can be attacked
anonymously and from a safe distance.

Networked computers need to be secure.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 4

Problems

Many flaws found in designs of security-critical
systems, sometimes years after publication
or use.

Spectacular Example (1997):

NSA hacker team breaks into U.S.
Department of Defense computers and the
U.S.electric power grid system. Simulates
power outages and 911 emergency
telephone overloads in Washington, D.C..

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 5

Causes I

• Designing secure systems correctly is
difficult.
Even experts may fail:

– Needham-Schroeder protocol (1978)

– attacks found 1981 (Denning, Sacco),
1995 (Lowe)

• Designers often lack background in security.

• Security as an afterthought.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 6

Causes II

„Blind“ use of mechanisms:
• Security often compromised

by circumventing (rather than
breaking) them.

• Assumptions on system context, physical
environment.

„Those who think that their problem can be solved
by simply applying cryptography don`t understand
cryptography and don`t understand their problem“
(Lampson, Needham).

2

2

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 7

Difficulties

Exploit information spreads quickly.

No feedback on delivered security from
customers.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 8

Previous approaches

„Penetrate-and-patch“:
• insecure

• disruptive

Traditional formal methods: expensive.

• training people

• constructing formal specifications.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 9

Goal: Security by design

Consider security

• from early on

• within development context

• taking an expansive view

• in a seamless way.

Secure design by model analysis.

Secure implementation by test generation.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 10

Holistic view on Security

„An expansive view of the problem is most
appropriate to help ensure that no gaps
appear in the strategy“ (Saltzer, Schroeder
1975).

But „no complete method applicable to the
construction of large general-purpose
systems exists yet“ - since 1975.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 11

Model-based Development

Goal: easen transition
from human ideas to
executed systems.

Increase quality with
bounded time-to-
market and cost.

Requirements

Models

Code

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 12

Using UML

UML: unprecedented opportunity for
high-quality critical systems development
feasible in industrial context:

• De-facto standard in industrial modeling:
large number of developers trained in UML.

• Relatively precisely defined (given the user
community).

• Many tools in development (also for analysis,
testing, simulation, transformation).

2

3

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 13

Challenges

• Adapt UML to critical system
application domains.

• Correct use of UML in the application
domains.

• Conflict between flexibility and unambiguity
in the meaning of a notation.

• Improving tool-support for critical systems
development with UML.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 14

UMLsec: Goals

Extensions for secure systems development.
• evaluate UML specifications for weaknesses

in design
• encapsulate established rules of prudent

secure engineering as checklist
• make available to developers not specialized

in secure systems
• consider security requirements from early

design phases, in system context
• make certification cost-effective

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 15

The UMLsec profile

Recurring security requirements, adversary
scenarios, concepts offered as stereotypes
with tags on component-level.

Use associated constraints to evaluate
specifications and indicate possible
weaknesses.

Ensures that UML specification provides
desired level of security requirements.

Link to code via test-sequence generation.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 16

This tutorial

Background knowledge on using UML for
critical systems development.

• UML basics, including extension mechanisms.
• Extensions of UML (UMLsec, UML-RT, ...)
• UML as a formal design technique.
• Tools.
• Case studies.

Concentrate on security-critical systems.
Explain how to generalize approach to other criticality

requirements.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 17

Before we start …

We have more material than we can usefully
cover within the given time frame.

Let‘s make selection based on your
background/interests:

• UML background (no, beginner, advanced)

• working background (industrial, academic)

• application domain interests

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 18

Roadmap

Prologue

UML
UMLsec: The profile

Security analysis
Using Java security, CORBAsec

Case studies
UML 2.0, Testing, Tools

2

4

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 19

UML

Unified Modeling Language (UML):

• visual modelling for OO systems
• different views on a system
• high degree of abstraction possible

• de-facto industry standard (OMG)
• standard extension mechanisms

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 20

A glimpse at UML

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 21

Used fragment of UML

Use case diagram: discuss requirements of the
system

Class diagram: data structure of the system

Statechart diagram: dynamic component behaviour

Activity diagram: flow of control between components

Sequence diagram: interaction by message exchange

Deployment diagram: physical environment

Package/Subsystem: collect diagrams for system part

Current: UML 1.5 (released Mar 2003)

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 22

UML run-through: Class diagrams

Class structure of system.

