
 Transformation Techniques in the Model-Driven
Development Process of UWE

 Nora Koch
Ludwig-Maximilians-Universität

Oettingenstr. 67, 80538 München
and FAST GmbH

Arabellastr. 17, 81925 München
Germany

kochn@pst.ifi.lmu.de

ABSTRACT
Development of Web software is still an inefficient and error-
prone process. We need integrated techniques and tool support for
automated generation of Web systems. The goal of model-driven
development (MDD) is to tackle these problems introducing a
higher level of abstraction by defining metamodels and model
transformations rules. We present the development process of the
UML-based Web Engineering (UWE) approach defined as an
MDD approach and focus on the model transformation aspects of
the process.

Categories and Subject Descriptors
I [Computing Methodologies]: I6 Simulation and Modeling, I6.5
Model Development – modeling methodologies.

General Terms
Design, Languages, Standardization.

Keywords
Model-Driven Development, Metamodel, Modeling Language,
Model Transformation, MDA, Transformation Language, UML,
UWE, Web Engineering.

1. INTRODUCTION
Software development techniques are continuously evolving with
the goal of solving the main problems that still affect the building
and maintenance of software systems: time, costs and error-
proneness. Regarding the development process two important
trends can be observed: agile and model-driven development.

Model-driven development (MDD) [4] focuses on the
construction of models, specification of transformation rules, tool
support and automatic generation of code and documentation.
Agile development [1] instead focuses on the stakeholder’s
activities. The central idea of MDD is to separate the platform
independent design from the platform specific implementation of
applications delaying as much as possible the dependence on
specific technologies. Therefore, MDD advocates the construction

of platform independent models and the support of model
transformations. Consequently, the software development process
can be viewed as a chain of model transformations.

Web Engineering is a concrete domain where MDD can be
helpful, particularly in addressing the problems of evolution and
adaptation of Web software to continuously emerging new
platforms and changes in technologies. During the last years the
Web engineering community has proposed several languages,
architectures, methods and processes for the development of Web
applications. In particular, methods for modeling such systems
were developed, such as Hera [9], OOHDM [31], OO-H [10],
OOWS [33], UWE [19], WebML [5], and W2000 [2]. They focus
on the specification of analysis and design models for Web
systems, such as the construction of navigation or adaptation
models. However, the model transformation aspects were
neglected by most of these methods.

We present an overview of the complete MDD process of the
UML-based Web Engineering (UWE) approach and focus in this
work on the model transformation aspects of the process. The
UWE process covers the whole development life cycle of Web
systems from the requirements specification to code generation.
The difference to other approaches in the Web domain is on the
one hand the specification of all models in UML a kind of lingua
franca for object-oriented specification. On the other hand – and
more innovative – is the use of forthcoming transformation
languages for the specification of transformation rules in the
development process defined by UWE. However, the
transformation rules defined in the first development phase of
UWE, such as those integrated in the ArgoUWE CASE tool [14],
are still tool proprietary. In the more recent phases, we use
emerging specification techniques like transformation languages
(ATL [13], QVT [28]), and graph transformations.

In this work a set of criteria and values are selected for the
classification and comparison of model transformations in the
UWE process. These criteria could also be applied to model
transformations of other development processes. As far as we
know no such analysis and classification has been performed for
any other MDD process.

The best-known MDD realization is the Model-Driven
Architecture (MDA) of the OMG [25]. The development process
of UWE is based on MDA as well as other OMG standards (UML
[29], XMI [30], MOF [26], OCL [27]) and the forthcoming
standard transformation language QVT ([28]).

Copyright is held by the author/owner(s).
Workshops at ICWE'06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-435-9-2/06/0007.

The remainder of this paper is structured as follows: Sect. 2 gives
a brief overview of the relevant MDD concepts. Sect. 3 presents
the UWE process and the description of the UWE models. An
analysis of the transformations that are applied to the source
models in each step of the UWE process is presented in Sect.4.
Sect. 5 provides an overview of related work. Finally, in Sect. 6
we present some conclusions and outline our work in progress and
future plans on the implementation of the model transformations.

2. BASIC MDD CONCEPTS
The idea behind MDD is that modeling and transforming is a
better foundation for the development and maintenance of systems
than programming [24]. The primary goals of MDD are
portability, interoperability and reusability trough architectural
separation of concerns. A model-driven approach requires
languages for the specification of models, the definition of
transformations, and the description of metamodels. The concrete
techniques developed so far supporting the MDA approach of the
OMG include the Unified Modeling Language (UML), Query
View Transformation Specification (QVT) and Meta Object
facility (MOF).

There are still problems with appropriate tool support and
exchange formats, needed for a seamless implementation of the
process, but we are observing how research, industry interest and
standardization efforts are moving to support the complete MDD
process.

