
Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 10:
Information Modeling

Chapter 10

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
2

Agenda

Abstract
 In this chapter we will specify information items, their

relationships, and their attributes and behaviors (“object
lifecycles”) using UML class, object and state machine models.

 It is important not to confuse class models and information
models. Even if they use just the same notation, they refer to
completely different things: domain concepts and relationships on
the one hand, and implementation elements on the other.

Contents
1. Elements of Information Models
2. Creating Information Models
3. Refactoring Information Models
4. Splitting Large Information Models

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 8.1:
Elements of Information Models

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
4

Information Model

 An Information Model describes the information items of a
domain, including their attributes and relationships, in a purely
logical, domain-oriented way.
 The information model is part of the requirements and elaborates the

problem space, not the solution space.

 In a UML-setting, we use analysis-level class models (ACM) to
represent the information items and their relationships.

 Information Models do not just contain static structure, however:
they contain all there is to be known from a domain point of view
on information items, individually and collectively.
 That includes their attributes and states, but also their operations and state

transitions, and possibly their interactions. Therefore, an information model
may contain class diagrams as well as state machines, and interaction
diagrams.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
5

Information Items

 Sometimes, we have to integrate widely contradicting sources of
information for creating class models.

 In such situations, it might be a good strategy to create object
models first and only later abstract them to class models.
 It seems that it is much easier for people to agree on given individual cases,

particularly when they are real cases.

 When we have collected many such individual scenarios, we may
abstract recurring elements to the type level and improve the
resulting class diagram by refactoring (see below).

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
6

Analysis vs. Design Level Models

 It is important not to confuse analysis and design (or implementation)
level models.
 Even if they use just the same notation, they refer to completely different things,

namely domain concepts and relationships on the one hand, and design (or
implementation) elements on the other.

 Analysis-level Models describe the problem space, not the solution
space. Their purpose is understanding, not construction.
 Therefore, they do not include design- or implementation-related information.
 This includes technological details such as programming-language specific

features or constraints.
 Similarly, whether a given model will lend itself to an efficient implementation (or,

in fact, any implementation) is irrelevant.

 Addressing design and implementation issues would prematurely
constrain the set of possible solutions, and thus obstruct the search for
the optimal solution.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
7

Concepts of A-level class models

Class

Inheritance

Package Association

Property
Operation

Constraint
(e.g., OCL or English)

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
8

Concepts of A-level class models

 Many basic concepts of class models can be used on any level.
 E.g. Class, Feature, Multiplicity, Type, Parameter, InstanceSpecification

(“Object”)

 Other concepts are restricted to specific levels, or sets of levels
 ACM: AssociationClass, GeneralizationSet, reading direction
 A/DCM: Association,
 DCM: Navigation, Realization/Substitution, keys
 D/ICM: Interface, Uses/Realizes, visibilities, TemplateClass

 Some concepts even have different meanings and constraints at
different levels.
 For instance, there may be a difference between single and multiple

Generalization („Inheritance“) at the D- and I-levels, but not at the A-level.
 Similarly, a Package at the D/I-levels refers to a system element, whereas a

package at the A-level is only a grouping mechanism for model elements.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
9

Scenarios

 At times, class models are too complex to create or use
 For instance, the model grew too large to comprehend, or the audience lacks

the required skill or experience.

 In such cases, it might be easier to work with specific examples
rather than the generic description.
 The UML provides Object Models (OM) for this purpose. Technically, they are

a restricted form of class diagrams containing only objects of classes, their
slots and links.

 OMs present a certain state of the information model, e.g.
 a pre/post-condition of an acceptance test;
 the formalization a business rule; or
 an example of the capabilities and constraints of an information model.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
10

Concepts of Object Models

 Object Models contain only the following concepts
 InstanceSpecification (more commonly known as Object)
 Link
 Slot
 Literal

 Due to the paucity of the notation, there is no difference between
different levels of abstraction.

 ©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Slot with
ValueSpecification

InstanceSpecification InstanceValue

link

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
11

Object Life Cycle

 A scenario may be considered as a snapshot of a trace, i.e., a
sequence of scenarios.

 If there are several such traces, they can be abstracted into a more
compact description using a state machine: the „Object Lifecycle“.

 The object life cycle represents the states and transitions of all
instances of a class:
 the triggers correspond to the classes’ operations;
 the states are usually represented as a single attribute or small subset of all

the attributes of the class.