Classes with attributes and operations/signals;
relationships between classes.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 23

UML run-through: Statecharts

Dynamic behaviour of individual component.

Input events cause state change and output
actions.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 24

UML run–through: Activity diagrams

Specify the control flow between components within
the system, at higher degree of abstraction than
statecharts and sequence diagrams.

C:Card L:LSAM I:Issuer

c l

i

entry/nt:=0 entry/n:=0

nt:=nt+1
entry/

n:=n+1
entry/

Transitions

States

Objects

Synchronization
bar

[nt<limit] [n<limit]

Swimlanes

2

5

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 25

Describe interaction between objects or
components via message exchange.

UML run-through: Sequence Diagrams

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 26

UML run-through: Deployment diagrams

Describe the physical layer on which the
system is to be implemented.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 27

UML run-through: Package

May be used to organize model
elements into groups.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 28

UML extension mechanisms

Stereotype: specialize model element
using �label � .

Tagged value: attach {tag=value} pair to
stereotyped element.

Constraint: refine semantics of
stereotyped element.

Profile: gather above information.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 29

Roadmap

Prologue

UML
UMLsec: The profile

Security analysis
Using Java security, CORBAsec

Case studies
UML 2.0, Testing, Tools

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 30

Basic Security Requirements I

Secrecy

Information

Informat ion

Integrity

Informat ion

Availability

2

6

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 31

Basic Security Requirements II

Informat ion

Authenticity

Sender

Sender

Nonrepudiability

Informa-

tion

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 32

UMLsec profile (excerpt)

access control using
guard objects

guarded objects acc.
through guards.

Subsystemguarded
access

enforce fair
exchange

after start eventually
reach stop

start,
stop

packagefair exchange

basic datasec
requirements

provides secrecy,
integrity

subsystemdata
security

information flowprevents down-flowhighsubsystemno down-flow

structural interaction
data security

call, send respect
data security

subsystemsecure
dependency

assumes secrecydependencysecrecy

enforces secure
communication links

dependency security
matched by links

subsystemsecure links

Internet connectionlinkInternet

DescriptionConstraintsTagsBase classStereotype

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 33

�Internet � , �encrypted� , …

Kinds of communication links resp. system
nodes.

For adversary type A, stereotype s, have set
Threats (s)

�
{delete, read, insert, access}

of actions that adversaries are capable of.
Default attacker:

Internet
encrypted

LAN
smart card

{delete, read, insert}
{delete}
�

�

Threats ()Stereotype

A

default

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 34

Requirements with use case diagrams

Capture security requirements
in use case diagrams.

Constraint: need to appear in
corresponding activity diagram.

Sales application

Business

sells goods

Customer

buys goods

«fair exchange»

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 35

�fair exchange �

Ensures generic fair exchange condition.

Constraint: after a {start} state in activity
diagram is reached, eventually reach
{stop} state.

(Cannot be ensured for systems that an
attacker can stop completely.)

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 36

Example �fair exchange �

Customer buys a good
from a business.

Fair exchange means:
after payment,
customer is
eventually either
delivered good or
able to reclaim
payment.

Reclaim

Deliver

«fair exchange»Purchase

Request good

BusinessCustomer

Wait until
delivery due

Pay

undelivered

Pick up

{start={Pay}} {stop={Reclaim,Pick up}}

delivered

2

7

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 37

�secure links �

Ensures that physical layer meets security
requirements on communication.

Constraint: for each dependency d with stereotype
s � {�secrecy � , �integrity� } between
components on nodes n

�
m, have a

communication link l between
n and m with stereotype t such that

• if s = �secrecy � : have read � Threats (t).

• if s = �integrity� : have insert � Threats (t).
A

A

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 38

Example �secure links �

Given default adversary type, is �secure links�
provided ?

«secure links»

server machineclient machine
get_password

browser
client apps

access control
web server

Remote access

«call»

«Internet»

«secrecy»

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 39

�secure dependency�

Ensure that �call � and �send�
dependencies between components respect
security requirements on communicated data
given by tags {secrecy}, {integrity}.

Constraint: for �call � or �send� dependency
from C to D (and similarly for {integrity}):

• Msg in D is {secrecy} in C if and only if also in D.

