Chapter 1 3

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 13:
Closure

DTU course 02264

Agenda

= |n this chapter we will be looking back at the whole subject we
have covered this term.

= |n summarizing it, we will establish or reinforce the connections
between the different fields and issues.

= Also, we will try and identify some trends that might change the
way we do Requirements Engineering in the future.

1. Requirements Revisited

2. Requirements Engineering Techniqgues & Topics

3. Where do we go from here?

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 13.1:
Requirements Revisited

DTU course 02264

© 2009, Prof. Dr. H. Storrle

Complexity of RE of software systems

DTU course (02264)

Requirements Engineering
Chapter 13: Closure

4

Qua“ty of System . The World Health Organisation estimates
[cost of failure in €] '.0:5‘ (in 2014, for western Europe) the cost of
é} / - loss of life: 1,574,000€
AN q}* Y, - major injuries: 205.000€
103_ Q - minor injuries: 16.000€
Q}t}b / . loosing an hour of office work
107 & / 4@0“ costs around 10..1000€
10°_
10°_
10°_] S{Ems
10°_ —
—_—
- oile applicoto™
101 _
> Size of System

105 [FP]

DTU course (02264)
Requirements Engineering

Putting in effort early pays back Chapter 13: Closure

5
Introduction of Faults
Analysis Design Implementation
20% 30% 50%
10% 10% 20% 20% 30% 10%
Analysis Design Implementation Integration System Test Operation

Fault Recognition and Removal

© 2009, Prof. Dr. H. Storrle

[Boehm: Software Engineering economics, 1981, Prentice-Hall]

© 2009, Prof. Dr. H. Storrle

The Software Lifecycle

Analysis Design

.

Project Definition Implementation

Maintenance
Renovations

Integration
Closedown g

<

DTU course (02264)
Requirements Engineering
Chapter 13: Closure
6

. Iransition to

Operation

System

Operations Migration & Deployment
< System Require- _
£ ments Analysis
8 System B
A Design B

<

Requirements , .
M Analysis
o
T .
A Coarse Design ' \nimme

o Fine Design

Integration

Implementation

= Time

Technology

© 2009, Prof. Dr. H. Storrle

DTU course (02264)

Software Development Paradigms O Chapter 15, Closure

7

. IIfE C?C'E A (c) 2009, H. Starrle
circumference

Paradigms

Waterfall:
visit all phases just once and one after the other,

decades deliver once

A Cascading:
split system into {many) smaller subsystem,
"fEH rs apply waterfall paradigm for each of the subsystems
deliver in a scheduled sequence of increments
Waterfall

sequ

Prototyping:
develop the same system several times in a row,

months cascadi ng) each time improving by lessons learnt

4 \ Spiral:
start with a small partt of the system and repeat,
each time increasing scope and quality

weeks Prntntvping (combination of prototyping + cascading)

Agile:
Spi ra I very small increments, very small iterations

iterg

days

highly iterative ")

hours

\, Z >

0 1 2 3 4 5 [7 a . .

continuous | incremental) bigbang

© 2009, Prof. Dr. H. Storrle

Organizing Truth

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

8

THE PROJECT REQUIRE"
MENTS ARE FORMIMNG
IN MY MIND

Ebdail SCOTTADAMESAOLCOM

. Ama

NOW THEY'RE CHANGING...
CHANGING. .. CHANGING. . .
CHANGIMNG ... OKAY. NGO,
WATLT.. . CHANGING. ..
CHANGING. .. DONE.

MNATURALLY, L
WON'T BE
SHARING ANY
OF THESE
THOUGHTS
WITH
ENGINEERING.

T BUDGETED)
FOR SOME
GOONS TO
BEAT 1T
QUT OF YOU.

C

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering
Chapter 13: Closure
9

Requirement Types

Requirement

Goal Constraint

Product-related Process-related

Feature

(Functional R.)

actions, functions,
interactions,

interfaces, and services
a system shall provide
cross cutting features
(e.g. Undo/Redo).

