
Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11:
Transition to Design

Chapter 11

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11.1
From Requirements to an Analysis Model

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
4

“Great job!

But shouldn’t it be
a just little more
detailed over
here…?”

miracle
occurs
here

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
5

Requirements to Analysis Level Models

 In many domains, the only viable way of expressing requirements
is using unstructured natural language (“prose”).
 Prose is the one language universally understood. Also, tool support is widely

available at no extra cost for licenses or training (i.e., MS Office).
 The short term gains of this choice outweigh the long-term gains offered by a

more structured approach in the eye of many clients.
 However, as soon as the design and implementation start, most prose

descriptions exhibit a lack of precision, and missing appeal to technical staff.
 These type of people are more in favor of notations such as UML.

 If we wish to maintain prose as our initial notation but transition
into UML models, we face two problems.
 The transitions is difficult, error-prone, invites misunderstanding, implies

many design decisions (as well as requirements resolutions), and be done
only by skilled modelers.

 As a consequence, it may be difficult to convince clients that the model is
actually a faithful translation of their textual requirements.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
6

Weaving Models

 Instead of one single complex manual translation, we propose a
sequence of simple transformation steps:
 Translate individual requirements into small model fragments,
 weave the fragments together into a comprehensive model,
 consolidate the model manually.

 Each step requires only one type of knowledge (domain or
technology), and some steps can be partially or fully automated.

 This procedure also creates tracing links between requirements
and design automatically.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
7

Requirements-to-Model Transformation

Elaborate Requirements until they appear sufficiently precise.
 Harvest each requirement into one or more (small) fragments of

UML models.
If the translation results in a large or many different fragments,
decompose requirement further or justify “large” requirement.

Weave all fragments in to a raw comprehensive model with RED.
Improve the layout such that it makes sense to you. If there are
unexpected results (errors, omissions, duplicates), change
requirements and/or translation to compensate, and repeat
weaving.

Consolidate the raw model into a final model.
Model structures may suggest, by symmetry, the addition of other
model elements not yet implied by the requirements. The
occurrence of design anti-patterns may suggest overlap in
requirements, which are potentially inconsistent. The model may
need to be reformulated, completed, and restructured.

1: Harvest

2: Weave

3: Consolidate

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
8

Step 1: Translate

Requirement

MLC2
Librarians may add, update, and
delete corpus items manually.

MLC4
Librarians and Readers may post
and inspect media they think
should be acquired by the library
to a public “wish list” indicating
the status of the wish and the
originator.
MLC6
Librarians may remove or
deactivate entries to the wish list.

MLC9
Guest readers may inspect
suggestions.

MLC10
A librarian can do all a reader can
do; a reader can do all a guest
reader can do.

split & elaborate MLC4?
what about “deactivate”?
Terminology?

1: Harvest

manual
(domain expert)

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
9

Step 2: Weave

redundant associations?

“suggest acquisitions” twice?!

2: Weave
automatic

(RED)

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
10

Step 3: Consolidate

3: Consolidate

manual
(Sw. Engineer)

VMTL-support for
anti-pattern detection?

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11.2
Harvesting Model Fragments
from Requirements

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
12

Harvesting Example 1:
Successful extraction
 Consider the example on the right.

Translating it gives rise to the small
class diagram at the bottom.

 The detail description suggests more
model elements than are apparent in
the title alone, e.g., methods
 search()
 is_available_for_ lending().

 Also, additions like return types for
the methods may arise. Here, search()
will have to return Medium rather than
Copy.

 Details such as multiplicities may also
arise from requirements.

 This step needs so little knowledge of
UML that it can be done by domain
experts with little or no help.

MLC11: The corpus may contain
several copies to a medium.
 The catalog shall provide readers with

access to media rather than individual
copies.

 Readers shall be able to find out,
whether there is a copy of a given
medium available for lending.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
13

Harvesting Example 2:
Incomplete Fragment
 Extracting a fragment

often results in a deficient
model at first
 Classic requirements flaws

like ambiguity and incom-
pleteness often become
very obvious in fragments.

 Creating alternative frag-
ments helps finding unre-
solved design decision lies.

 This may result in changes
to the requirements, and
appropriate updates in
the fragment.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
14

Harvesting Example 3:
Large Fragment
 Some requirements result in

more than one or overly large
fragments.
 As a rule of thumb, one require-

ment should not yield more than
ten model elements.