• If msg in D is {secrecy} in C, dependency
stereotyped �secrecy � .

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 40

Example �secure dependency�

�secure dependency� � provided ?

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»newkey(): Key

«call»

Key generation

«critical»Key generator

newkey(): Key

«secure dependency»

{secrecy={newkey(),random()}

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 41

�no down–flow �

Enforce secure information flow.

Constraint:

Value of any data specified in {secrecy}
may influence only the values of data
also specified in {secrecy}.

Formalize by referring to formal
behavioural semantics.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 42

Example �no down-flow�

�no down–flow � provided ?

rx(): Boolean

Customer account

rx(): Boolean

Account

rm(): Data
wm(x: Data)

ExtraServicemoney: Integer

rm()/return(money)rm(): Data
wm(x: Data)

NoExtraService

/money:=0

rm()/return(money)

money+x
/money:=

wm(x)

wm(x)/money:=
money+xwm(x)

money+x
/money:=

{secret={wm,rm,money}}
«no down−flow»

rx()/return(true) rx()/return(false)

[money>=1000]

[money<=1000]

2

8

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 43

�data security �

Security requirements of data marked
�critical � enforced against threat
scenario from deployment diagram.

Constraints:

Secrecy of {secrecy} data preserved.

Integrity of {integrity} data preserved.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 44

Example �data security �

Variant of TLS
(INFOCOM`99).

�data security� �
against default
adversary
provided ?

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 45

�guarded access �

Ensures that in Java, �guarded � classes
only accessed through {guard} classes.

Constraints:

• References of �guarded� objects
remain secret.

• Each �guarded � class has {guard}
class.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 46

Example �guarded access �

Provides �guarded access� :
Access to MicSi protected by MicGd.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 47

Concepts covered by UMLsec

Security requirements: �secrecy � ,…

Threat scenarios: Use Threatsadv(ster).

Security concepts: For example �smart card� .

Security mechanisms: E.g. �guarded access� .

Security primitives: Encryption built in.

Physical security: Given in deployment diagrams.

Security management: Use activity diagrams.

Technology specific: Java, CORBA security.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 48

Security Patterns

Security patterns: use UML to encapsulate knowledge
of prudent security engineering.

Example:

Does not preserve security of account balance.

2

9

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 49

Solution: Wrapper Pattern

Technically, pattern application is
transformation of specification.

Use wrapper pattern to ensure that no low
read after high write.
Can check this is secure (once and for all).

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 50

Secure channel pattern: problem

To keep d secret, must be sent encrypted.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 51

Secure channel pattern: (simple) solution

Exchange certificate and send encrypted data
over Internet.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 52

Roadmap

Prologue

UML
UMLsec: The profile

Security analysis
Using Java security, CORBAsec

Case studies
UML 2.0, Testing, Tools

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 53

Security Analysis

Model classes of adversaries.

May attack different parts of the system
according to threat scenarios.

Example: insider attacker may intercept
communication links in LAN.

To evaluate security of specification,
simulate jointly with adversary model.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 54

Abstract adversary

memory
logic

A B

ad
ve

rs
ar

y

* memorize message
* delete message
* insert message
* compose own message
* use cryptographic primitives

2

10

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 55

Security Analysis II

Keys are symbols, crypto-algorithms are
abstract operations.

• Can only decrypt with right keys.

• Can only compose with available
messages.

• Cannot perform statistical attacks.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 56

Expressions
Exp: term algebra generated by Var Keys Data and

• _ :: _ (concatenation) and empty expression � ,

• { _ } _ (encryption)

• Dec () (decryption)

• Sign () (signing)

• Ext_() (extracting from signature)

• Hash(_) (hashing)

by factoring out the equations and

(for K Keys).

� �

∈

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 57

Abstract adversary

Specify set of initial knowledge of an
adversary of type A. Let be the
Exp-subalgebra generated by and
the expressions received after n+1st
iteration of the protocol.