2.1 Types of Models
A model of a system is a specification of that system and its
environment for some certain purpose. Models consist of a set of
elements with a graphical and/or textual representation. The idea
of MDD is creating different models of a system at different levels
of abstraction and using transformations to produce the
implementation of the system. MDA suggests building
computational independent models (CIM), platform independent
models (PIM) and platform specific models (PSM) corresponding
to different levels of abstraction or viewpoints [25]. We will use
these types to classify the UWE models in Sect. 3.

The computational independent viewpoint focuses on the
environment of the system, and the requirements the user has on
the system; the description provides what the system is expected
to do. The details of the structure and processing are hidden or yet
undetermined. A computational independent model is sometimes
called a domain model or a business model. It should be traceable
from the PIM and PSM models that implement the CIM.

The platform independent viewpoint focuses on the operation of a
system while hiding the details for a particular platform. It shows
the part of the complete specification that does not change from
one platform to another.

The platform specific viewpoint combines the platform
independent viewpoint with additional features of a specific
platform.

The objective is to postpone in the development process the
creation of models that take into account technological aspects of
a platform as much as possible. The main advantage is to be able
to react efficiently and with low costs to technology changes.

2.2 Transformation Aspects
Model transformation is the process of converting one or more
models – called source models – to one output model – the target
model – of the same system [25]. The concepts mapping and
relation are defined as specializations of transformation. A
mapping is defined as a unidirectional transformation in contrast
to a relation that defines a bi-directional transformation. Note that
the model transformation result is exactly one model.

We distinguish the following aspects of transformations: type
(based on the type of the models involved), complexity, level of
abstraction, use of marks, execution and implementation types.
We use these aspects as classification criteria for the
transformations of the UWE process presented in Sect. 4. They
could also be used to analyze other MDD processes.

2.2.1 Transformation Type
In a model-driven development process model transformations
can be of type CIM to PIM, PIM to PIM, PIM to PSM and PSM
to code. A computational independent model can be refined, i.e. a
CIM can be mapped to another CIM, in the same way PIMs can
be refined. Note that transformations from PIM to CIM, PSM to
CIM, and PSM to PIM are not possible.

2.2.2 Transformation Complexity
Transformations may combine elements of different source
models in order to build a target model. According to the number
of source models involved in the mapping process a
transformation is named simple or a merge.

2.2.3 Level of Abstraction
Transformations can be defined for elements of different levels:
metamodel, model or instance.

A transformation at metamodel level is the specification of certain
types of source models that are converted to another type of target
models, i.e. they apply to all source model elements of a type as
represented in the pattern of Bezivin [4] in Figure 1. A
transformation at model level consists of the identification of
particular model elements that will be transformed according to
certain rules and a transformation at instance level consists on the
identification of specific objects that will be transformed in a
certain way.

Figure 1: Model transformation pattern [4]

2.2.4 Use of Marks and Additional Information
Transformation rules rely on certain marks (types, patterns,
templates or UML profile elements) in order to select the elements

to which a rule applies [25]. These marks can be part of the
elements or take the form of additional input that does not pollute
the source models, i.e. non-intrusive or lightweight extension to
models. Examples of marks provided by the model itself are types
(class or association) and stereotypes of UML profiles. In
addition, patterns identifiable in the source model can also be
used as a mark in a transformation rule, as a certain combination
of modeling elements.

Other marks instead are only required for the mappings. They do
not need to be integrated in the source model [24], such as
selection of certain classes or states. This kind of marks are kept
in separate marking models and combined with the source models
during the mapping process. Templates are other external
providers of input for transformations. They are like patterns but
may include more detailed information to guide the
transformation.

Additional information can be used to guide the transformation.
Often it is drawn from the knowledge the designer has about the
application domain or its knowledge on the technology platform.
For example a particular architecture style or pattern may be
specified.

2.2.5 Execution Type
Transformations are classified in automatic, semi-automatic and
manual based on the decisions the designer takes on the source
and target models.

A transformation is automatic if it does not require any decision
from the user of the system. The transformation is semi-automatic
if the user takes the decision of which elements of the source
model will be transformed, and manual if the designer produces
the results. A model-driven process aims to define transformations
rules that allow for automatic model transformations.

2.2.6 Implementation Technique
Transformation rules can be implemented in (1) general
programming language as Java, i.e. hard coded in specific tools,
or (2) languages for transformations such as ATL [13] or QVT
[28]. Transformations are often based on invariants and pre
conditions and post conditions specified in languages such as
OCL [27].

3. UWE PROCESS AND MODELS
The UWE approach comprises a UML Profile for modeling Web
systems, a process and tool support for the development of Web
systems. For modeling with UWE and UWE CASE tool we refer
the reader to [3], [6], [12], [14], [15], [17] and [19].