 This is ok if we think the
domain is well enough
understood and the receiver
of the model can handle it.

 Sometimes, however, it

indicates an insufficiently
refined requirement that
needs another iteration.

MLC1: Media follow a defined lifecycle from
suggested, via acquired, incorporated, to
removed.
 The availability of incorporated media may be

restricted, e.g. in terms of age restrictions, access
restrictions for valuable copies and highly
demanded media and so on.

 The status of incorporated media is regularly
updated to reflect damages and lending status.

 Creating new media requires information such as
title, author, type, publication date, etc.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
15

Harvesting Example 4:
No Fragment
 The translation process might

not yield any fragments at all.

 There are several possible
reasons for such an event.
A. The translation is possible in

principle, but the a domain
expert may not know UML well
enough.

B. No translation is possible
because there is a language
impedance mismatch between
the prose used and UML.

C. No translation is possible
because the intent of the
requirement is simply not
expressible in UML.

 Many high-level requirements (e.g.,
crosscutting requirements, qualities)
provoke a language level impedance
mismatch.
 “The system should be highly usable”.

 Such requirements need to be
further refined until they are
concrete enough to amount to a (set
of) specific element(s) in the design.

 The UML does not (directly) speak

about user interface elements, so
requirements involving that topic
may be difficult to express.
 “There should be a tab sequence for all

input fields”.
 Other areas the UML is not well

suited for are resource constraints,
physical entities like location, and
processes & threads.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
16

Improvement Opportunities in Step A:
2) Multiple resulting fragments
 Once elicited and defined, the requirements need to be

elaborated to the degree needed to implement the system.
 Expect a major increase in the number of requirements, and thus, the

administrative problems associated to them.
 Robert Glass says: "Explicit requirements explode by a factor of 50 or more

into implicit (design) requirements as a software solution proceeds.“

 If translating a requirement yields several fragments, they must

have different types.
 The same type would just increase the existing diagram.

 Sometimes, it is unavoidable that a requirement results in several
model fragments, e.g., to cover

[Robert L. Glass: Sorting Out Software Complexity. CACM November 2003, 45(1), pp. 19-21]

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11.3
Weaving Model Fragments

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
18

Weaving
 Once requirements are translated into model fragment, we need

to combine (“weave”) them into one coherent model.

 Weaving two fragments will look for elements with the same type
and matching names from the two fragments, and merge them.
 If elements are intended to represent the same thing, this is just what the

user wants.
 If not, then the result will be nonsensical to the user, and should be fairly easy

to discover.
 Tightening the name comparison from “matching” to “identical” name will

exhibit typos, because what ought to be the same element ends up as two
elements.

 However, problems may occur in the weaving process.
 Fragments may overlap or contradict each other, or
 their combination leads to poor or wrong models, or
 there may be gaps between the fragments.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
19

Weaving Example 1:
Simple overlap

 Consider a simple
example first.
 Here, both fragments

contain a class
“Medium”.

 Merging them results in a
class that has both the
association to Copy and
the properties (title, ...).

 Everything else stays
unchanged.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
20

Weaving Example 2:
Multiple/consecutive overlaps
 Here is an excerpt from the LMS requirements specification, and

how the features described may be captured as models.

ID Requirement

MLC4 Librarians and Readers may post and
inspect media they think should be
acquired by the library to a public
“wish list” indicating the status of the
wish and the originator.

MLC10 A librarian can do all a reader can do;
a reader can do all a guest reader can
do.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
21

Weaving Example 3:
Semantic Implications
 Weaving these Use Case Fragments raises conceptual questions.

 Should book tips also be given to complex searches? Then, the includes (A) should be
going out from “search catalog” (C).

 Are the main use cases of A and B really that different? If sometimes use cases are
included (A) and sometimes not (B), shouldn’t they be extensions instead?

 Do the inclusions/extensions maybe belong to a sub-use case?

A

B

C

D

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
22

Weaving Example 4:
Weaving exhibits duplication or flaw
 The weaving may produce models that are considered flawed, e.g.,

by containing anti-patterns.
 Pulling up attributes and associations
 Avoiding circular inheritance
 Avoiding implicit synchronization

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
23

Weaving Example 5:
Weaving yields unexpected results
 The weaving result may deviate from the modeler’s expectation.