Quality

(Non-functional R.)

desired system
properties like
throughput,
performance, usability,
maintainability,
portability, safety &
security

Organization

Available Staff,
qualification,
organisation maturity,
legal and company
regulations

Time to market,
budget, other projects,
technology

© 2010, Prof. Dr. H. Storrle

Requirement Granularities

1. Requirements can also
be grouped by
granularity, i.e. the
solution entity they
address.

2. Most, though not all
combinations of size and
type make sense.

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

10

Market / Domain

Component

© Steve Easterbrook

Definition “Requirements Engineering’

Not a phase
or stage!

The purpose
determines to a great
deal what properties a

system must have,
including qualities and
features.

Need to identify
all the stakeholders,
not just the customer

and user

4

Requirements Engineering (RE)

IS a concerned witii
the

of a software-intensive
system, and the In which it
will be used.

Hence, RE acts as the bridge

between the

of users, customers, and other
affected by a

software system, and the

afforded by software-intensive
technologies.

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

11

Communication
is as important
as the analysis.
RE means
“organizing truth”.

Designers need to
know how and where
the system will be used

Requirements are
partly about what
is needed...
...and partly about
what is possible

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

The Requirements Lifecycle Chapter 13: Closure

12

ldeation & Elicitation Elaboration
- Business Process Analysis - Dataflow Analysis

- Interviews & Surveys - Domain Modeling
- Data Analysis - Structured/Controlled Text

Management Validation

- Tracing - Reviews & Inspections
- Effort Estimation - Formal Methods

- Version Control - Prototyping

Sources of Requirements

customers and

operations markets
environment

neighbor
systems

Similar systems
(predecessors,

competitors) EEe ReqUirE'
ments

Laws, —

regulations,
and standards

© 2009, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering
Chapter 13: Closure
13

strategic
decisions by
management

influential
experts

Personal
experience

Imagination

DTU course (02264)

SkEtChing & Ideation Requirements Engineering

Chapter 13: Closure
14

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 13.2:
Requirements Engineering Techniques & Topics

DTU course 02264

© 2009, Prof. Dr. H. Storrle

Looking Back at Techniques This Term

STRUCTURAL
MODEL

VISION

DTU course (02264)
Requirements Engineering
Chapter 13: Closure
16

PROCESS
MODEL

MODEL
STRUCTURE

INFORMATION
MODEL

DTU course (02264)
Elicitation Technique Overview O Chapter 15, Closure

17

Objective Techniques Observational Techniques

e Data Analysis e Ethnographic field studies
e Background Reading e Protocol Analysis

e System Archaeology e Apprenticing

e Laws & Regulations e Participant Observation

Conversational Techniques Introspective Techniques

e |[nterviews e Storytelling

e Surveys, Focus Groups e Personas

e Group dynamics e Brainstorming
e Role Playing e Mind-Mapping

© 2010, Prof. Dr. H. Storrle

© 2009, Prof. Dr. H. Storrle

Effort vs. Openness

Effort

"' (c) 2009, H. Starrle

Questionnaire

Interview

e

a4 N

Field Study
-~ Observation

_ J
Apprenticing

Ve

p N\ Survey Flashllght
Exercise
Data)
Collection ‘ Brainstorming
. Card Collection
J Introspection
. (“tickv Dot 6-3-5-Method
C ots
y \. . >
Openness