The UWE process is a model driven development process
following the MDA principles and using the OMG standards
([26], [27], [29], [30]). It consists of a set models and model
transformations, which specification is supported by metamodels
and transformations rules. The metamodels are the UWE
metamodel [20], the Web Requirements Engineering metamodel
(WebRE) [6] and the metamodel of the Web Software
Architecture approach (WebSA) [23].

3.1 Process Overview
The main characteristic of the UWE process is the systematic,
semi-automatic, model-driven and transformation-based (Sect. 4)

support of the development of Web systems. The UWE process is
depicted in Figure 2 as a stereotyped UML activity diagram
([23]). Models are represented with object flow states and
transformations as stereotyped activities (special circular icon). A
chain of transformations then defines the control flow.

Figure 2: UWE Process Overview

The process starts with the business model (CIM) level defining a
requirements model. Platform independent design models (PIMs)
are derived from these requirements. The set of design models
represents the different concerns of the Web applications. It
comprises the content, the navigation, the business logic, the
presentation, and the adaptation of the Web system. The different
design models are not depicted in the overview shown in Figure 2.

Design models are afterwards integrated mainly for the purpose of
e.g. verification into a big picture model [17]. A merge with
architectural modeling features results in an integrated PIM model
covering functional and architectural aspects. Finally, the platform
specific models (PSMs) are derived from the integration model
from which programming code can be generated. The aim of such
an MDD process is automatic model transformation in each step
based on rule transformations.

3.2 Models in UWE
A set of models of a Web system is built during the UWE
development process. Each model belongs to one of the three
viewpoints described in Sect. 2.1, i.e. CIM, PIM or PSM (see
Figure 2).

UWE models are represented by UML diagrams. Whenever
appropriate UWE uses the “pure” UML notation. For modeling
specific features of the Web domain, such as navigation nodes and
Web pages elements UWE provides a UML profile, which is
defined using the extension mechanisms provided by the UML:
stereotypes and OCL constraints. For further details on UWE
profile refer to [3], [6], [15], [17], [19] and [21].

We illustrate models and model transformations by means of a
music Web portal example, inspired by www.mp3.com, which
provides albums for download. Information about singer,
composer, and publisher are available for free, instead only
registered users can search albums and download them if they
have enough credit on their prepaid account.

3.2.1 Requirements Model
The overall objective of modeling the requirements is the
specification of the functionality of the system as a computational
independent model (CIM). The specific objectives for Web
systems become: (1) the specification of the functional require-
ments in terms of navigation needs and business processes, (2) the
specification of content requirements, and (3) the definition of
interaction scenarios for different groups of Web users. .

Figure 3: Use case diagram (CIM)

⇔⇔⇔⇔

⇔⇔⇔⇔

⇔⇔⇔⇔

⇔⇔⇔⇔

Figure 4: Activity diagram for a (simplified) download album

use case (CIM)

UWE models requirements with UML use case diagrams and
UML activity diagrams. UWE distinguishes two types of use
cases: navigation use cases and use cases describing Web business
processes. The latter – following UWE’s recommendation –

should be further detailed with activity diagrams. UWE uses the
UML profile for Web requirements (WebRE) defined by Escalona
& Koch [6], which comprises stereotyped use cases, activities and
objects providing modeling elements with Web domain specific
semantics. Figure 3 depicts the use case diagram for the music
portal and Figure 4 shows the activity diagram for the Download
album use case

3.2.2 Design Models
At design level UWE follows the separation of concerns widely
applied in Web engineering. We build separate models for
content, navigation and presentation aspects of Web systems
using UML class diagrams for the visual representation [19]. We
supplement them with an additional process model for
transactional Web applications, and an adaptation model for
personalized and context-dependent systems. UWE defines Web
domain specific modeling elements e.g. navigation class and
menu for the navigation model, and presentation class and anchor
for the presentation model.

The UWE profile provides the corresponding stereotypes. Figure
5 and Figure 6 depict the content and navigation model of the
music portal. Navigable nodes are represented by instances of the
metaclass NavigationNode such as NavigationClass, Menu and
ProcessClass (stereotypes that extend the UML Class). Links
between navigation nodes are represented by instances of
NavigationLink and ProcessLink. In addition, navigation paths are
structured by instances of special types of access primitives such
as Index, Query and GuidedTour. Indexes represent choices
among instances of a specific navigation class; menus (like
MainMenu) in contrast represent choices among instances of
navigation nodes of different types. A Query (like SearchAlbum)
models a search action in the Web application, where a user can
enter a term and select from the matching results.

Figure 5: Content and user model (PIM)

??

Figure 6: Navigation model (PIM)

Process models are visualized as UML 2.0 activity diagrams (see
Figure 7). Actions (like FindUser) model the actions the user and
the system must carry out to complete the business process.