Definition (Dolev, Yao 1982).
S keeps secrecy of M against attackers
of type A if there is no n with M .∈

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 58

Adversary: Simulation

A BAdversary

m(x)

Adversary
knowledge:

k-1, y,

m(x)

x

return({ z} k)

[argb,1,1 = x]

{ z} k, z

return({ y::x} z)

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 59

Example: secrecy

A B
{m}K::K

A B
{m}K

Against attacker who can read messages:

• Security of {m}K::K not preserved

• Security of {m}K preserved

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 60

Example: secrecy

A B
{K}PubB

{m}K

• Security of m is not preserved against an
attacker who can delete and insert messages

• Security of m is preserved against an attacker
who can listen, but not alter the link

2

11

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 61

Roadmap

Prologue

UML
UMLsec: The profile

Security analysis
Using Java security, CORBAsec

Case studies
UML 2.0, Testing, Tools

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 62

Java Security

Originally (JDK 1.0): sandbox.

Too simplistic and restrictive.

JDK 1.2/1.3: more fine-grained security control,
signing, sealing, guarding objects, . . .)

BUT: complex, thus use is error-prone.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 63

Java Security policies

Permission entries consist of:

• protection domains (i. e. URL's and keys)

• target resource (e.g. files on local machine)

• corresponding permissions (e.g. read, write,
execute)

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 64

Signed and Sealed Objects

Need to protect integrity of objects used as

authentication tokens or transported across

JVMs.

A SignedObject contains an object and its

signature.

Similarly, need confidentiality.

A SealedObject is an encrypted object.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 65

Guarded Objects

java.security.GuardedObject protects access
to other objects.
• access controlled by getObject method
• invokes checkGuard method on the

java.security.Guard that is guarding access
• If allowed: return

reference. Otherwise:
SecurityException

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 66

Problem: Complexity
• Granting of permission depends on execution context.
• Access control decisions may rely on multiple threads.

• A thread may involve several protection domains.
• Have method doPrivileged() overriding execution

context.
• Guarded objects defer access control to run-time.

• Authentication in presence of adversaries can be subtle.
• Indirect granting of access with capabilities (keys).

Difficult to see which objects are granted permission.

use UMLsec

→

�

2

12

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 67

Design Process

(1) Formulate access control requirements for
sensitive objects.

(2) Give guard objects with appropriate access
control checks.

(3) Check that guard objects protect objects
sufficiently.

(4) Check that access control is consistent with
functionality.

(5) Check mobile objects are sufficiently
protected.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 68

Reasoning

Theorem.
Suppose access to resource according to

Guard object specifications granted only to
objects signed with K.

Suppose all components keep secrecy of K.

Then only objects signed with K are granted
access.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 69

Example: Financial Application

Internet bank, Bankeasy, and financial advisor, Finance, offer
services to local user. Applets need certain Privileges (step1).
• Applets from and signed by bank read and write financial data

between 1 pm and 2 pm.
• Applets from and signed by Finance use micropayment key five times

a week.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 70

Financial Application: Class diagram

Sign and seal objects sent over Internet for
Integrity and confidentiality.

GuardedObjects control access.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 71

Financial Application: Guard objects (step 2)

timeslot true between
1pm and 2pm.

weeklimit true until
access granted five
times; inc ThisWeek
increments counter.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 72

Financial Application: Validation

Guard objects give sufficient protection (step 3).

Proposition. UML specification for guard objects only
grants permissions implied by access permission
requirements.

Access control consistent with functionality (step 4).
Includes:

Proposition. Suppose applet in current execution
context originates from and signed by Finance. Use
of micropayment key requested (and less than five
times before). Then permission granted.

Mobile objects sufficiently protected (step 5), since
objects sent over Internet are signed and sealed.

2

13

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 73

CORBA access control

Object invocation access policy controls access
of a client to a certain object via a certain
method.

Realized by ORB and Security Service.
Use access decision functions to decide

whether access permitted. Depends on
• called operation,
• privileges of the principals in whose account

the client acts,
• control attributes of the target object.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 74

Example: CORBA access control with UMLsec

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 75

Roadmap

Prologue

UML
UMLsec: The profile

Security analysis
Using Java security, CORBAsec

Case studies
UML 2.0, Testing, Tools

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 76

Layered Security Protocols

• Protocol on higher layer uses services of
protocol on lower layer.

• Big question: security properties additive ?

• Desirable: secure channel abstraction.

client authenticity

confidentiality, integrity, server authenticity

confidentiality, … + client authenticity
= ?