 This is always an instructive starting point, and may lead to either changed
requirements, fragments, or better understanding of UML.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
24

Folding Assemblies (Composite Structures)

 Weaving can be applied to all diagram types, including goal and
context diagrams.

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11.4
Tracing between Requirements and Models

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
26

Tracing
 The trace connections established by the folding process can be

used to relate changes in the requirements and the analysis
model, both ways.

 Typically, the analysis model is translated manually into a design

level model, incorporating design decisions and technology
choices.
 If both ends of this transformation are expressed in the same language (e.g.,

UML), it is feasible to establish trace links manually.
 The similarity between typical design and implementation languages is

sufficient to also allow simple linking from the design model to the
implementation.

 That way, a complete chain of trace links from requirements to code via
analysis and design models can be established

 This kind of linkage is required in high-assurance software, e.g.,
aerospace applications (cf. DO-178A/B/C).

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
27

Forward/Backward Tracing

 Question: Given a requirement, how is it realized in the model?
 If code is generated from the model: how is the requirement implemented?

 Question: Given a model element, which requirement justifies it?
 If code is generated from the model: why is a given line of code where it is?

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
28

Tracing in RED

 During weaving, RED embeds trace links into diagrams that are
woven together.
 On the tab “Management & Tracing”, the two input diagrams are linked in the

set of “Sources”, and can be navigated from there.
 These sources are also reflected in the title of the diagram.
 The details of the merge procedure are documented in the “Merge Log” field

on the tab “Diagram Editor”.

 A visualization of the tracing is currently missing, as are more
advanced facilities to query the trace relationships.

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11.5:
Requirements Tools

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
30

State of RE in Practice is Poor

 “There is a lot of information available on solid RE practices but
anecdotal evidence still indicates poor practices.”

U. Nikula, J. Sajaniemi, H. Kälviäinen: A State-of-the-Practice Survey on Requirements Engineering in Small-
and Medium-Sized Enterprises. Telecom Business Research Center Lappeenranta, Research Report 1, 2000

*REAIMS top 10

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
31

RE Process Maturity in Practice is Poor

*REAIMS top 10

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
32

Prose for Requirements Engineering

 Alternatives to Natural
Languages (NL) exist.

 Various case studies have
demonstrated that they
can largely replace NL.

 Natural Language Process-
ing (NLP) and Information
Retrieval (IR) technology
can do amazing things:
 generating sequence diagrams

from natural language use
case descriptions;

 generating class diagrams
from NL requirements
specifications.

 However, if the perform-

ance is less than perfect,
using tools is often worse
than not using them.

5%

16%

79%

Language Type Used

Controlled
Structured
Plain

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
33

NL-Analysis of document outlines

 There are algorithms to identify parts of natural language require-
ments documents with poor structuring, sections that ought to be
re-arranged, and requirements that are placed in conceptually
unconnected sections.

Alessio Ferrari, Stefania Gnesi, Gabriele Tolomei: Using Clustering to Improve the Structure of Natural Language Requirements Documents.
In: J. Doerr, A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 34–49, 2013, Springer

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
34

Tools

Luisa Mich, Mariangela Franch, Pierluigi Novi Inverardi: Market research for requirements analysis using linguistic tools
Requirements Eng (2004) 9: 40–56, Springer

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
35

Tools

 ‘‘I hate to be a cynic, but there are hardly any worthwhile tools. The
overhead in learning to use them is too great for the payoff.’’

0 5 10 15 20 25 30 35

Other

Train staff

Learn to use new tools

Evaluate project feasibility

Document software systems

Model user requirements

Test the software

Identify user requirements

US Europe

Luisa Mich, Mariangela Franch, Pierluigi Novi Inverardi: Market research for requirements analysis using linguistic tools
Requirements Eng (2004) 9: 40–56, Springer

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
36

Diverse Requirements Stores in use

Stefan Winkler: Information Flow Between Requirement Artifacts. Results of an Empirical Study
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232–246, Springer, 2007

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
37

Concurrent Requirements Stores

 In typical industrial settings, five to eight different media are used
to store requirements.

Stefan Winkler: Information Flow Between Requirement Artifacts. Results of an Empirical Study
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232–246, Springer, 2007

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
38

Requirements Flow

Stefan Winkler: Information Flow Between Requirement Artifacts. Results of an Empirical Study
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232–246, Springer, 2007

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 11.6:
Tailoring the Requirements Toolbox

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
40

The necessity of Tailoring
 There are many different techniques for specifying and managing

requirements – which ones should we use?
 One size does not fit all.
 Each method has their specific profile of strengths and weaknesses.
 For many techniques, we do not have adequate evidence to assert usage

conditions: common sense and experience will have to do.