Figure 7: Business process Login (PIM)

Figure 8: States Home and Song of the “big picture” (PIM)

UWE proposes to build a presentation model to sketch the layout
of the Web application. It uses the UML composition notation for
classes, i.e. containment represented by graphical nesting of the
symbols. This kind of representation is appropriate for modeling
user interfaces as it allows for spatial ordering, but has the
problem that most standard case tools do not support it. For
adaptation models the UWE profile includes stereotypes for
different node and link adaptation. The diagrammatic technique
used by UWE is aspect oriented modeling (AOM), extending the
UML with concepts such as aspect, pointcut and advice to support
AOM [1]. Due to space restrictions we do not give further details

to presentation and adaptation models in this paper; the reader is
referred to [3] and [18].

UWE proposes the generation of an integrated model that merges
the separate concerns of a Web system into a big picture (see
Figure 2. Using UML state machines as the results of the
integration process offers the possibility of applying formal
techniques for validation, like model checking [16]. Currently the
big picture is the result of the integration of the UWE content,
navigation and business logic models, but it can easily be
extended to include features like access control [36] and
adaptation [3]. Figure 8 shows the states Home and Song, both
states are part of the “Big Picture” model.

3.2.3 Architecture and Implementation Models
Additional information on architectural styles can be merged at
different steps in the UWE MDD process. Following the WebSA
approach we propose in [23] to integrate functional design models
and architecture models in a very early development phase. Such
an approach is shown in the UWE process overview depicted in
Figure 2. Architecture models in the Web Software Architecture
(WebSA) approach are specified as platform independent models
(PIMs). Knapp and Zhang suggest in [17] to merge architecture
models with the big picture model, i.e. with the result of the
already integrated model of the different concerns (content,
navigation and business logic). A third alternative is to introduce
the architectural information in the generation of platform specific
models.

4. MODEL TRANSFORMATIONS IN UWE
Model transformations are based on the definition of
transformation rules, which are defined whenever possible for the
metamodel level and written as expressions of transformation
languages. Hence, we need the specification of the metamodels of
both the source and the target of the transformation. In addition,
to the UWE metamodel we use the WebRE metamodel [6] and the
WebSA metamodel [23] that are MOF-compliant metamodels.

Transformations are classified into three groups: those used to
build the design models, those needed to generate the big picture
and the integration model, and finally transformations for the
generation of implementation models and code. We summarize
the characteristics of each transformation in Table 1 based on the
criteria defined in Sect. 2.2.

4.1 Building Design Models
The first model transformation step of the UWE process consists
of the mapping of the Web requirements models to the UWE
design models [21]. The design models are the content,
navigation, process, presentation, and adaptation model. There
exists a set of dependencies among these design models
themselves that allow for creation of other models or refinement
of models.

Transformations rules are defined as mappings from metamodel
WebRE to the UWE metamodel and among UWE metamodels.
Figure 9 shows for example, how the model transformation
pattern of Figure 1 is applied to the UWE process using the
standard Query View Transformation Language (QVT, [28]).

Transfor-
mation

Req2
Content

Req2
Architec-
ture

Content2
Navigation

Navigation
Refinement

Req2
Navigation

Navigation2
Presentation

Style
Adjust-
ment

Design2
BigPicture

Integrating
Architecture

Integration2
J2EE

Type CIM to PIM CIM to
PIM

PIM to PIM PIM to PIM CIM to PIM PIM to PIM PIM to PIM PIM to PIM PIM to PIM PIM to PSM

Complexity simple simple simple simple merge simple merge merge merge merge
Level of
abstraction

metamodel - model metamodel metamodel metamodel model metamodel metamodel metamodel

Marks WebRE
profile

- UWE profile
& navigation
relevance

UWE profile
& patterns

WebRE
profile

UWE profile style guide patterns
and marks

UWE &
WebSA
profile

patterns

Execution automatic manual semi-
automatic

automatic automatic automatic automatic automatic automatic automatic

Techniques QVT - Java (OCL)
ATL

Java (OCL) QVT Java (OCL)
ATL

Java graph
transfor-
mations

QVT QVT, ATL

Table 1: Characteristics of model transformations in the UWE model-driven development process

Figure 9: Model transformation pattern for metamodels

WebRE and UWE

In the UWE process the transformation requirements to content
allows for the construction of the content model; the
transformations content to navigation, requirements to
navigation and navigation refinement are used to build the
navigation model. The presentation model is built in at least two
iterations: it is created with the former navigation to
presentation and refined by style adjustments. Last but not least
the adaptation model can also be extracted from the functional
requirements models, and the architecture models from the non-
functional requirements.