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
12

Concepts of A-level StateMachines

simple State

trigger (CallEvent) guard (Constraint) initial Pseudostate

FinalState effect (CallAction) Transition

 State machines model behavior
 using states interconnected …
 with transitions triggered …
 by event occurrences.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
13

Overall Structure of Information Models
 In MagicDraw, Object Behavior Models may be

modeled as a part of a Class, establishing their
connection directly.
 If not placed there, a hyperlink ought to be

established.
 In other tools, e.g. ADONIS, such a connection must

be established explicitly by a hyperlink, whose
consistency may be validated automatically.

 Observe that the placement will have direct
influence on the version control regime and the
work organisation.

 For instance, when placing a StateMachine under a
Class, they must be versioned together, which
means they must be created together.

 So, team specializations for structural vs.
behavioral modeling are not possible any more.
Instead, team specialization must follow early
structural break downs, which, when changed later
on, are likely to give rise to dangerous ripple
effects.

 Either way, the name of the Class and lifecycle
(and possibly the package containing all the
models, diagrams, and elements belonging to it)
should coincide.

 An object lifecycle may be illustrated by some scenarios, each of
which will consist of a set of traces and some states.
 Traces emphasize the triggers and effects occurring during a run.
 States emphasize the attribute values at some moment in time,

usually including more than those attributes that define the states
of the object lifecycle.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 8.2:
Creating Information Models

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
15

Creating Information Models

 Information models capture static structure, that is, entities, their
attributes and relationships.
 In Database design, this type of model is known as logical design.
 The Abbott-Technique proposes to go through interview notes, and pick

nouns to become classes, attributes, and associations, while verbs become
operations.

 Clearly, this only works only under very restricted conditions:
 for small scale systems,
 only for an initial draft, and
 domain novices with severely restricted abstraction capacity.
In other words: don’t try this at work.

 On the other hand, it is useful as a teaching device, and we have to
start at some place.
 So we go back once more to the usage scenarios of the Taarbaek Library and

extract our first information model from it.

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
16

Creating the first classes and objects

 […] adding [the new librarian] to the
right group, and equipping him with
the appropriate rights to perform the
tasks he will be doing. Later on,
Bjarne will enter his personal data
and upload a photo to complete his
account.

 […] taking [media] out of the catalog
when they have been stolen,
misplaced, or badly damaged.

 […] when people swap media from
the "Childrens’ Selection" movie
section with those from the libraries
well-renowned and popular "Classics
of Erotic Cinema" section.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Librarian Group Medium

Catalog Section

Bjarne Childrens’
Selection

Classics of
Erotic Cinema

Librarian

Group Medium

Catalog

Section

Bjarne Childrens’
Selection

Classics of
Erotic Cinema

Right

Right

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
17

Creating Classes and Actions

 The first reader […] has just one book.
Anders logs in, takes the book, points
its ID badge to the work place’s scanner
and the system recognizes that the
book has been checked in again, while
Anders puts it on the "returned books"
shelf just behind him. When he turns
round again, the system still displays
the books' main data (title, author, id),
plus an indication that the book was
handed in late.

 It also displays the reader's account
indicating the list of books she has lent
right now, when they are due, and the
amount of fees accumulated.

 […] the slip stating that he has received
the money and that her balance is now
positive.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Reader

Book

Account

title
author
id

* lent

due dates [*]
balance

Receipt
amount
new balance
account

print()

log in()
display()

log in()
hand in(Book)

hand in(Book) : Fee
display()

due date
Lease

MainData

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
18

Completing Actions by Lifecycle

 By experience we know, that many
operations also have an inverse
operation, adding more actions to
our class model.
 In fact, many operations come as

CRUD-groups (Create, Read, Update,
Delete), representing a minimum
lifecycle.

 Creators and destructors are
inherent in OO languages, so we may
ignore them here.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Object

read

update

create
delete

Reader

Book

Account

title
author
id

* lent

due dates [*]
balance

Receipt
amount
new balance
account

print()

log in()
log out()
display()

log in()
log out()
hand in(Book)
hand out(Book)

hand in(Book) : Fee
hand out(Book): ()
display()

due date
Lease

MainData

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
19

Extracting Information Model Fragments
from Features
 Another way of starting with models is to start at textual

descriptions of features and qualities of a system and extract a
fragment of a UML model directly from them.
 If a certain information item, property, or relationship is mentioned, this can

be captured as part of a class model.
 Likewise, mentioning a state or transition may be incorporated into a state

machine.
 Similarly, a function that is being mentioned may be turned into an operation

of a class, a use case, or an action in an activity.