DTU course (02264)
Requirements Engineering
Chapter 13: Closure
18

© 2009, Prof. Dr. H. Storrle

Maintaining the Overview in Storyboards

ot Sheeth. |

e based b life

[P e wgne
ﬂl.dn Edit Ay
Fridey March 4@

mﬂfrai!!m!z‘!!
:'z lomch Bole Brack nuyer

Map view

%swzaL

i.f e o e g o2
| Agerds Edt All

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

19

Friday Ocdober 2

o |MeryFord

10 Nee| Phone Call

" |MekeMesting |
1 e M =

Z View Cord j
3 |yeirweb |
5 |ViewMestings]
6 I L

i
e R e Sy

SR

Wa
| Sketeh. Shat 4|

I

Links are automatic | ;l
What a link can do d3j(, }

Links auto buildi___J

Links speed searches|___|
Links make chains |___|

text tod___J

Buxton: Sketching User Experiences, Morgan Kaufman, 2007

© S. Easterbrook

DTU course (02264)

Software Quality Attributes (McCall) O Chapter 15, Closure

20

operability

training

communicatativeness
usability , I/O volume
1/0 rate

integrity \7 access control
access audit

Product operation | efficiency | -
, storage efficiency
, execution efficiency

correctness

{

traceability

completeness

reliability

>

accuracy

maintainability

consistency

testability

Product revision

simplicity

conciseness

flexibility

reusability
Product transition | portability

interoperability

instrumentation

expandability

generality

self-descriptiveness

modularity

machine independence

- s/w system independence

comms. commonality

|
|
|
|
|
|
|
|
|
|
|
|
error tolerance]
|
|
|
|
|
|
|
|
|
|
|
|

[van Vliet 2000, pp111-113] data commonality

© 2009, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

RQAs for different system types Chapter 15, Closure

Quality Attribute

21
mm
Reliability

Re-startability -— - + + + - — - + -
Availability

Efficiency
Capacity - + + + + + - + + +

Performance

Integrity
Safety
Security
Privacy

Usability
Understandability + + + - -— - - = + +
Learnability

Operability
Interoperability + + + - + + - - + + S
Robustness

Maintainability
Portability + + + - - - + + S
Testability

© 2010, Prof. Dr. H. Storrle

DTU course (02264)

Feature Interaction CD/CW e 1o o

22

 There are many problems related to requirements, for instance
feature interaction.

CW (Call Waiting):
If the line is busy and a new call arrives, the callee is
notified and decides which call to continue.

Cecilie/
] CW [ON]
Amal !
E matie CD = Cecilie

S

© 2009, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Models may get large Chapter 13 Closure

23

(c) 2007-2009, H. Storrle

Corporate data model -
Bayerische Landesbank

Model element:

Instance of a metaclass of a
metamodel describing the
modeling language

View:

individual group of model

elements, often visualised by
SAP R/3 EPC reference model a diagram

10*

Spread:

Number of different types of
views (“diagram types”)
used in a model

Model Elements

[y
o
N

Name:

All names given are internal.
Numbers instead of names
refer to anonymized models.

ultra large
scale

Views (“Diagrams®)

System Structure Models

component LM3 [5 System Structure]J

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

24

© 2010, Prof. Dr. H. Storrle

1LMS il
asubsystet)
: MediaManagement
b-GUI
1
E-MM
LI
«subsystems =]
c-GUI : Catalog
C-GUl advanged
—
4,
c-L k—I—E)—R
package System Struchure| Emum”
«subsystens
: UserManagement LMs
EUBSYIEM. =]
=]
wsubsystems
: Lending
L-GUI
= +SUDEYEIEM. =]
Heporting
— e T
b El subgystams = fe Srieon g
ReadeManagement ot
T Dmplayresser ST — e e
TI . e | [P —
e antises! .
Display reader i
Teader infe -1 k,___"‘___’_) il
S —
— nclue. C eediarepent

esubEyEiam, oA
Lending
e —— aniclus o
Return medium s =i —————— -
il / T eervs e
—— | =
T Lendmedum = = = = — — = .. ssend
St L Ciiagram namea [Somain
o o ——_ s e — Aarmhtn Uana
£ semmesun__JRNIC Pomansminn) P e~ = — (g gpeereation
Creavon date | 11809 1.59 PN
1119101238 PM

