Chapter

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 7:
Specifying Features

DTU course 02264

DTU course (02264)
A d Requirements Engineering
ge n a Chapter 7: Features

2

= |In this chapter we will look at different techniques and styles of
specifying features, also known as functional requirements. Each
technique has an individual profile of pros and cons, so that we need to
analyze the application conditions and discuss the factors contributing
to them.

= Among the many techniques that are known, we will select a few
representative examples along the scale from informal prose,
controlled languages, Use Cases, Snow Cards (e.g. Volere, XP User
Stories), and detailed attribute tables.

Prose Descriptions of Requirements
Requirements’ Attributes
Reinforced Natural Languages
Controlled Natural Languages

Use Cases Templates

Snow Cards

SNk WNR

"The difference between the right word
and the almost right word is the same as
between a lightning and a glow worm.”

Mark Twain

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

WE

Chapter 7.1:
Prose Descriptions of Requirements

DTU course 02264

Documenting Requirements with

Natural Languages

* The most straightforward way to document requirements for a
system is to write them down in some natural language.

= Any language could be used, e.g. English, German, or Danish.

= Using natural language in this way offers a number of valuable
benefits.

= Natural language is universally well understood and spoken/written, and
everybody in the project speaks it fluently. So, no time consuming and
expensive trainings are needed.

= Natural language comes natural, so it is easy to use and everybody has
powerful tools for creating texts in natural languages.

= Natural languages have unlimited expressiveness and flexibility.

= Therefore, it is easy to start with a prose description of
requirements and it is no wonder that many requirements
documents are written as a prose text in a natural language.

Documenting Requirements with
Natural Languages: Problems

The advantages of natural languages are not always warranted, however.

In international teams, there might not be a universal language equally well used by all (or
even most) team members.

Even if a team is culturally homogeneous, language skills vary widely. Not all people are
aware of their deficiencies.

Software Engineers (and IT people in general) are often not very talented in natural
languages, including their native language; they often prefer diagrammatic representations
or formal languages.

But what is more important, natural languages have no fixed formal structure.

They have no formal syntax or semantics.

Vocabularies are extremely large, and the domain vocabularies are often quite different
from the base language (consider medicine, finance, IT).

Additionally, in many languages new words may be created routinely as compounds of
other words, making the vocabulary also infinitely large.

The vocabulary, syntax, semantics, and grammar keep changing.

Therefore, it is very difficult to define or measure the quality of prose texts.

Generally, prose texts can not be reliably processed automatically (beyond
spelling and basic grammar).

Documenting Requirements with

Natural Languages: Problems

= As aconsequence of their informality, natural language

requirements specification have a tendency to be

consistent Is this set of requirements consistent or contradictory?
incomplete! s this set of requirements complete?

incomplete? Are all individual requirements complete?

ambiguous Is there more than one interpretation, and if so, which one is valid?
vague What does this requirement mean?

viscous What are the consequences of this change?

These problems are very widespread and have been around for
decades.

= They are not specific to software requirements, but many types
of software afford only a small penalty of change

= For a natural language text, it is difficult, time-consuming, error-
prone, and costly to ensure completeness.

Problems in Expressing Requirements DU course (02264

Requirements Engineering
Chapter 7: Features

with Natural Language d

= To understand the problems with natural language, take a sheet
of paper and draw a picture according to the following
instructions.

In the foreground, there is a lake shore, in the background, there
are snow-covered mountain tops. The sky is bright, almost without
clouds.

The lake shore is dotted with trees and bushes.

On the left foreground, there is a hotel with balconies and jutties.

On the right there are a few houses, behind them on a small
mound a church with a pointed tower.

In the right foreground there is a landing stage, behind it two party
tents.

DTU course (02264)

The closest someone ever got... O Chapter 7¢Features

9

‘ 11 ;' I
_____ 1 | ! R
I- <--—--r"'f_hh"" ! el | s -—-.-.__--—-1]
| mENEN
i Al M
N ‘ A / 1=
L . - 1‘\ ff {
oo A TN N |
JrJ' “*m;f 7 4' N /’f’ \“\-L-‘:;] i + j/ﬁllllz
JF =1 }%\ . _»Jw_. - T '-\E/_ \\H L 1 15 - I1
/ A R A) i i |
) s | ¥ -
/! 11 ! ~ n ;; A N
/ fani inn will =1/ LA AN
/ Aoy e VY, S IRV AN AN [= AR
i 1 'ﬂi\a \ \f-? " Fi i ” J’,‘- = "H
(SRS N e S8 W/ ZE/ VAR I
/ RN R EY s s S e S LA gl Y
W g -1 - .
/ i xﬂﬂ“ﬂ) ‘ ' SO AL —
,._.._.,E \\% E ! “{L“‘-Jf 1, ’}
N | T NP
an) ¥l % | -
. |
AT I i
SRV /
{_ >{+Ilr \ S N N N N - — .-’rli""\
£ /1A | ZR
_? Y ’.‘1“ i] { F

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 7.2:
Requirement Attributes

DTU course 02264

DTU course (02264)
Requirements Engineering

The Requirements Lifecycle Chapter 7: Features

11

At different stages of the requirements lifecycle, our focus and
purposes shift. Our tasks and focus shift accordingly.

ldeation & Elicitation Elaboration

First, the requirements must be elicited.
recise, unambiguous, and written down in

Second, the requirements must be detailed,

The focus lies on obtaining valid, accurate, p
and complete information on what is a way (“specified”) so they may be communi-
needed. cated, passed on, and revisited in the future,

and so they are ready to being implemented.