4.1.1 Transforming Requirements to Content
Web activities, such as browse, search or transactions are related
to objects that are either required as input or produced as results.
These objects can be included in activity diagrams by means of
object flows. In the particular case of modeling Web systems
requirements, objects are used to indicate the need to include
certain content information in the Web application (Figure 10).

Figure 10: From requirements to content model

We use the QVT language to specify the transformation from
elements of the requirements model to elements of the content
model (Req2Content). The transformation rule defines the
mapping of the metaclass Content of the WebRE metamodel to
classes of the UWE content model; the QVT specification of the
transformation is shown in Figure 11. For further details refer to
[21]. The characteristics of the Req2Content transformation are
summarized in Table 1.

transformation ReqContent2ContentClass (webre:WebRE, uwe:UWE) {
 top relation R1 {
 checkonly domain webre c:Content { name = n };
 enforce domain uwe cc: Class { name = n }; }
 top relation R2 {
 cn: String;
 checkonly domain webre p: Property { namespace=c:
 Content {}, name = cn};
 enforce domain uwe p1:Property { namespace = cc: Class{};
 name = cn}
 when {R1 (c,cc); }
 }
 }
 name = cn}
 when {R1 (c,cc); }
 }
 }�

Figure 11: Transformation requirements elements to content
elements (QVT textual notation)

4.1.2 Transforming Requirements to Architecture
A mapping of non-functional requirements to architectural
model elements is subject of future work. Currently, the designer
includes architectural elements manually. A metamodel of non-
functional requirements for Web applications is still missing.

4.1.3 Transforming Content to Navigation
In UWE a first navigation model (see Figure 12) is generated
based on classes of the content model marked as navigation
relevant, i.e. the transformation Content2Navigation is defined
for certain model elements. From one content model different
navigation views can be obtained, e.g. for different stakeholders
of the Web system like anonymous user, registered user and
administrator [19].

The generation of each navigation view requires a set of marks
on elements of the content model, which comprise a so-called
marking model, kept separately from the content model. Hence,
the development process cannot be completed in an automatic
way, as the designer has to take the decision about the
“navigation relevance” marks. Once the marks have been set, the
transformation is applied. It is defined as an OCL constraint and
implemented in Java in the CASE tool ArgoUWE [15].

Figure 12: Transformations to build navigation model

4.1.4 Adding Requirements to Navigation
The requirements model contains information that is useful for
the enrichment of the navigation model. For example, UWE
distinguishes in the requirements model among different types
of navigation functionality: browse, search and transactional
activities. On the one side, Browse actions can be used to verify
the existence of a navigation path between source and target
nodes. On the other side, e.g. an action of type Search indicates
the need of a Query in the navigation model in order to allow for
user input of a term and the system responding with a resulting
set matching this term. Figure 13 shows the Search2Query
transformation specified in the QVT graphical notation [21].

The transformation Req2Navigation is a merge and is based on
the WebRE profile (see Table 1). Figure 12 shows that the
transformation rule Req2Navigation can be applied after the
transformation rule Content2Navigation, but there is no
restriction related to the order in which the Req2Navigation rule
and the NavigationRefinement has to be applied.

4.1.5 Refining the Navigation Model
The navigation model generated on the content model contains
itself valuable information that allows for reasoning and
improving the navigation model [12]. The following constrains
(informally described) define e.g. such transformation rules:

1. An index is added for all associations of the
navigation model that have multiplicity greater than
one at the directed association end.

2. All navigation classes that have at least one outgoing
association require a menu class with menu items
defined on basis of the association ends of the
associations.

These transformations are defined as OCL constraints in UWE
and implemented in Java in the CASE tool ArgoUWE [15]. See
Table 1 for the characteristics of these transformation rules.

Figure 13: Search2Query transformation (QVT graphical

notation)

4.1.6 Transforming Navigation to Presentation and
Adjusting to Presentation Style.
Presentation elements are generated based on navigation
elements of the navigation model and merged then with style
guide information (Figure 14). For example for each link in the
navigation model an adequate anchor is required in the
presentation model The main difficulty is the introduction of the
look and feel aspect.

Figure 14: Transformations to build presentation model

ArgoUWE implements the Navigation2Presentation rule in
Java. Style2Adjustment rules are not implemented by the time
this work was written. Table 1 characterizes both, the
Navigation2 Presentation and the Style2Adjustment.

4.2 Creation of an Integrated Model
The aim of this phase in the UWE MDD process is the creation
of one model that allows both seamless creation of platform
specific models (PSMs) and validation of correctness of the
models by model checking. The UWE process comprises two
main integration steps: the integration of all functional models
and the integration of functional and non-functional aspects; the
latter related to architectural design decisions.