 There are several benefits to this approach.
 It is often straightforward and fast to derive these fragments.
 It ties the fragment directly to the requirements, thus allowing tracing and

justification of the model.
 It is easy to explain each individual fragment to a person without UML

expertise, allowing to justify (parts of) the model.

 ©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
20

Example: Extraction from MLC1

 MLC1: Media follow a
defined lifecycle from
suggested, via acquired,
incorporated, to removed.
 The availability of

incorporated media may be
restricted, e.g. in terms of age
restrictions, access restrictions
for valuable copies and highly
demanded media and so on.

 The status of incorporated
media is regularly updated to
reflect damages and lending
status.

 Creating new media requires
information such as title,
author, type, publication date,
etc.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
21

Example: Extraction from MLC11

 MLC11: The corpus may
contain several copies to a
medium.
 The catalog shall provide

readers with access to media
rather than individual copies.

 Readers shall be able to find
out, whether there is a copy of
a given medium available for
lending.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 8.3:
Refactoring Information Models

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
23

Restructuring Large Information Models

 After working on an information model for a while, it may get
large and complex, presenting more detail than can easily be
handled. Such a model does not serve its purpose any more:
 It does not provide the overview that we need.
 It will be difficult to create a clear layout easily.
 It does not easily fit into a printed report or a slide presentation.
 Complexity makes it difficult to detect errors, so we may run into quality

issues later.

 Thus, we may have to spend some effort on consolidating the
information model before we move on. There are several
maneuvers we may apply to this end:
 Apply the model structure template
 Refactor class models
 Split Aspects, Tiles, and Abstraction Levels
 Split the over all model into domain modules

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
24

Refactoring class models

 There are several possible ways to refactor overlapping sets of
features.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Move common features to… …in order to…

super class highlight the commonality of the domain concepts

interface highlight behavioral similarities or expected technical
differences (D/I-level only!)

associated class create a reusable/domain class from the factored out
set of features

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
25

Feature or Association?

 In UML, association-ends are
represented as properties.
 To be precise, the structures on the

right are each semantically
identical in the sense that they give
rise to the same set of object
models.

 This leaves us with a choice –
how do we know when to use
which?
 As a rule of thumb, use

Associations for more important
properties: their visual prominence
sets them apart.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
26

Refactoring class models (Example)

 Assume we have the
following class model.
 It is not very clear, and

contains redundancies.
 We may refactor it

following some simple
steps.

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
27

Factor out Redundancies
©

 2
00

9,
 P

ro
f.

D
r.

H
. S

tö
rr

le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
28

Structure and Elaborate
©

 2
00

9,
 P

ro
f.

D
r.

H
. S

tö
rr

le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
29

Refactoring class models (Example)
©

 2
00

9,
 P

ro
f.

D
r.

H
. S

tö
rr

le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
30

Quality Criteria for Information Models

 After the consolidation effort, the improved information model
ought to possess following qualities.

 Focus
 a focus on the specific entities and their properties and relationship for the

particular domain.

 Balance / Right Size
 In terms of size, we typically want to achieve a good balance between the

class number (<10#), size (<10 features), and density of associations (<10).

 Correctness
 There is a set of detailed correctness criteria for the elements of information

models, see the review criteria in Document QA3 (in version 3.3, Appendices
I, J, M, and N, and sections A and E of Appendix L apply).

 ©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 8.4:
Splitting Large Information Models

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
32

Extract Aspects and Abstraction Levels

 After refactoring a class model, there is often the opportunity to
extract specific aspects into separate diagrams.

 Frequently used aspects include
 types and enumerations, and
 taxonomies and aggregation hierarchies.

 It is usually sufficient to distinguish between one outline and one
detailed view.
 In the abstract view, all features (properties and operations) are hidden; most

tools allow this as a standard filter. For instance, in MagicDraw, select all
diagram elements, and use ?? from the context menu.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
33

Splitting Models into Aspects

 Another contribution to the same goal is to concentrate individual
aspects in special models (and diagrams).
 Typical examples are generalization or composition hierarchies.

 While tiles are notationaly symmetric, model aspects are
asymmetric, and only a few of them have practical value.
 Typically, aspects can only complement and support other structuring means.

 Tree structured views like taxonomies or composition trees are
particularly easy to understand.
 For instance, creating a taxonomy of a large and confusing class model or

indeed a system written in an OO language is almost inevitable as a start.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
34

Taxonomy

 A taxonomy groups elements
into a specialization tree of
classes.
 The concept has been

developed in biology as a tool to
help grouping living beings into
classes (“taxa”, sing. taxon).