Management

Fincally, the quality of the requirements
must be assessed/improvements and it
must be ensured that they are in fact
valid from the stakeholders’ point of view.

ed throughout their lifecycle, as they are

don, update, split, merge, complete, ...).

J/alldatlon
Third, the requirements must be administer-

bound to change in various ways (add, aban-

Why must we elaborate requirements?

= Assume our team has made a great job in eliciting all relevant
requirements as a list of keywords or short phrases.

= We are now faced with two problems:

= As we have seen in the introduction, it pays to improve the quality as early
on in the software lifecycle as possible.

= But even if our requirements were perfect, they must be communicated to a
team, to programmers, to contractors, to other stakeholders etc. We have to
make sure that everybody during the whole process understands the
requirements.

= Also, the requirements may be in use for a long time. Will we ourselves
understand our own requirements in just the same way we intended them
when we wrote them, half a year ago?

= So, we should try and remove all defects we can find with

reasonable effort, and we should cast our requirements in a

generally understood and durable form.

= This process is called requirements elaboration.

= Theresultis called a “Software Requirements Specification” (SRS).

= Such specifications may easily be hundreds or thousands of pages long.

Requirements Attributes (Elicitation)

= Probably the most frequently arising problem is incompleteness.
= That is to say, an individual requirement dos not contain all the information
needed to work with it.
= Yet, itis very easy to act against this problem by simply defining
explicitly all the attributes a requirement should have and
collecting them in a table.

= This way, any missing items may be spotted directly.

= The next to pages define the set of attributes with their names,
purpose, and sample values.

= The table also indicates whether they may be used for sorting the
requirements by them which obviously depends on their usage and restricts
the attribute values.

= Also, the tale defines whether the attribute is facultative (optional) or
mandatory (must be there).
= The attributes should be filled in more or less in the order defined
by the table.

Requirements Attributes (Elicitation)

icitation

El

Identifier

Name

Description

Rationale

Source

Details

Remarks

unigue and persistent identifier

descriptive term, possibly phrase

brief text describing what is included in
this requirement

A justification of this requirement: why is
it being selected

reference to origin of requirement

A more detailed treatment of this
requirement

any additional remark, e.g. comments or
open questions

project specific, e.g. integers
proper name, phrase

3-10 sentences, at most two
paragraphs

1-3 short sentences OR
reference to a goal

reference to documents,
workshops, individuals,
existing systems etc.

reference to an external
document

text in project language

Requirements Attributes (Elicitation)

Identifier

Name

A unique and persistent identifier. Identifiers
never change and may never be reused.

The simplest ID scheme is to use consecutive
integers starting from 1.

More complex systems might encode
additional information like the type, domain,
or level into the identifier.

A short and descriptive term, possibly a
phrase.

Usually, there are no constraints for
requirement names, but with practice, people
will be aware of what the requirement will be
implemented as (e.g. a process), and name
them according to the respective naming
convention.

Description

A brief text of 3-10 sentences, at most two
paragraphs describing what is included in this
requirement.

If at all possible, use bullet lists or
enumerations to structure the contents.

Rationale

Source

Details

Remarks

DTU course (02264)

Requirements Engineering
Chapter 7: Features

15

A justification of this requirement: why is it
being selected (1-3 brief sentences).

Even better is a reference to one of the goals
from the goal model.

If a suitable goal is not readily found, adding a
goal might solve the problem.

Describes where the requirement came from.
Typical values for this field include:
“interviews with users”

“Observation protocol #42, chief librarian
Mads Tofte, 9.9.2009, 10:54:12-10:56:08”

“Usage scenario, line 27”

More lengthy description without constraints,
or a references to external documents

Any additional comments that fit nowhere
else.

Requirements Attributes (Elaboration)

Once the elicitation baseline has been established, the
requirements need to be elaborated somewhat further so that
they may be validated by the client.

After an initial validation, requirements are ready to be used for
project management purposes such as planning and scoping.

= Using the requirements as the basis for software development will need a
further step (transition).

Requirements Attributes (Elaboration)

Stage

Elaboration

Attribute

Type

Level

Derived From

Acceptance
Test

Description

classification of requirement

granularity level or scope of the
requirement

(1) Reference to a requirement that has
been split up into several smaller
requirements, that collectively replace
the original requirement.

(2) Reference to a requirement

(1) operational procedure to test this
requirement

(2) guantification of minimum acceptable
quality

(3) reference to another artifact detailing
the acceptance criteria such as a test
class or test specification document

Values

- feature ("functional req.")
- quality ("non-functional req.")

-market / domain
- product

- feature

- component

reference to an obsolete
requirement

(1, 2) text in project language
(3) path on project drive, CM
system etc.

Aspects of Requirements: Elaboration

Type

A classification of requirements
according to a project specific schema.

The most generic schema would be to
distinguish between the following.

= feature ("functional requirement")

= quality ("non-functional requirement")

= constraint — a project side condition
Additional classifications might add
interface requirements, or may want to
differentiate features into crosscutting
and self-contained requirements.

Acceptance test

Any operational procedure to check
whether a deliverable satisfies a given
requirement.

Typical examples are tests of any kind, or
observable parameters and qualities like
response times or presence of artifacts.

Derived From

Level

Many requirements are split up or
significantly changed. In order to keep
track of where a requirement came
from, the “derived from” attribute links
such requirements to their predecessor.

The level of granularity or scope to which
a requirement applies.

A raw collection of requirements will
yield items at very different levels of
abstraction.