4.2.1 Building the “Big Picture”
Though from different viewpoints, the different design models
represent the Web application as a whole. They are integrated
into another platform independent model that we call the big
picture (Figure 15). This model is used to validate the
interaction of the separated models using model checking and to

generate the Web application automatically. The target model is
a UML state machine, representing the navigation structure and
the business processes of the Web application. The big picture
model can be checked by the tool Hugo/RT – a UML model
translator for model checking and theorem proving [17].

 Figure 15: Transformations to build “big picture” model

The transformation Design2BigPicture form a metamodel-based
graph transformation system. An example of the graph
transformation of a navigation node to a navigation state in the
big picture is depicted in Figure 16. Source models are the
content, business process and navigation models of UWE. Big
Picture transformation rules are defined within the scope of
UWE as graph transformation rules. Work in progress is the
implementation of these transformation rules in AGG [32] (a
non-Web specific tool for graph transformations). Other
characteristics of the model transformation Design2BigPicture
are outlined in Table 1.

�

Figure 16: Mapping navigation node to state in “big picture”

(graph transformation)

4.2.2 Integrating Architectural Features
Functional models defined so far (e.g. navigation, presentation,
process) can be merged with architecture models (defined as
PIMs) as shown in Figure 17. WebSA provides a layer-view and
a component-view of the architecture, which are also defined as
PIMs. Transformation rules are defined based on the UWE and
WebSA metamodels (for further details see [23]). The
characteristics of the rules of type IntegratingArchitectural
Features are outlined in Table 1.

Figure 17: Integration of architectural features

4.3 Generation of Platform Specific Models
and Code
To transform technology independent models into platform
specific models additional information about the platform is
required. It can be provided as an additional model or it is
implicitly contained in the transformations. For mappings from
UWE design models (PIMs) to PSMs for Web applications
(Figure 18) we performed a set of experiments with the recently
developed model transformation languages. The Query View
Transformations languages used are the Atlas Transformation
Language (ATL) [13], QVT-P and QVT [28]. For example, the
transformation depicted in

 Figure 19 tackles the generation of J2EE elements from
Server Pages of the Integration Model. The rule is written in
QVT-P language.

Figure 18: Generation of platform specific models

relation ServerPage2J2EE {
 domain { (IM.IntegrationModel) [(ServerPage) [name=nc,
 services = {(WebService) [name=on, type=ot]}, views = {(View)
[name = vn]}]] }
domain { (JM.J2EEModel) [(JavaServerPage) [name=nc,
forms = {(Form) [name=on, type=ot]}, beans = {(JavaClass) [name =
vn]}]] }
when { services -> forAll (s | WebService2Form (s, F1set.toChoice()))
views-> forAll (v | View2Bean (v, J1set.toChoice()))) }}
}

 Figure 19: Generation of J2EE model elements based on

the integration model (QVT-P language)

Another example is shown in

Figure 20. The ATL code exemplifies a transformation rule that
maps the element Anchor of the UWE presentation model to a
JSP element. Note that the transformation rule also involves
elements of the navigation model (NavigationLink) and content
model (ContentNode).

rule Anchor2JSP {
from uie : UWE!Anchor (
 to jsp : JSP!Element (
 name <- 'a',
 children <- Sequence { hrefAttribute, contentNode }),
 hrefAttribute : JSP!Attribute (
 name <- 'href',
 value <- thisModule.createJSTLURLExpr(
 uie.navigationLink.target.name, 'objID')),
 contentNode : JSP!TextNode (
 value <- uie.name)
}

Figure 20: Generation of JSP elements based on the

presentation model (ATL language)

5. RELATED WORK
The MDD approach of UWE focuses on model transformations
defined at metamodel level and specified in general purpose
transformation languages, such as QVT and graph
transformations. Transformation languages are also used by
some other Web design methods.

WebSA is an approach that focuses on architectural models and
transformations specified in QVT. It is partially integrated in the
UWE process [23]. Baresi and Mainetti [2] propose to use rule
transformation techniques for the verification of correctness and
adaptability of models designed by W2000. The approach is
based on a work on graph transformations [11]. OOWS [33]
uses graph transformations to automate its CIM to PIM
transformation.

WebML follows an MDD approach for mapping modeling
elements of WebML to architecture components of MVC2,
which can be transformed into components for different
platforms [5]. OO-H [10] supports a transformation-based
construction of a presentation model based on modeling
elements of the navigation model and code generation based on
the conceptual, navigation and presentation models. Both,
WebML and OO-H transformation rules are proprietary part of
their CASE tools. Hera – an approach centered on the Semantic
Web–RDF technology – instead applies MDD only to the
creation of a model for data integration [35].

The approaches of Engels et al [8] and Varró and Pataricza [34]
are interesting although they do not consider Web domain
specific characteristics but they define a generic approach with
focus on formal definition of transformation semantics.