Information Models

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

25

package Information Madel[[5 HS_Class Overview 1)

They could bs coples of & medium
or similar metla of & medium that
could be used to suppart the
search results

Medium

ReservationStatus

-ReservationStatus |1

-Reservation |1

Users can be all readers or all likrarians or the search resuts of
a reader or a librarian search

Reparts should allow various groupings end selection criteria
Rei # 74,7576

Report Reg # 75,76,77,101 102
Reports should inclide exporting certain information in an
appropriste form so as to be used for the library's statistics

Users

-ListUserlsPartf [1

-ListOfUsers |0.*
User

package 2010 Experimental Layout [Taxonomy]J

Registored Usor

-ListOfhedia |0,

-MediumCatalogue [1.*
Media

|
e B
“Media” can be the library Catalc

search results. Thers can only |
llorary Catalogue

© 2010, Prof. Dr. H. Storrle

Registered User
—‘ Reader

Book

e-Book

Journal

whates rruachine Mechun State [[Medsm Stale U

Foreign

Diagrarn narme | Mediurn State

Author anigrnaidi 3§

reserved o iorky List longlh =1
tha ! L Creation date 11/209 11:00 PM
Modification date | 1172210 306 PM
®) [Py Lisd b =1 [e—
Librarian
cancai) [Frionty List logth «1] rasarve()
returr) [Modiem is Badty Damagedd]
redurn() [Shohtly Damaged]
fehurn() [shghity Demeped)
\l, Famared
e - Shghtly rebuerd) [Modss is Badty Damoged] | Badly damaged | deleded)
*— darmagust 1 %)

fend()

fourek)
Restricted [
i lost()
rstricli)
om0
Avaitavia | R -
Toured()
retum) om0
{ Len dsletel)

© 2009, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Process Models Chantor 15 Cromune

26
package Feader Management [@Upda’(e Reader])
LMS
«subsystem: =] «subsystams &l
Reader Management Record Management
Diagram name | Update Reader
— — zinclude —= ——
Update Reaiei:} — 4= @D Author 5091256
Reader Librarian . -
|ihcludes Creation date 12-11-081511
_ AR Modification date | 1172410 3:31 PW
Diagram name |Update Reader LMS
Author s091256
Creation date 12-11-09 16:40 (Identify Reﬂdl%r ™)
Madification date | 117231101018 P !
| Dlspl?ﬂ{:ader zdatastore:
’ Reader Catalog
Input new
reader data
o
'-1.
|"- Display new &
I data
- YES —_—
[Me] 7 date’r“x [YES] (Update reader wilatastares
BELE ! | attributes J— Reader Catalog
[Add Record |
| é' L _|Data:
-Cperation type=update reader
-Reader D
-Drate
-Librarian I
Y J

© 2009, Prof. Dr. H. Storrle

[]
° DTU course (02264)
D I a g ra m La yo Ut e Requirements Engineering
Chapter 13: Closure

The Good, The Bad & The Ugly 2

Metadaten-
Administrator

Domaéanen-
verantwortlicher

S0A-
Architekt
{fachlich)

Geschafts-
prozess-
designer

S0A-
Architekt
technisch
Service- : {)
Modellierer N\ _——eeeeenr ™

Many roads lead to Rome (or Lyngby)

1. Thereis no single “right” sequence
of steps to create the “best” model.
1. However, models are more or less

well-suited to their purpose, and
paths are more or less well-suited to
getting there.

2. The results of following different
paths will often converge in rather
surprising ways.

2. If there are several possible next
steps in modeling, take the
cheapest.

1. By “cost” we mean the modeler’s

effort to go ahead a step. This effort
is determined, for instance, by the
modeler’s command of the
modeling language, the available
knowledge, the model developed so
far, the available tools, and many

~

Do not hesitate to switch between
several models to capture just the
information that you have available.

If in doubt, use comments to
capture the idea and return later to
figure out the right way of modeling
it.