For instance, the requirements “identify
book”, “return book”, and “media
lending & returning” belong to 3
different levels:

= “media lending & returning” is a domain
containing a process “return book” which in turn
contains the activity “identify book”.

All of these may be fine examples of
requirements, but they should be
treated rather differently.

Crosscutting Features

= There are different kinds of problems that requirements engineers
encounter when dealing with specifying and implementing features.
= A feature may rely on other features being implemented before.
= A feature may contain complex logic making it difficult to understand.
= A feature may require large effort or advanced technology to implement.

= While challenging in their own way, all of these cases are relatively
benign, if the features are self-contained.
= |In the malignant case, a feature is closely connected to many other features,
either by its logic, or by its implementation.

= Such features are called crosscutting, typical examples include Undo/Redo,
global search, logging and monitoring, high-level business rules (e.g., four-eyes-
principle), and legal constraints (e.g., auditable recording of bookings,
compliance with capital market regulations).

= Many required quality attributes (aka. non-functional requirements)
are cross-cutting in nature, including integrity, much of usability, and
performance.

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 7.3:
Reinforced Natural Languages

DTU course 02264

Reinforced Natural Languages (RNL)

= There are several means of reinforcing natural languages.

1) Glossary: Standardizing the vocabulary in a glossary helps reducing ambiguity.

2) Tables/Outlines/Graphs: With predefined document outlines, templates, and fixed
tables, omissions become easier to detect, and the context supports
disambiguation.

3) Writing Rules and Style Guides: Providing grammatical and stylistic rules helps to
avoid potentially dangerous constructions and words. Writing stlye rules are
language specific.

4) Checkers: Modern word processors include checker s for spelling and grammar.

5) Controlled Natural Languages (CNL): CNLs drastically constrain the grammar and
vocabulary to the point where automated tools parse and check CNL texts.

= Each RNL text is a text in the natural language it is based on, but not
vice versa. Some of these means can be combined (1..4, 1+5).

Benefits and Problems with RNL

= Obviously, glossaries, tables/outlines, and style guidelines are
easy to implement, but hard to automate.

= Manual effort is expensive, slow, and error prone (= regression).

= Checkers and CNLs may be automated, but are expensive and
difficult to create and use.

= Reinforcing natural language is no silver bullet.

= Reinforcing natural language will reduce the risk of mistakes originating from
erroneous interpretation of RNL texts (e.g. a requirements specification), but
there is no guarantee.

= Also, avoiding mistakes does not automatically lead to a better end product,
it just reduces the probability of delivering a bad one.

= Finally, creating an error-free system does not necessarily lead to the right
system (the one addressing the client’s needs).

= The general rule is to reduce complexity wherever possible.

R1: Verbs and Tenses

= Usage of present tense.
= Using the present tense generally makes for livelier and clearer prose.
= Use IF-THEN, or PRE-ACTION-POST structures to highlight the parts of your

= Usage of future tense.
= Sometimes, present tense is also used to describe preconditions.

= Avoiding IF-THEN, or PRE-ACTION-POST structures requires to use future
tense for the requirements.

= Use key verbs consistently (see e.g. RFC 2119 guidelines).
= The verbs “shall,” “will” or “must” express a definite need.
= The verbs “should”, “should not” or “may” express only a wish or desire.
= The verbs “shall not” and “must not” express a definite needs.
= Avoid “may not” and “will not”.

= Use the qualifiers “required” or “optional” to refer to required and optional
features or behavior, respectively.

R2: Prefer Active Voice

= Passive allows to construct grammatical sentences without actor.

They “sound ok”, i.e., it is hard to spot the omission when just reading the sentence.

If no actor is specified, confusion may arise concerning who is doing what (e.g. the user, the
system, some component of the system, a neighbor system).

In active voice, such omissions are not possible without breaking the sentences (which is easy to
detect).

T weng | s | s

If the query is refused, the
reader issuing the query
shall be referred to the
front desk service.

If the catalog search is
closed, the LMS shall
delete the search history.

Reports of all lent and
reserved items may be
created.

To register a guest, the
login data is entered on a
mobile device or terminal.

If the query is refused by the re-
mote catalog, the reader issuing
the query shall be referred to the
front desk service.

If the catalog search is closed by
the user, the LMS shall delete the
search history.

Reports of all lent and reserved
items may be created by
librarians.

To register a guest, the login data
must be entered on a mobile
device or terminal by the guest

If the remote catalog refuses
the query, the LMS shall refer
the reader issuing the query to
the front desk service.

If the user closes the catalog
search, the LMS shall delete
the search history.

Librarians may create reports
of all lent and reserved items.

To register, a guest must enter
login data on a mobile device
or terminal.

© 2010, Prof. Dr. H. Storrle

R3: Avoid Empty Verbs

DTU course (02264)
Requirements Engineering
Chapter 7: Features

25

Empty verbs function as a predicate of a clause together with a
noun, usually expressing a state or change of state.

= Using empty verbs makes a requirement unnecessarily complex and may
lead to misinterpretations.

= Expressions using empty verbs can usually be simplified.

T o

<X> exerts influence on <Y>

<X> gets access to <Y>

<X> makes a contribution to <Y>

C
d <X>gives areply to <Y>
e
f

<X> does increase <Y>

Before the guest can log into the
system, registration must have

been

User registration is performed before <X>.

perform
exert
get

give
make

do

Who or what is actually doing the
registration? Just when is it
completed? What happens if it is
only half-finished?

A user must register before <X>.