6. CONCLUSIONS AND FUTURE WORK
We presented the development process of the UML-based Web
Engineering (UWE) approach defined as a model-driven
development approach. We outlined all the models and model
transformations that comprise the MDD process, focusing on the
classification of the model transformations in terms of: MDA
type, complexity, level of abstraction of the rule definition,
number of source models, involvement of marking models,
implementation techniques and execution type.

We use different specification techniques for the transformations
like ATL, QVT, graph transformations, and hard-coded in Java.

We need to redefine some of them, e.g. those that are hard coded
in the CASE tool, in order to benefit from transformation rules
defined at a higher abstraction level, e.g. using graph
transformations or transformation languages.

By the time this paper was written, the main problem still is the
tool support for model transformations. A detailed analysis of
the requirements of such tools is beyond the scope of this paper.
We plan to concentrate on the most promising and adequate
approach and those that provide a user-friendly tool
environment. For example, we plan to use the AGG [32] and the
apache struts technology (www.apache.org) to produce
results that can then be integrated with the tool environment
HUGO/RT [16] for model checking purposes. We plan to use
our research results in this area for the automatic generation of
test cases.

ACKNOWLEDGMENTS
This research has been partially supported by the project
MAEWA “Model Driven Development of Web Applications”
(WI841/7-1) of the Deutsche Forschungsgemeinschaft (DFG),
Germany and the EC 6th Framework project SENSORIA
“Software Engineering for Service-Oriented Overlay
Computers” (IST 016004).

We would like to thank the Web Engineering team of the LMU,
which contributed to the improvement of UWE, in particular to
Martin Wirsing, Alexander Knapp, Gefei Zhang, Andreas Kraus,
Rolf Hennicker and Hubert Baumeister. We also thank María
José Escalona of the University of Seville, and Santiago Meliá
and Cristina Cachero of the University of Alicante for
collaborations in works related to UWE.

REFERENCES
[1] Amber, S. Agile Model-Driven Development with UML

2.0. Cambridge University Press, 2004.

[2] Baresi, L. and Mainetti, L. Beyond Modeling Notations:
Consistency and Adaptability of W2000 Models. In Proc.
of SAC'05, ACM Symposium on Applied Computing,
Santa Fe, USA, 2005

[3] Baumeister, H., Knapp, A., Koch, N. and Zhang, G.
Modelling Adaptivity with Aspects. In Proc. 5th Int. Conf.
on Web Engineering (ICWE 2005), LNCS 3579, Springer,
July 2005.

[4] Bézivin, J. In Search of a Basic Principle for Model Driven
Engineering. UPGRADE V(2), Novótica, April 2004.

[5] Ceri, S., Fraternali, P. and Matera, M. Conceptual
Modeling of Data-Intensive Web Applications, IEEE
Internet Computing 6(4), July/August 2002.

[6] Escalona, M. J. and Koch, N. Metamodeling Requirements
of Web Systems. In Proc. 2nd Int. Conf. on Web Informa-
tion System and Technologies, Portugal, April 2006.

[7] Escalona, M. J., Mejías, M. and Torres, J. Developing
System with NDT & NDT-Tool. In Proc. of 13th Informa-
tion System Development (ISD 2004), Lithuania, 2004.

[8] Engels, G., Hausmann, J-H, Heckel, R. and Sauer, S.
Dynamic Meta Modeling: A Graphical Approach to
Operational Semantics of Behavioral Diagrams in UML. In

Proc. of 3rd Int. Conf. on the Unified Modeling Language
(UML 2000), LNCS 1939, Springer, October 2000.

[9] Frasincar F., Houben, G.J. and Vdovjak R. An RMM-
Based Methodology for Hypermedia Presentation Design.
In Proc. of Advances in Databases and Information
Systems (ADBIS 2001) Vilnius, Lithuania, Springer,
LNCS 2151, 2001.

[10] Gomez, J., Cachero, C. and Pastor, O. Extending a
Conceptual Modelling Approach to Web Application
Design. In Proc. 2nd CaiSE´00, LNCS 1789, Springer
Verlag, Stockholm, June 2000.

[11] Heckel R. and Lohmann M. Model-based development of
Web applications using graphical reaction rules. In Proc.
Fundamental Approaches to Software Engineering,
Warsaw, Springer.

[12] Hennicker, R. and Koch, N. A UML-based Methodology
for Hypermedia Design. In Proc. of the Int. Conference,
editors, UML'2000 - The Unified Modeling Language -
Advancing the Standard, LNCS 1939, York, Springer,
October 2000.

[13] Jouault, F., and Kurtev, I. Transforming Models with ATL.
In Proc. of the Model Transformations in Practice
Workshop at MoDELS 2005, Jamaica.