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 77

Here: Bank application

• Security analysis of web-based banking
application, to be put to commercial use
(clients fill out and sign digital order forms).

• In cooperation with major German bank.
• Layered security protocol

– first layer: SSL protocol.
– second layer: client authentication protocol

• Main security requirements:
– personal data confidential.
– orders not submitted in name of others.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 78

The Application II

• Two layer architecture.

• When user logs on, an SSL-connection is
established (first layer).
– Provides secrecy, integrity, server authentication

but no client authentication (this version).

• Custom-made protocol on top of SSL for
client authentication.

• Session key generated by SSL used to
encrypt messages on second layer.

2

14

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 79

SSL Protocol

Provided security services:

• Secure data transmission.
– Integrity of data.

– Confidentiality of data.

• Authentication of the server against the client.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 80

Overview UML

���

� � � � � �
	 � �
 � � �

���

��

 �

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 81

Verification of the SSL-Protocol 1

• Authentication:
It’s not possible for the adversary to present
himself as the bank’s server against the client.

• Also: confidentiality.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 82

Authentication protocol

Provided security service:

• Authentication of the client against the bank’s
server.

• Was not provided by SSL because the
underlying software did not support this
feature.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 83

Overview UML

� � � � � � � � � � �

 �

� � � � � � �

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 84

Authentication protocol

A
ut

he
nt

ic
at

io
n

T
ra

ns
ac

tio
n

2

15

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 85

Overview UML

� � � � � � 	 � �
 � � �
 � � � � �

 �

� � � � � � �

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 86

Layered Security Protocol

• Adjust adversary model to account for SSL
security properties.

• Justify that specialised adversary model
wrt. top-level protocol is as powerful as
generic adversary wrt. protocol
composition.

• Verify top-level protocol wrt. specialised
adversary.

• Implies verification of protocol composition.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 87

Verification of the Auth. protocol

• Authentication:
– It’s not possible for the adversary to authenticate

under a wrong identity against the web server.

– Used time: approx. 2 hours 40 minutes.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 88

Verification of the Auth. protocol

• Explanation
– “There does not exist any path (¬E)

– where WebServer is in state GotSignedNonce

– and the Nonce was signed by the client

– if the Client has not been in state SentNonceCert
before”

• In other words:
– If the client didn’t send the signed nonce, the Web

Server couldn’t have received the signed nonce.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 89

Insight

Protocol layering indeed additive wrt.
security properties in this particular case.

Generalize to classes of protocols and
security requirements.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 90

Further applications

• Variant of the Internet Protocol TLS
• Common Electronic Purse Specifications
• SAP access control configurations
• Biometric authentication system of German

telecommunication company
• Automobile emergency application of German

car company
• German health card
• Electronic signature application in insurances
• …

2

16

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 91

Roadmap

Prologue

UML
UMLsec: The profile

Security analysis
Using Java security, CORBAsec

Case studies
UML 2.0, Testing, Tools

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 92

Some new concepts in UML 2.0

UML extended with concepts from UML
RT (Selic, Rumbaugh 1998).

Focus on software architecture.

New: capsules, ports, connectors.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 93

Capsules, ports, connectors

Capsules: architectural objects interacting
through signal-based boundary objects (ports).

Port: object implementing interface of capsule.
Associated with a protocol defining flow of
information.

Connector: abstract signal-based communication
channels between ports.

Functionality of capsule realized by associated
state machine.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 94

Example

From Selic, Rumbaugh 1998.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 95

Tool-support: Test-generation

Two complementary strategies:

• Conformance testing

• Testing for criticality requirements

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 96

Conformance testing

Classical approach in model-based test-
generation (much literature).

Can be superfluous when using code-
generation [except to check your code-
generator, but probably once and for all]

Works independently of criticality
requirements.

2

17

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 97

Conformance testing: Problems

• Complete test-coverage usually infeasible.
Need to somehow select test-cases.

• Can only test code against what is
contained in the behavioral model. Usually,
model is more abstract than code. So may
have „blind spots“ in the code.

For both reasons, may miss critical test-
cases.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 98

Criticality testing

Shortcoming of classical model-based
test-generation (conformance testing)
motivates „criticality testing“ (e.g.,
papers by Jürjens, Wimmel at PSI’01,
ASE’01, ICFEM’02).