<X> influences <Y>
<X> accesses <Y>

<X> replies to <Y>

<X> contributes to <Y>

<X> increases <Y>

Before the guest can log into
the system, the guest must

have completed registration.

R4: Avoid Incomplete Verbforms

= Many verbs have implicit references to various objects involved
in the activity described by the verb.

= Common examples are: prepare, communicate, report, and notify.

= Often, not all of these objects are present. They can be detected
by asking: who, what, when, how, ...

___ Risky | Questions | safe

a LMS processes and Which data? What LMS processes and saves the

saves the data. processing? registration data.
+ specification of “registration data” (e.g. glossary
entry, data model entity, bullet list)

b When a reserved Where/How is it returned? When a medium is returned at the
medium is returned, When is which librarian noti- front desk, the librarian present there
the librarian is fied? With which message? is notified within 1s if the medium is
notified. How is he notified? currently reserved.

¢ Eachreaderis When is he provided with The subsystem “ReaderAccount”
provided with a the id and by whom? provides a new unique reader
unique identifier. identifier when a reader is registered

for the first time.

R5: Avoid Negation

= Reduce negations whenever possible.
= Express requirements positively.

= Absolutely avoid double negations.

= Double negation is difficult to process cognitively and invites errors and
misinterpretations.

= Be explicit about different cases.
= |f necessary, split requirements up into several individual cases.

S ey ke

a Nobody except chief librarians may edit the Only chief librarians may edit the transaction

transaction log. log.

b Theinput length is not unrestricted. The input length is restricted.

C All but the most wanted media have an The most wanted media have a loan period
unrestricted loan period. restriction.

Media other than the most wanted media
have no loan period restriction.

R6: Complete Comparisons and Attributes

DTU course (02264)

Requirements Engineering
Chapter 7: Features

28

If your requirement involves system properties with a degree,
quantify them.

d

Many attributes (grammatically speaking) imply a quantity or measure, that
is, they all answer the question “how (much)” (e.g., easy, fast, large, etc.).

This also applies to more technical notions: modularity, coupling/binging,

reusability.

- We will elaborate this topic in the next Chapter”Quality Attributes”.

No. Risky | Questons | safe

Reserving a medium
from a search result list
must be easy.

The most common
queries are cached to
speed them up.

How easy?
In comparison to what?
Under all circumstances?

How many queries?
When is a query
considered ,,common®“?
How fast shall they be?

If the reader is logged in and has
conducted a catalog search, any of the
search results may be reserved by a
single mouse click, the status of the
reader and the medium permitting.

The 100 most common queries of the
last 3000 library opening hours are
cached.

Cached queries shall be executed with a
latency of less than 1s.

Rule 4: Incomplete Comparisons

= Comparisons and all kinds of quantifications should be made
complete and precise.
R4a: “All other readers will receive their monthly lending status by email.”
" To what does the comparative “all other” refer?

R4b: “All readers that have selected the “lending status by email” will receive
their monthly lending status by email.”

= Adjectives may also hide a comparison.
R5a: “It must be simple for readers to access their lending status online.”
= Simple to access... in comparison to what?
"= How is accessing the lending status made simple for readers?
= How can we measure simplicity of access?

R5b: “For 95% of the Readers obtaining access to their lending status online for
the first time must not take them longer than 30s from login to status
display”.

DTU course (02264)
R7: Use Specific Conditions e ahapter 7 estures

30

= Specify all branches of a condition, if necessary with a catch-all.
= This commonly leads to splitting up requirements.
= Rules similar to refactoring of code apply.

Mool msy | ouestons | sae

a Readers may reserve Do you mean to say “Any The reader may reserve any
media if they are leased. Reader” or does it take two to leased medium.
reserve? How many media are
there in a reservation?

b Readers have unique How many readers? Each reader has exactly one
identifiers in the LMS. How many identifiers? unique identifier.
C When the reader returns

several books at once, ...

DTU course (02264)
Requirements Engineering

R8: Use Specific Quantities Chapter 7: Features

31

= Be specific about numbers and quantities.
= use: all, exactly one, one or more, at least one
= avoid: one, several, many
= Prefer definite articles over indefinite articles
= use: he/she/it, the, this, that, these, any, all
= avoid: no article, a/an

ool Rsy | Quesiors | sae

a If two readers with ,Proust” What if there are three such If two or more readers with
status have reserved the readers? What happens when ,Proust” status have reserved
same medium, ... the readers have another the same medium, ...

status? If two or more readers with

different status ...

In any other combination of
two or more conflicting
reservations, ...

b If the reader asks for mail What about other forms of
delivery of the leased media, delivery?
he will be notified of the
costs.

R9: Make Universal Quantifiers Explicit

DTU course (02264)

Requirements Engineering
Chapter 7: Features

32

= Universal quantification is a powerful concept — make sure you
really intend what you say!

= Look for exceptions to the rule, check boundary cases.

= Universal quantification hides behind: all, no, none, always, never, every, etc.

= Reduce ambiguity by using only a small number of approved

quantifiers.

= use: no/none, any/each, always, every, either/neither

= avoid: some (= one or more),

o T S I

Librarians may enter new
readers to the system with a
reader dialog.

b The 100 most common queries
of the last 3000 library opening
hours are cached.

C Cached queries shall be
executed with a latency of less
than 1s.

ALL Librarians — really? Is that
what we want?

All queries, including those that
come via the web?

Under all circumstances, even
when configuring the system?

The 100 most common queries issued
from any library terminal within the
last 3000 library opening hours are
cached.

Cached queries shall be executed with
a latency of less than 1s under normal
operation.