[14] Knapp A., Koch N., Moser F. and Zhang G. ArgoUWE: A
CASE Tool for Web Applications. In 1st Int. Workshop on
Engineering Methods to Support Information Systems
Evolution (EMSISE03), September 2003.

[15] Knapp, A., Koch, N., Zhang, G. and Hassler, H.-M.
Modeling Business Processes in Web Applications with
ArgoUWE. 7th Int. Conference on the Unified Modeling
Language (UML 2004). LNCS 3273, Lisbon, 2004.

[16] Knapp, A., Merz, S. and Rauh, C. Model Checking Timed
UML State Machines and Collaborations. In Proc. 7th Int.
Symposium Formal Techniques in Real-Time and Fault
Tolerant Systems, LNCS 2469, Springer, Berlin, 2002.

[17] Knapp, A. and Zhang, G. Model Transformations for
Integrating and Validating Web Application Models. In
Proc. of Modellierung 2006, Innsbruck, March 2006.

[18] Koch, N. Software Engineering for Adaptive Hypermedia
Systems: Reference Model, Modeling Techniques and
Development Process. Uni-Druck Verlag, 2001. PhD.
Thesis, LMU München.

[19] Koch, N. and Kraus, A. The expressive Power of UML-
based Web Engineering. 2nd Int. Workshop on Web-
oriented Software Technology (IWWOST02). Málaga,
Spain. June, 2002.

[20] Koch, N. and Kraus, A. Towards a Common Metamodel
for the Development of Web Applications. In 3rd Int. Conf.
on Web Engineering (ICWE 2003), LNCS 2722, Springer,
July 2003.

[21] Koch, N., Zhang, G. and Escalona, M. J. Model
Transformations from Requirements to Web System
Design, 2006, 6th Int. Conf. on Web Engineering, Palo
Alto, USA, July 2006.

[22] Manifesto for Agile Software Development
http://agilemanifesto.org/, last retrieved March 22, 2006.

[23] Melía, S., Kraus, A. and Koch, N. MDA Transformations
Applied to Web Application Development. In Proc. 5th Int.
Conf. on Web Engineering (ICWE 2005), Sydney,
Australia, LNCS 3579, Springer, July 2005.

[24] Mellor, S., Scott, K., Uhl, A. and Weise, D. MDA
Distelled; Principles of Model-Driven Architecture,
Addison Wesley, 2004.

[25] Object Management Group (OMG). MDA Guide Version
1.0.1. omg/2003-06-01, http://www.omg.org/docs/omg/03-
06-01.pdf.

[26] Object Management Group (OMG). Meta Object Facility
(MOF) Core Specification, v2.0, 2006-01-01,
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[27] Object Management Group (OMG). UML 2 Object
Constraint Language (OCL), http://www.omg.org/cgi-
bin/doc?ptc/2005-06-06

[28] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification Final
Adopted Specification, ptc/05-11-01. http://www.omg.org/
docs/ptc/05-11-01.pdf, November 2005.

[29] Object Management Group (OMG). Unified Modeling
Language (UML): Superstructure, version 2.0.
Specification, http://www.omg.org/cgi-bin/doc?formal/05-
07-04.

[30] Object Management Group (OMG). XML Metadata
Interchange (XMI), v2.1, 2005-09-01, http://
www.omg.org/technology/documents/formal/xmi.htm

[31] Schwabe D.and Rossi G. Developing Hypermedia
Applications using OOHDM. Workshop on Hypermedia
Development Process, Methods and Models, Hypertext´98,
Pittsburg, USA, 1998.

[32] Taenzer, G. AGG: A Graph Transformation Environment
for System Modeling and Validation. Proc. Tool
Exihibition at "Formal Methods 2003", Pisa, Italy,
September 2003.

[33] Valderas P., Fons J. and Pelechano V. From Web
Requirements to Navigational Design – A Transformational
Approach. In Proc. 5th Int. Conf. on Web Engineering
Engineering (ICWE 2005), Sydney, Australia, LNCS 3579,
Springer, July 2005.

[34] Varró, D. and Pataricza A. Generic and Meta-
transformations for Model Transformation Engineering. In
Proc. 7th Int. Conference on the Unified Modeling
Language (UML 2004), LNCS 3273, Springer, 2004.

[35] Vdovjak, R. and Houben G.J.A Model-Driven Approach
for Designing Distributed Web Information Systems. In
Proc. of 5th Int. Conference on Web Engineering (ICWE
2005), Sydney, Australia, LNCS 3579, Springer, July 2005.

[36] Zhang, G., Baumeister, H., Koch, N. and Knapp, A..
Aspect-Oriented Modeling of Access Control in Web
Applications. In 6th Int. Workshop Aspect Oriented
Modeling (AOM’05), Chicago, USA, 2005.