 A taxonomy contains only
classes without features and
Generalizations.

 It is always presented in a tree
layout.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
35

Aggregation Hierarchy

 An Aggregation Hierarchy
composes wholes from Parts.
 Aggregation hierarchies are

very common in mechanical
engineering, where they are
also known as part-whole- or
composition hierarchies.

 An Aggregation hierarchy
contains only classes without
features and composition
associations.

 It is always presented in a tree
layout (similar to a taxonomy).

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
36

Split large model in to tiles
 Even after refactoring and extracting aspects and abstraction levels, the

model and/or the diagrams may still be to large.

 In order to reduce the model to a size easily handled, we may have to
split the diagram into several ones focusing on different topics.
 Select a small number of very important classes, each of which can be moved to a

different “tile” together with immediately adjacent classes.
 Tiles should correspond to elements of the domain architecture.
 Each class should be defined on exactly one tile, but might have to be referred to

from several other tiles – those references should be distinguished visually.

 This tiling can be deepened further by creating separate packages for
each tile.
 This also allows to split up previously extracted aspects into tile-specific subsets,

which should be included in the tile’s package.
 This should only be done when these aspects themselves are too large to be kept together.

 Aspects that cut across tiles should be placed one level above the tiles in the
package structure.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
37

Splitting up class models

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
38

Restructuring Large Information Models

 Sometimes, information models become rather large over time.
 We could create larger and larger print outs to stick up at our office’s wall to

handle the complexity, but that is clearly no sustainable solution.

 A more methodical approach for splitting up information models is
needed. There are basically four ways of doing this.

1. Split one large model into several independent modules using UML packages
and import-relationships between them.

2. Split one diagram into several partially overlapping diagrams that collectively
cover the whole model.

3. Move isolated information model fragments like individual concerns, or
enumerations and data types to separate diagrams (“tiles”).

4. Concentrate some aspects like generalization or composition in specialized
diagrams.

 Each of these approaches has their own benefits and drawbacks, and

they should be combined where appropriate.
 To some degree, these techniques also apply to other model types.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
39

Splitting Information Models into Tiles

 A lightweight way of splitting up large information models is to
simply use a set of overlapping diagrams to present separate
portions of the class model individually („tiles“).
 All the tiles are equal in generality, expressive means used, and importance.

 Of course, this will not work well for large numbers of tiles.

 But tiles can easily be created such that they fit well on printed pages.

 Again, the UML standard itself provides good examples of this
technique.
 There, the meta model concerned with the abstract syntax of static structure

models (i.e., class models) is spread out over 16 diagrams.
 Looking for all relationships of one class is rather difficult to do using just

these diagrams.
 Creating a complete taxonomy of part or all of UML is a very tedious task.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
40

Split Information Models into tiles
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

create one
maybe spl

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling
41

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle

Software Engineering Section
Department of Informatics and Mathematical Modelling
Technical University of Denmark
Richard Petersens Plads
Building 322, Room 024
DK-2800 Kgs. Lyngby

hsto@imm.dtu.dk
www.imm.dtu.dk/~hsto

	Chapter 10:�Information Modeling
	Agenda
	Chapter 8.1:�Elements of Information Models
	Information Model
	Information Items
	Analysis vs. Design Level Models
	Concepts of A-level class models
	Concepts of A-level class models
	Scenarios
	Concepts of Object Models
	Object Life Cycle
	Concepts of A-level StateMachines
	Overall Structure of Information Models
	Chapter 8.2:�Creating Information Models
	Creating Information Models
	Creating the first classes and objects
	Creating Classes and Actions
	Completing Actions by Lifecycle
	Extracting Information Model Fragments�from Features
	Example: Extraction from MLC1
	Example: Extraction from MLC11
	Chapter 8.3:�Refactoring Information Models
	Restructuring Large Information Models
	Refactoring class models
	Feature or Association?
	Refactoring class models (Example)
	Factor out Redundancies
	Structure and Elaborate
	Refactoring class models (Example)
	Quality Criteria for Information Models
	Chapter 8.4:�Splitting Large Information Models
	Extract Aspects and Abstraction Levels
	Splitting Models into Aspects
	Taxonomy
	Aggregation Hierarchy
	Split large model in to tiles
	Splitting up class models
	Restructuring Large Information Models
	Splitting Information Models into Tiles
	Split Information Models into tiles
	Slide Number 41