R10: Move conditions to the front

= Many requirements are restricted to a specific operational mode,
a time when they may be applied, or some system state.

If such conditions are only mentioned at the end, it amounts to an implicit
negation making such a requirement more difficult and time consuming to
interpret.

Move conditions to the front to avoid negation and to allow readers to abort
reading a requirement earlier if it does not specify their case.

The reader may not create another If LMS is updating the reservation log, a reader
reservation, initiate a new lease, or may not create another reservation, initiate a
prolong an existing lease while the LMSis new lease, or prolong an existing lease.
updating the reservation log.

Cached queries shall be executed with a Under normal operation, cached queries shall
latency of less than 1s under normal be executed with a latency of less than 1s.
operation.

R10: Reduce complexity

= Obscure and complex terms and expressions make your
requirements difficult to interpret.
= Remove all redundant expressions!
= Replace all complex expressions and obscure terms by simpler ones!

__ complex | simple [l Redundant __

bring to an end... complete, end along the lines of
at all times always as a matter of fact
at the present moment, at this point in time now, currently actual, actually

by means of by as it were

grace to, by virtue of because of basically, essentially
as to whether whether completely

being that since extremely, totally
so as to, in order to to in terms of

utilize use moreover

is capable of can very

all of all guite

on a daily basis daily the fact that

Rules for Glossary Entries

= A glossary definition could be an analytical definition, an
enumeration of characteristics, or a behavioral description.

= Refering to other glossary entry in the definition is fine (including
circular references), if the reference is made explicit, e.g. by
preceeding it with 2.

= Areaderis a natural person posessing exactly one set of person-specific data
(including address and media preferences) who leases > media.

= Always follow the schema <Subject> <Verb> <Object>.
= Split up different aspects into separate sentences.

= Areader is a natural person.

= Areader posesses exactly one set of person-specific data (including address
and media preferences).

= Areader leases 2 media.

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering
Chapter 7: Features
36

T DONT MEAN TO GO ALL LANGURGE.
NERD ON YOU, BUT T JUST LEGIT
ADVERGED ‘LEGIT" VERBED ‘ADVERB,
AND HDIECWED "I ANGUAGE. NERD!

B

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 7.4:
Simplified and Controlled Natural Languages

DTU course 02264

Simplified Languages

Many major languages have simplified forms.
= Plain Language http://en.wikipedia.org/wiki/Plain English
= Leichte Sprache http://de.wikipedia.org/wiki/Leichte Sprache

Purpose & Audience

= These languages are primarily directed towards people with language-
related challenges, such as non-native speakers, semi-illiterate people, and
people with cognitive or perceptual deficits.

= The United Nations support plain language as one of the "modes, means and
formats of communication.”

= Requirements engineering may also benefit from simplified languages.

Simplified languages disallow certain ambiguous constructions,
and impose rules to make the language easier to understand.

= Sentences may not exceed 8 words, no passive voice, defined vocabulary, ...
= One statement per sentence, one sentence per line, ...

= |n German: keep verbs together, hyphenate concatenated words, ...

http://en.wikipedia.org/wiki/Plain_English
http://de.wikipedia.org/wiki/Leichte_Sprache

Requirement Templates

= A common way to reinforce prose for requirements specification
is to apply language patterns or templates.

= These can be expressed in EBNF-like structures, such as railroad diagrams.

= Below, there is a template that allows to express three kinds of

requirements pertaining to reactive/proactive system behavior,
and user interactions, respectively.

/— <time> j /—SHDULD THE SYSTEM SHOULD
. /AN }(?{ e
<condition> WILL THE <system name> WILL

/ A BE ABLE TO
B

<process>— <object> C
t|='m:m'mr|5 <party> WITH THE ABILITY TO -/ _<details on

object>

A - reactive behavior B - proactive behavior C - user interaction

[adapted from Rupp: Requirements Engineering und Management, Hanser, 2009]

DTU course (02264)

Requirements Templates O Chapter 7. reatures

40

= Another set of templates is proposed by ISO 29148:2011, which is
presented here in an abridged and extended version.

il N o i
<condition> <action> <object>

When signal x is received, the system shall set the signal x received bit

<action>

. /
<subject>
\ <condition> / L —/ \ <value> /

At sea state 1, the Radar System shall detect targets at ranges out to 100 nautical miles.

<subject> \ / L / \ /
<action> <object> <value>

The Invoice system shall display pending customer invoices in ascending order in which
invoices are to be paid.

Controlled Languages

= The strongest kind of reinforcement possible for natural
languages are Controlled Natural Languages (CNL).

= ACNLis astrict subsets of some proper Natural Language (e.g.
English, German, or Chinese), but with a tightly restricted
vocabulary and grammar.
= Only a relatively small subset of the original natural language is used.

= This allows for fully automatic processing of texts written in these languages,
like error checking, translation, and summarizing.

"= For some CNLs, there is even a direct translation into some formal logic (cf.
ACE > DRT-E)*.

= Reading CNL texts is somewhat boring to humans (like most technical texts),
but requires only limited knowledge of the base language.

= Writing CNL is hard, when no interactive checkers with good
advice are available, but feasible nevertheless.

*See paper by Fuchs, Schwertel, and Schwitter.

Simplified Technical English (ASD-STE100)

= One example of a Controlled Natural Language is the Simplified
Technical English (STE).

STE consists of 61 rules and approximately 2800 words and word forms.

Texts conforming to STE are regular simple English, although they do sound
somewhat mechanical and inelegant at times.