Goal: model-based test-generation
adequate for (security-, safety-) critical
systems.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 99

Criticality testing: Strategies

Strategies:

• Ensure test-case selection from behavioral
models does not miss critical cases: Select
according to information on criticality
(„internal“ criticality testing).

• Test code against possible environment
interaction generated from external parts of
the model (e.g. deployment diagram with
information on physical environment).

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 100

Internal Criticality Testing

Need behavioral semantics of used
specification language (precise enough to be
understood by a tool).

Here: semantics for simplified fragment of UML
in „pseudo-code“ (ASMs).

Select test-cases according to criticality
annotations in the class diagrams.

Test-cases: critical selections of intended
behavior of the system.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 101

External Criticality Testing

Generate test-sequences representing the
environment behaviour from the

criticality information in the deployment
diagrams.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 102

Tool-support: Concepts

Meaning of diagrams stated informally in (OMG
2003).

Ambiguities problem for
• tool support

• establishing behavioral properties (safety,
security)

Need precise semantics for used part of UML,
especially to ensure security requirements.

2

18

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 103

Formal semantics for UML: How

Diagrams in context (using subsystems).

Model actions and internal activities explicitly.

Message exchange between objects or
components (incl. event dispatching).

For UMLsec/safe: include adversary/failure
model arising from threat scenario in
deployment diagram.

Use Abstract State Machines (pseudo-code).

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 104

Tool-supported analysis

Choose drawing tool for UML

specifications

Analyze specifications via XMI (XML

Metadata Interchange)

skip compar.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 105

Tool-supported analysis
Commercial modelling tools: so far mainly

syntactic checks and code-generation.

Goal: more sophisticated analysis; connection
to verification tools.

Several possibilities:

• General purpose language with integrated XML
parser (Perl, …)

• Special purpose XML parsing language (XSLT, …)

• Data Binding (Castor; XMI: e.g. MDR)

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 106

Data-binding with MDR

MDR: MetaData Repository,
Netbeans library (www.netbeans.org)

Extracts data from XMI file into Java
Objects, following UML 1.4 meta-model.

Access data via methods.

Advantage: No need to worry about XML.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 107

Framework for CSDUML tools: viki

Implements functionality
– MDR wrapper

– File handling

– Properties management

– Tool management

Exposes interfaces
– IVikiFramework

– IMdrWrapper

– IAppSettings

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 108

viki Tool

• Works in GUI and/or Text mode

• Implements interfaces
– IVikiToolCommandLine

• Text output only

– IVikiToolGui
• Output to JPanel + menu, buttons, etc

• Exposes set of commands
– Automatically imported by the framework

2

19

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 109

Implementing tools
Exposes a set of commands.
Has its internal state (preserved between command

calls).
Every single command is not interactive (read user input

only at the beginning).
Framework and analysis tools accessible and available

at http://www4.in.tum.de/~umlsec .
Upload UML model (as .xmi file) on website. Analyse

model for included criticality requirements. Download
report and UML model with highlighted weaknesses.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 110

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 111

Connection with analysis tool

Industrial CASE tool with UML-like notation:
AUTOFOCUS (http://autofocus.
informatik.tu-muenchen.de)

• Simulation

• Validation (Consistency, Testing, Model Checking)

• Code Generation (e.g. Java, C, Ada)

• Connection to Matlab

Connect UML tool to underlying analysis
engine.

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 112

Some resources
Book: Jan Jürjens, Secure Systems

Development with UML, Springer-Verlag,
2004

Tutorials: Aug.: WCC (Toulouse). Sept.:
SAFECOMP (Potsdam), ASE (Linz), Oct.:
UML (Lisbon).

Summer School Lecture: FOSAD (Bertinoro,
Italy, Sept.)

Workshop: CSDUML@UML04

More information (papers, slides, tool etc.):
http://www4.in.tum.de/~juerjens/csdumltut
(user Participant, password Iwasthere)

Jan Jürjens, TU Munich: Developing Secure Web-based Applications with UML 113

Finally

We are always interested in industrial
challenges for our tools, methods,
and ideas to solve practical problems.
More info: http://www4.in.tum.de/~secse

Contact me here or via Internet.

Thanks for your attention !