© 2009, Prof. Dr. H. Storrle

Multiple Views and Overlap

Every modeling language has its
strengths and weaknesses: some
type of phenomena are easily
captured and conveniently
presented, and some are not.

Complex systems exhibit many
different phenomena of all kinds,
many of which will be relevant for
requirements analysis and should
thus be captured.

However, a single model or
diagram will not suffice to achieve

this. 1.

So, most likely we need several
views working together, for
different aspects.

DTU course (02264)
Requirements Engineering
Chapter 13: Closure

&

In order for several views to talk
about the same thing, there must
be some “common ground”, that it,
some conceptual overlap between
different views.

Derivations between model types

- Obtain quote process
m:(jet quote Details / /
N O Stocks Ord.
Get quote overview / oc 1
O Stocks Customer
—_— uote
o X (1) o >{ getquote }—>>{ checkstock) Q) Test case #42
..... Customer |r —— R
| ol: Order I— ql: Quote pl: Price
aincludess 1| Orders | Fyr—— n ——rT

I 1 ru = 2008-4- prce = 2.

I , amount = 10.000 currency = EUR

15 Ceheck stock > (O <—(pemrot)<—{heckpi) Pl

rd) L4 A]
7 N ’ . ’
'l A r
A 3] N2 /0O O F10)
LY r] L

Stock protocol Quoting context

.Y
Ordering domain / -
Offer

9 0.1
O Stocks Orders
ﬂ ﬂ n o I Order }— Quote Price
(MalidThru: Date pprice: Amount
Emount: int fcurrency: string

Customer Hiscount: float

Add/enrich model elements

© *- Tab, UCD, AD, MD from interviews, observations, and reverse engineering
Oucb ~->AD swimlanes & actions

O AD 2> UCD systems & use cases, A-U-associations & includes/extends

® UCD - MD actors, parts, ports, and connectors

® mMD 2> UCD actors, systems, A-U-associations

® IAD 2> UCD use cases

® ucCD - IAD create interaction partners, messages

O ucb - Tab rows (actors, title, trigger/precondition, exceptions)

O Tab - UCD actors, systems, use cass, extension points, includes/extends
© IAD - Tab rows (steps, exceptional steps, conditions, triggers, results)
O Tab - IAD default intreaction partners, create messages

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 13.3:
Requirements Engineering in the 215t Century

DTU course 02264

Software is not just the desert:
it’s the whole menu

20 years ago, IT systems were few, far apart and isolated.

Today, computers (and their Software) are plentiful, everywhere,
all of the time, and they are globally networked (“ubiquitous”).

= Many consumer products are small computers (mobile phones, MP3 players,
digital cameras, ...).

= Butalso in less visible places computers abound (cars, machines, household
appliances, pacemakers, ...).

= "For every 25% increase in problem complexity, there is a 100% increase in
complexity of the software so/u[tion. “

Robert L. Glass: Sorting Out Software Complexity. CACM November 2003, 45(1), pp. 19-21]

= If knowledge is the key asset of the future, then the ability to create or
discover that knowledge is the key wealth-generation activity. Since that
knowledge will be stored mostly in software, software development should
(and will) become the driving force of the new economy.”

[Phillip G. Armour: “Owning and Using.” CACM June 2014, 57(6), pp. 29-30]

= “The automotive industry has become part of the software industry.”
[M. Wirtenberger: “Changing Automotive Industry”, CEO, BMW Car IT

IT is NOW a critical infra St ru ctu re. Proc. Sw. Eng. & Mgmt., LNI-239, Ges.f.Informatik, p. 264]

Software Ecology

From 1950 to the 1990’s, most projects used to be “green field
development”, integration happened in data centers.

Today it’s all about the integration: cross-cutting processes,
global supply chains, and interaction with .

= |n public and private administrations, almost all software lives in an
ecosystem of applications. Large corporations have “Enterprise
Architectures” of hundreds or thousands of interacting applications,
databases, web sites, and so on.