However, everyone who speaks a fair amount of English can understand it.

Sentences conforming to STE are rather safe from ambiguity and
misunderstandings.

= As for most controlled languages, STE is geared towards
mechanical engineering/maintenance application domains

A typical example is a technical handbook for the maintenance of planes.

The vocabulary is not particularly well suited for describing IT purposes like
typical commercial business processes.

Applying STE to such applications will require to modify the vocabulary
substantially.

Aerospace and Defence Industries Association of Europe:
Simplified Technical English. Specification ASD-STE100, Issue 4, 2007 (2007-01-05)

DTU course (02264)
Requirements Engineering

STE D i Ct i O n a ry Chapter 7: Features

43

= The STE Dictionary defines the admissible vocabulary by:
1. Acceptable words with part of speech, meaning and examples.

2. Unacceptable words with part of speech, meaning, acceptable replacement,
examples and counter examples.

= Generally, ACCEPTABLE TERMS ARE WRITTEN IN UPPER CASE, while
unacceptable terms are written in lower case.

ASD100
abnormality (n) DEFECT (TN) EXAMINE THE CANOPY SEAL FOR Inspect the canopy seal for abnormalities
DEFECTS.
ACCESS (n) The “ability” to go into or GET ACCESS TO THE ACCUMULATOR.
near
evenly (adv) GRADUALLY, INCREASE THE TEMPERATURE Increase the temperature evenly.
EQUALLY GRADUALLY.

APPLY THE LOAD EQUALLY ON THE AREA. Apply the load evenly on the area.

exactly (adv) CORRECT (adj), FULLY THE SEAL MUST BE OF THE CORRECT The seal must fit the groove exactly.
DIMENSION FOR THE GROOVE.

OBEY THE PROCEDURE FULLY. Obey the procedure exactly.

STE Rules

Rule 1.2: Use approved words from the Dictionary only as the part of speech given.
Each approved word in the Dictionary has a part of speech.
Do not use it as another part of speech for which it is not approved.
For example, if a word is given only as a noun, do not use it as a verb.

= Example: “Test” is approved as a noun but not as a verb.
Non-STE: Test the system for leaks.
STE: Do the leak test for the system.
STE: Do a test for leaks in the system.

= Example: “Close” is a verb and not an adverb.
Non-STE: Do not go close to the landing gear if ...
STE: Do not go near the landing gear if ...

Rule 1.3: Keep to the approved meaning of a word in the Dictionary.
Do not use the word with any other meaning.

= Example: “Follow” means “come after”. It does not mean “obey”.
Non-STE: Follow the safety instructions.
STE: Obey the safety instructions.

Comparison

Natural Language

Removal of the Overspeed Governor.

1.

2.

3.

Any leaking oil can be collected by placing the cleaning
cloth under the overspeed governor (3).

Disconnect electrical connector (2) from electrical
receptacle (1).

Note the position of bracket (6), it must be installed in
the same position. Remove nut (4) and washer (5), which
attaches bracket (6) and overspeed governor (3) to the
gearbox. Nut (4) is to be discarded.

The bracket (6) is to be safetied to the aircraft structure
with a temporary tie, away from work area.

Holding the overspeed governor (3), remove remaining
three nuts (9) and three washers (8), which attach
overspeed governor (3) to gearbox. Three nuts (9) are to
be discarded.

Remove overspeed governor (3) from gearbox.

Protect electrical connector (2), electrical receptacle (1),
and mounting pad of gearbox by installing an applicable
blanking cap.

Remove packings (10 and 11) from overspeed governor
(3). Packings (10 and 11) are to be discarded.

Remove, and safely discard cleaning cloth.

ASD-STE100
Remove the Overspeed Governor.

A.

B.

C.

D.

-

Put the cleaning cloth below the overspeed governor (3)
to collect the oil leakage.

Disconnect the electrical connector (2) from the electrical
receptacle (1).

Record the position of the bracket (6), you must
subsequently install it in the same position.

Remove the nut (4) and the washer (5) that attach the
bracket (6) and the overspeed governor (3) to the
gearbox.

Discard the nut (4).

Use a temporary tie to safety the bracket (6) to the
aircraft structure, away from the work area.

Hold the overspeed governor (3). Remove the remaining
three nuts (9) and the three washers (8) that attach the
overspeed governor (3) to the gearbox.

Discard the three nuts (9).

Remove the overspeed governor (3) from the gearbox.
Install an applicable blanking cap to prevent damage to:
e The electrical connector (2)

e The electrical receptacle (1)
* The mounting pad of the gearbox.

Remove the packings (10 and 11) from the overspeed
governor (3).

Discard the packings (10 and 11).

. Remove, and safely discard the cleaning cloth.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 7.5:
Use Case Templates

DTU course 02264

Use Cases

= A Use Case is a scenario of a user interaction with a system.

* The ”"User” may be another system, and the Use Case may comprise more
than just one scenario.

= Use Cases have been made popular with the Objectory Method.

= Their popularity is to a large degree explained by the fact that they are the
only way to abstractly specify functionality, i.e., doing top-down analysis in
an OO setting: Use Cases are to Object-Oriented methods what Data-Flow-
Diagrams are to structured methods.

= Use cases can be used for prioritizing and project/release
planning.

"= The processes summarized in the domain architecture are basically (bundles
of) use cases.

= Use cases are not well-suited for expressing cross-cutting
concerns, including quality attributes.

Describing Use Cases

= Use cases may be described in different degrees of formality:

= Basic: a sequence of steps described in prose.