 Using an inappropriate technique might be worse than using no
technique at all for several reasons.
 Disagreement about the approach can be distracting (“method wars”) and disrupt

the team‘s group dynamics.
 Using methods typically comes with increased effort and/or cost.
 The techniques may lead to properties of the system document that may not just

be wasteful, but actually negative.

 Imagine a scenario where using User Stories is demanded, while some
team members prefer Use Cases.
 Convincing and training them requires effort and time.
 Focusing on features may lead to neglecting qualities.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
41

The Toolbox

 It is recommended practice to select and fix a set of techniques for
a project, based on an initial estimate of the project‘s needs.

 We call this the „project toolbox“, and the process „tailoring“.

 During tailoring, a (brief) description of the „toolbox“ should be
created.
 The toolbox should be a project specific selection of existing proven practices,

possibly with one or two additions of new “experimental“ methods.
 A justification of the decision must be provided.
 The toolbox must be easily available, e.g., as a printed poster on the wall next

to the coffee machine.
 One team member should be appointed as responsible for maintaining the

toolbox (the “tool smith“).
 After the project, a post-mortem should be conducted to, among other

things, assess the toolbox and the tailoring process.

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
42

RE Techniques in Synopsis

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
44

Methods ~ Qualities (1/2)

 Using the ISBSG data set on project outcomes, we can see some
interesting correlations:
 Some methods/techniques have positive influence on many quality metrics.
 Other actions seem to have little to no practical impact.
 Some quality metrics are influenced positively by more or less any action.


MSO: meet stated objectives MBR: meet bus. Reqs. QF: Quality of functionality
EU: Ease of use SDS: speed of def. solution SPS: speed of providing sol.

Łukasz Radliński: Empirical Analysis of the Impact of Requirements Engineering on Software Quality
B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 232–238, 2012, Springer

DTU course (02264)
Requirements Engineering

Chapter 11: Design Transition
45

Methods ~ Qualities (2/2)

Development Technique
Business area modeling

Data modelling
OO Analysis

OO Design

Project Planning
Budget

Schedule

Specification

Functional specification
Logical data ER model

System concept document

Data flow model
MSO: meet stated objectives
MBR: meet bus. reqs.
QF: Quality of functionality
EU: Ease of use
SDS: speed of defining solution
SPS: speed of providing solution

	Chapter 11:�Transition to Design
	Chapter 11.1�From Requirements to an Analysis Model
	Slide Number 4
	Requirements to Analysis Level Models
	Weaving Models
	Requirements-to-Model Transformation
	Step 1: Translate
	Step 2: Weave
	Step 3: Consolidate
	Chapter 11.2�Harvesting Model Fragments �from Requirements
	Harvesting Example 1:�Successful extraction
	Harvesting Example 2: �Incomplete Fragment
	Harvesting Example 3:�Large Fragment
	Harvesting Example 4:�No Fragment
	Improvement Opportunities in Step A:�2) Multiple resulting fragments
	Chapter 11.3�Weaving Model Fragments
	Weaving
	Weaving Example 1:�Simple overlap
	Weaving Example 2:�Multiple/consecutive overlaps
	Weaving Example 3:�Semantic Implications
	Weaving Example 4:�Weaving exhibits duplication or flaw
	Weaving Example 5:�Weaving yields unexpected results
	Folding Assemblies (Composite Structures)
	Chapter 11.4�Tracing between Requirements and Models
	Tracing
	Forward/Backward Tracing
	Tracing in RED
	�Chapter 11.5:�Requirements Tools�
	State of RE in Practice is Poor
	RE Process Maturity in Practice is Poor
	Prose for Requirements Engineering
	NL-Analysis of document outlines
	Tools
	Tools
	Diverse Requirements Stores in use
	Concurrent Requirements Stores
	Requirements Flow
	�Chapter 11.6:�Tailoring the Requirements Toolbox�
	The necessity of Tailoring
	The Toolbox
	RE Techniques in Synopsis
	Methods ~ Qualities (1/2)
	Methods ~ Qualities (2/2)