= In manufacturing, plants are more like giant networks with some robots
attached (“Industry 4.0”).

Software affects everything, and everything affects software.

Every product, system, legislation or regulation can not be
thought without software support.

Progress in Software Engineering

= We have also changed the ways we build and deploy software.
= Web applications, Cloud Computing, and SOA transform the software market.
= New languages and approaches are thought up all of the time (MDA, agile, ...)
= |f you don’t know something, Google will.
= End users create a growing portion of all software.

= The organizations that create software and their processes change.

= We have outsourcing and offshoring, global software development, virtual
organizations, open source development, and so on.

= Many people have Smartphones, we have Wikis, Blogs, Skype, NetMeeting and
free WLAN in many Airports and Hotels so that constantly being in touch is easy.

= We have made fantastic progress in many areas which give us fabulous
tools today.
= Model Checkers and Theorem Provers are becoming practical tools.
= Today’s IDEs (e.g. Eclipse, NetBeans, Intelli)) are light-years ahead of Xemacs.

The 215t century is the conceptual age

1.

It has been argued that we
are now living in the
beginning of the
“Conceptual Age”:

“an era where creativity,
design, and innovation
become the major factors
of global economic and
cultural competitiveness.”

[Daniel Pink: “A whole new mind”]

Even if this is one of the
usual exaggerations, it is
obvious that companies
like Apple obviously fit well
into this theory.

DTU course (02264)

Requirements Engineering
Chapter 13: Closure

35

Agricultural Age

In the 18t century, most people’s life was
effectively dominated by agriculture: 90% of

like millennia before.

the population were farmers working the fields,

Industrial Age

In the 19t century, inventions like the steam
machine, artificial fertilizer and the telegraph
allowed a growing proportion of the population
to worked in factories, mines, ship yards etc.

Information Age

In the 20t century, electronic computers and
communications globally moved societies
into the information age dominated by
knowledge workers.

Conceptual Age

In the beginning of the 21t century, it looks like
We are entering the conceptual age, where
creativity, design, and innovation are the main
Contributions of conceptual workers. ...

RE in the 215t Century

1.

So, accelerating technological progress and globalization affect
Requirements Engineering in many ways.

Traditional centralized requirements engineering is neither effective
nor necessary.

However, that does not mean that traditional RE has become worthless
over night and we can throw it all away.

1. Infact, very often seasoned methods and tools are far more adequate than what
is currently fashionable — Software Engineering and the IT Industry are very much
driven by recurring hypes following businesses motives.

2. Historical thinking is an exception, often laughed or smiled at, but useful at
times.

However, we need to face the new challenges and evaluate how they
affect our field, where they’re just passing fads or recurring fashions,
where they are genuine and how we may adapt, and where they are
actually detrimental, so we have to put up a fight to live up to our
professional responsibility.

Better, Faster, Cheaper

= Today, most organizations are not very professional about
creating software, and requirements engineering is often one of
the weak spots.

= |t would be very beneficial if we could increase the level of professionalism.

* There are many known problems that could be addressed today,
or that could be addressed in the near future with a little
scientific research.

= Requirements specifications expressed in modeling languages like
UML could be turned into formal specifications.

= We could verify and check such specifications much better than we can
today.

= We could use them much better to create application systems, possibly as a
sequence of automatic and semi-automatic transformations.

= By raising the abstraction level of system creation from code to models,
productivity might increase drastically (cf. Assembly, C, Pascal, and 4GLs).

Requirements for Product Design

More and more, software is an integral part of a great variety of
products. Many of the distinguishing features of products will be
determined to a large degree or even exclusively by software.

- Even today, 70% of added value and over 90% of all innovations in upper
class-cars are driven by software.

Software development will not start after a product has been
defined, but together with product design (as an integral part), or
even before, driving product design, triggering innovations.