= Simple: a predefined tabular schema with a couple of properties, one of
which is a basic use case description.

= Complete: a simple use case description embedded in prose text defining the
purpose and side conditions of the use case, and complemented by one UML
use case model for each individual use case to illustrate its embedding, and
one or more overview use case diagrams to show the relationships between
the whole set of use cases.

= |tis helpful to describe all use cases in the basic format before
going on to elaborate individual use cases.

Simple Use Cases (Tabular Description)

= Tables are common to help refining
basic use cases.

There are many different templates
like this.

The user (i.e., a person or a system)
is called Actor here to be in line with
the UML terminology.

= Remarks to table

The slots marked with Y and 2 are
optional, but at least one of them
must be filled, respectively; the slots
marked with * are optional.

Slots that are empty on purpose
must be filled with a dash.

The text in angle brackets are
placeholders, the italic texts
describe the slots.

<ID> <Name>

Description a few sentences at most

Actors primary actor triggers this UC
secondary actors may participate

Trigger? an event or command

Parameter!) data needed to trigger this UC

Preconditions?

system states required to trigger this
uc

Regular Scenario

the most common or least
problematic course of action

Variants

any other courses of action
with exceptions, problems,

(“sunshine scenario”) etc.

Postconditions?

system states guaranteed after
completing this UC

Result? data provided or computed by this UC

Incidence* frequency of this UC

Duration* duaration of this UC (average, best
case, worst case)

References* references to other documents

Remarks open questions, comments

Simple Use Case (Example)

UC_1 Return Medium

Description A medium is scanned by a user (either a reader at a self-service terminal or a librarian at a front
desk terminal) in order to identify the medium and take the obvious action (i.e. lending or returning)

Actors 1: Librarian / Reader

Trigger identification of reader OR selecting action from menue

Parameter -

Preconditions

Regular Scenario

1. identify reader and medium a)
2. determine lease, reader account and medium state | b)
3. terminate lease, update reader account
4. acknowledge medium being returned

Variants
lease is overdrawn = computer due fees
allow to settle outstanding fees

Postconditions

regular scenario: lease terminated, reader account updated:
b) outstanding fee decreased by payment amount

Result

Incidence 500 times a day
Duration <0.3 seconds
References -

Remarks

Complete Use Cases

= Complete Use Cases provide illustrations to the basic and simple use case
descriptions. These illustrations (and only these) are UML’s use case diagrams.

= The purpose of Use Case Diagrams is just to collect information in a visual
way, provide overview, and facilitate the communication between the
stakeholders.

Return Medium /

O Library Management System (LMS)
N T~ ~)
O <<includes>> \ Y update medium
\ \<<inc|udes>> state
Reader \
\
identifiy reader
account
Librarian identify reader by card
identify reader by name
2010-11-31 for 02264 by HS

v0.2

return medium

<<includes>>

Use Cases vs. Business Processes

= A Use Case is a sheaf of similar scenarios or interaction of users with a system
= similar pre-/post conditions
= similar primary Actor
= same user goal/rationale
= similar individual steps

= Use Case Models may be used

= either to describe a (business) process (“Business Use Case”)

= orto describe individual activities inside a process (“System UC” or “Product UC”).
= A Business Process (BP) is a value-/cost-producing process.

= |t may span more than one organization, usually involving several people and
systems, and often lasts for days to months, possibly even longer. BPs may often be
interrupted and suspended, they frequently have multiple courses and outcomes and
require a substantial amount of interaction.

= A System Use Case (SUC) is a usage scenario of a system.

= |t spans only one system and its users (sometimes also systems contributing to the
SUC), and lasts up to minutes, possibly hours. Use cases may not be suspended or
interrupted and often run automatically or require very little interaction outside the
system.

= Most of the time, the term Use Case is used for either of these...
...and, unsurprisingly, many people confuse the two.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 7.6:
Snow Cards

DTU course 02264

Snow Cards

= A popular technique for gathering and elaborating requirements
are “Snow Cards”.

A Snow Card is an index card with a set of attributes any requirement needs.

Capturing them as index cards allows to use them in group exercises and
visualizations, but may also be useful for sorting and clustering them.

The predefined structure makes it easy to check a requirement for formal
completeness.

Another big advantage is the size limit imposed by the medium.
Sometimes, however, the size limit is perceived more as a disadvantage.

= Probably the most well known example of snow cards in RE is the
“Volere-Template” (also popular: CRC-cards).

In XP, User Stories are supposed to be captured on index cards, too, mainly
for practical reasons like sorting them in the cards game.

Since User Stories are plain text and not table-like structures, completeness
is not easily checked. Here, the plain-text rules should be used.

DTU course (02264)
Requirements Engineering

V0|erE'Tem plate Chapter 7: Features
55
: List of events / ‘
Obsolete.versmn . o use oases that
new version contains also priority The type from need this
requirement

the template
:

/

[
Fequirernent. #: Uniqug id Fequirement Type: Fvent/use case #

Description: A one sentence statement of the intention of the requirement

Fationale: A justification of the requirement

Source: Who raised this requirement?
Fit- Criterion: A measurement of the requirement such that it is possible
to testif the solution matches the original requirement

Other requina:a ts

Customer Satisfaction: Customer Dissatisfaction: that cannot be
this

[Dependencies: Alist of other requirements that Gorfiicts: L':“gli‘s'““m

| have some dependency on thisone
| Supporting Materials: —— Pointer to docuwents that V
olere

| History: Creation, illugtrate and explain this'
" changes, requirement | e i s G
1 !
Pegree of stakeholder hajapihm if this requirement is x‘x,
suocessfully implemented. Y

Scale from 1 = uninterested to 5 = extremely pleased. -
Measure of stakeholder unhappiness if this
requirement is nof part of the final product.
Scale from 1 = hardly matters fo 5 = extremely displeased.