That means that Software Engineers will be concerned with more
general features and requirements such as marketing, business
models, and production.

Thus, Requirements Engineering will also cover topics like the
ecological footprint, industrial design, user experience, or ethical
issues.

- Philips focuses on lighting.

Pervasive Multimedia Requirements

With digital technology, many people are continuously taking
pictures, films, and sound recordings — everywhere, all the time.
This has been dubbed “life-logging”. . cxvs/o0, 553

= Often, they also upload their recordings to Web 2.0 platforms like flickr,
FaceBook, Twitter, and so on.

= And they can do so as they go along. “Dead time” like waiting for the bus is
being used to process and make up such data.

Before long, people will record each and every impression they

ever have, for their whole life: we will be our own ethnographers.

= There will be software to index, search, mine, and analyze such life-tapes,
and this could be used for requirements elicitation.

Just imagine the elicitation of work processes by capturing all the

recordings of all the respective workers and automatically mine it

for recurring patterns, important tasks, problems, time wasters,

and so on.

= |f privacy is ensured, a small reward might suffice and people might
cooperate. Actually, people don’t seem to care about privacy all that much...

Federal Agency of Requirements
Engineering

= There has been a sad history of failures of large scale projects of all
kinds, with substantial losses.

If this happens to a company — too bad. If this happens to a public authority,
however, it’s the tax-payers money.

Also, these projects tend to be very big, and there are frequently heavy
regulations making it ever more difficult to succeed.

= The competencies for this kind of project could be bundled into a
Federal Agency for Requirements Engineering (FARE).

The people working there would be former consultants and project managers
that have switched sides and have become civil servants.

Their services would be available to any agency or authority that is
conducting a software procurement or development project.

They would also have a department to monitor and study the projects
supported by FARE.

Public authorities would deal with the IT giants on a level playing field.

DTU course (02264)

Ad d i ng d eta i IS’ Ste p by Ste p Requirements Engineering

Chapter 13: Closure
41

DTU course (02264)

It’s a long road from needs to solutions o it

42

Transition

| e

© 2009, Prof. Dr. H. Storrle

Prof. Dr. Harald Storrle

Software Engineering Section

Department of Informatics and Mathematical Modelling
Technical University of Denmark

Richard Petersens Plads

Building 322, Room 024

DK-2800 Kgs. Lyngby

hsto@imm.dtu.dk
www . imm.dtu.dk/~hsto

DTU course (02264)
Requirements Engineering
Chapter 13: Closure
43

HEE

	Chapter 13:�Closure
	Agenda
	Chapter 13.1:�Requirements Revisited
	Complexity of RE of software systems
	Putting in effort early pays back
	The Software Lifecycle
	Software Development Paradigms
	Organizing Truth
	Requirement Types
	Requirement Granularities
	Definition “Requirements Engineering”
	The Requirements Lifecycle
	Sources of Requirements
	Sketching & Ideation
	Chapter 13.2:�Requirements Engineering Techniques & Topics
	Looking Back at Techniques This Term
	Elicitation Technique Overview
	Effort vs. Openness
	Maintaining the Overview in Storyboards
	Software Quality Attributes (McCall)
	RQAs for different system types
	Feature Interaction CD/CW
	Models may get large
	System Structure Models
	Information Models
	Process Models
	Diagram Layout:�The Good, The Bad & The Ugly
	Many roads lead to Rome (or Lyngby)
	Multiple Views and Overlap
	Derivations between model types
	Chapter 13.3:�Requirements Engineering in the 21st Century
	Software is not just the desert:�it’s the whole menu
	Software Ecology
	Progress in Software Engineering
	The 21st century is the conceptual age
	RE in the 21st Century
	Better, Faster, Cheaper
	Requirements for Product Design
	Pervasive Multimedia Requirements
	Federal Agency of Requirements Engineering
	Adding details, step by step
	It’s a long road from needs to solutions
	Slide Number 43