[Roberts& Roberts, 1995, www.volere.co.uk]

XP User Stories

= Developer and User write a scenario together.
= Using A5 index cards to write them down restricts the size.

= Later on, the index cards may be used conveniently for planning and prioritizing,
as well as distributing and tracking requirements.

= Involving the customer ensures commitment and validity (theoretically).

= A User Story consists of five elements:

administrative data (author, date, version);

planning data (effort estimate, dependencies/prerequisites);

a unique identifier and a descriptive name;

the story proper (necessary);

an acceptance test (optional, use flip side, reference to code base).

e W E

= The story proper is a very concrete account of how the system shall
behave from the perspective of the user.

= Can contain functional as well as non-functional requirements e.g. "As a
library user, | want to search for books and see the results within a
second”

= acceptance tests are the formal documentation of the requirements

XP User Story Example for LMS

5.

Using a template can help
you getting started writing
user stories.

As a <role>, | want <goal>
[so that <benefit>].

For the first sentence of a
user story, fill in values for
the variables. Then, ...

...describe the current state,

...the actions and reactions
that occur, ...

... and a final state.

As a reader | want to return a book to
the library.

I have a small amount of outstanding
fees, the lease for the book | want to
return has not yet expired.

| scan my ID card and then the ID badge
of the book | want to return.

If the book is not damaged, the system
terminates the lease and records this
fact. The book is made “available”
again, and the reader holding the first
reservation (if there is any) is informed
of this state change.

After log out or time out, a receipt is
printed for me that states the amount of
fees I owe, and the session is ended.

Techniques in contrast

= Thereis alarge number of techniques to specify requirements
ranging from very informal techniques to completely formal
techniques.
= Most practically relevant techniques are semi-formal.
= The higher the formality, the higher is the degree of automatable tasks.

informal Natural Languages (Prose)

Prose with glossary and style guidelines (incl. XP Stories)

. Structured text, Tables, Templates
semi-

formal

Controlled Natural Languages
Modeling Languages (UML, EPCs, SDL/MSC, IDEF)

formal Formal Methods

Techniques in contrast

Technique

Strengths

Weaknesses

DTU course (02264)
Requirements Engineering
Chapter 7: Features
59

automatable tasks

=generally available

=no formal structure

=spell check

Prose =no learning effort =ambiguous and vague =grammar check
=understandable =|ittle automation
Prose =flexible =no formal structure =conformance to guideline
(+glossary =reduces ambiguity =|ittle automation =review support
guidelines’) =understandable =checks mostly manual
Structured =easy to implement =weak formal structure =conformance to outline
=omissions are obvious =designing good tables is difficult =simple transformations
text Tables =comparison is easy
=reduces ambiguity =not visual =strict conformance
Controlled =understandable sinelegant language stesting
Languages =needs tailoring to domain =translation to other lang.
=learning effort
. =visual languages support =learning effort = (partial) code generation
MOdelmg understanding and =needs tool support =model transformation
La nguages presentation =not yet fully standardized =simple verification tasks
=powerful tools available
=many mathematical =enormous learning effort =full scale verification
Formal

Methods

methods may be applied

=difficult to apply

	Chapter 7:�Specifying Features
	Agenda
	Chapter 7.1:�Prose Descriptions of Requirements
	Documenting Requirements with �Natural Languages
	Documenting Requirements with �Natural Languages: Problems
	Documenting Requirements with �Natural Languages: Problems
	Problems in Expressing Requirements with Natural Language
	Slide Number 8
	The closest someone ever got…
	Chapter 7.2:�Requirement Attributes
	The Requirements Lifecycle
	Why must we elaborate requirements?
	Requirements Attributes (Elicitation)
	Requirements Attributes (Elicitation)
	Requirements Attributes (Elicitation)
	Requirements Attributes (Elaboration)
	Requirements Attributes (Elaboration)
	Aspects of Requirements: Elaboration
	Crosscutting Features
	Chapter 7.3:�Reinforced Natural Languages
	Reinforced Natural Languages (RNL)
	Benefits and Problems with RNL
	R1: Verbs and Tenses
	R2: Prefer Active Voice
	R3: Avoid Empty Verbs
	R4: Avoid Incomplete Verbforms
	R5: Avoid Negation
	R6: Complete Comparisons and Attributes
	Rule 4: Incomplete Comparisons
	R7: Use Specific Conditions
	R8: Use Specific Quantities
	R9: Make Universal Quantifiers Explicit
	R10: Move conditions to the front
	R10: Reduce complexity
	Rules for Glossary Entries
	Slide Number 36
	Chapter 7.4:�Simplified and Controlled Natural Languages
	Simplified Languages
	Requirement Templates
	Requirements Templates
	Controlled Languages
	Simplified Technical English (ASD-STE100)
	STE Dictionary
	STE Rules
	Comparison
	Chapter 7.5:�Use Case Templates
	Use Cases
	Describing Use Cases
	Simple Use Cases (Tabular Description)
	Simple Use Case (Example)
	Complete Use Cases
	Use Cases vs. Business Processes
	Chapter 7.6:�Snow Cards
	Snow Cards
	Volere-Template
	XP User Stories
	XP User Story Example for LMS
	Techniques in contrast
	Techniques in contrast

