W

Reqmrements

Engineering
i
:-‘I | \"\
A 215t century approach
AR 1IN
IR (IR \\h
A TN
| SREREI
=i e e Tﬁ Ili
1

02264 Harald Storrle

Chapter

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

DIU

Chapter 1:
Introduction

DTU course 02264

DTU course (02264)
A d Requirements Engineering
ge n a Chapter 1: Introduction

4

Abstract

= Starting from concrete examples, we will argue what can be
gained from Requirements Engineering (RE).

= Conversely, inadequate RE comes with the risk of substantial
socio-economic cost so that our professional responsibility as
engineers alone demands great care in RE, even though software
engineers may not yet face the same legal consequences of
malpractice as other kinds of engineers, say.

= We will introduce a working definition of RE and justify the
subtitle of the course.

Contents

1. Software Faults are a Paramount Problem

2. Fighting Software Faults trough Requirements Engineering
3. A Working Definition of Reqguirements Engineering

4. Recui Encineerine in the 2150

DIU

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 1.1:
Software Failures are a Paramount Problem

DTU course 02264

LH2904 Accident in Warsaw

On 14.9.1993, flight
LH2904 crashed in
Warsaw when
landing, killing 2 and
injuring 68.

In 1993, an A320-211 landed in Warsaw under
heavy rain, overshot the runway at high speed,
crashed, and burst into flames.

= The two pilots were killed, 68 people on board were hurt,
51 of them seriously.

The plane did not slow down because it took the
plane’s computer 9s to switch from ,,airborne”
into ,,ground” mode.

Until then, thrust reversal, spoiler deployment,
and wheel brakes were blocked .

= The state transition is triggered if both rear wheels turn
quickly enough and carry at least 12t of weight.

= Due to strong sideways wind, the left wheel bounced off
the ground several times.

= Due to aquaplaning, the wheels did not turn fast enough
to trigger the state transition.

[http://www.cadalyst.com/cad/product-design/what-grounded-airbus-a380-10903]

LH2904 Accident in Warsaw

= As a consequence, the trigger has been changed (minimum weight
reduced to 2t), and spoilers and thrust reversal is not coupled to
wheel spin any more.

AW WA\

o, . \©

Therac-25

Electron beam

= Radiation therapy is one of the three standard
treatments for cancer.

= The Therac-25 linear accelerator emits electron beams that
can be turned into x-rays by increasing the beam energy
and moving a tungsten target into the beam.

X-ray beam

= Barring the beam by the target will significantly reduce the

Different planned effective energy delivered, so in this mode, the beam has

operation modes of

to be much more powerful to achieve the same result.

the Therac-25 (top),

and the fatal = Exposing patients to the high-energy beam without the
configuration target results in massive radiation overdoses.
(bottom).

Energy

I 25 MeV

5 MeV

* |n the 1980’s, this happened repeatedly, killing at
least 3 patients.

= The error was caused by operators typing in commands to
the control terminal faster than they could be processed.

= There were inadequate error messages (,,Malfunction 54°).
The software was (partially) reused from the Therac-20
Electron beam which had a hardware interlock preventing this problem.

[IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41]

H. Storrle

© 2010, Prof. Dr.

DTU course (02264)

Ariane 5, Flight 501 " ehapter 1+ Introduction

On the 4.6.1996,
Ariane 501 exploded

after 40s flight.

9

On her maiden flight, the Ariane 5 (flight 501) went
out of control after 40s and was auto-destructed
for safety reasons.

= The rocket and its payload had cost 500mio USS.

36.7s after lift-off, both of the doubly redundant
flight control computers switched off due the same
overflow from converting the horizontal speed
from a 64bit float into a 16bit signed int.

The software worked exactly as specified, but it
had been specified (and created) for the Ariane 4
which was flying much slower than the Ariane 5.

= |ronically, the software causing the error was not even
required for flight, but only for launch preparation. It was
kept active the first 40s after lift-off to be able to quickly
resume the launch procedure after count down standby.

H. Storrle

© 2010, Prof. Dr.

A large portion of
the German unem-
ployment benefits
did not reach their
recipients when the
new system was put
into operation in
2004.

DTU course (02264)

ALG-II Padding Error Requirements Engineeri

Chapter 1: Introduction

ng

10

= |n 2004, a new system was put to operation to
handle unemployment benefits in Germany.

= This is one of the largest e-government systems in
Europe: as of 2004, there were 2.6m accounts main-
tained by 16k users paying out approx. 1.3bn€/month.
* To achieve uniform length of account numbers,
a post-processing system padded numbers with
zeros — but at the wrong end!
12345 - 0012345 \/ 12345 - 1234500 X
123456 > 0123456 \/ 123456 - 1234560 X

= A lot of fund transfers failed and the benefits
did not reach their intended recipients.

= When sending out the money as cash cheques by
paper mail, it was discovered that another system
truncated the street name in a way that many of the
letters couldn’t be delivered.

ALG-Il Padding Error

= The problem could have been caused by a simple programming
mistake, but what really happened is that a thoughtless
programmer interpreted an underspecified requirement wrongly.

ALG2 Core System
Fund Transaction

System of Bank

R2a: An account number consists

H \\ i .
of up to 12 numerical characters. of 12 numerical characters

R2c: Pad account number
with zeros to consists of
exactly 12 numerical
characters.

\
J AN R2b: An account number consistsJ

R2c’: Pad account number with
preceeding

zeros to consists of exactly

12 numerical characters.

4

DB Datacenter breakdown

The complete IT
backbone of
Deutsche Bahn broke
down on 14.1.2009
leaving tens of
thousands of
travelers stranded.

 2ug fallt] aus cug 13

E Zug 1allt aus cug 13
b 2ug fallt| aus 2ug 13

E Fug Tallt

Eocug Tallt] aus Aug fa

On the 14.1.2009, the complete IT backbone of the
German national railway system gradually broke
down and couldn‘t be restarted.

It took two days before train traffic would be back
to normal.

= During routine maintenance works, the power supply for
a regional data center in Berlin was cut off crashing the
entire facility.

= Other systems and eventually the overall network failed
domino-style.

= |nthe end, there were no more ticket sales via any
channel, and no more train and travel information.

The problem turned out to be that the crash had left
corrupted data in some data bases that crashed
other dependent systems and prevented a restart.

Apparently, nobody had ever considered the case of
a restart.

DB Datacenter Breakdown

* Adding (and satisfying) either of the following requirements would
have avoided the problem.

R3: The regular R3’: Starting the system R3”: There is a function
operations personnel may not depend on the to roll back to the last
shall be able to start or status of other systems consistent state in less
restart the system in less or the integrity of the than 15 minutes.

than 1h. system’s input data. The last consistent state

is never older than 1h.

= But very likely, the system has grown during operation over many
years in an unstructured way.

= Probably, it has never been planned and analyzed systematically.

© 2010, Prof. Dr. H. Storrle

The Tacoma Narrows Bridge (1940)
Puget Sound, Washington State, USA

DTU course (02264)
Requirements Engineering
Chapter 1: Introduction
14

DTU course (02264)
Requirements Engineering
Chapter 1: Introduction

Comparison of Accidents

15
LH2904 . DB

© 2010, Prof. Dr. H. Storrle

. Many Many
g/laar:‘zrlael gsdﬁji mai diena"l(jred 500mio USS thousands thousands
& yin] without cash stranded
Immaterial : : : : .
considerable massive considerable massive massive
Damage
IR artiall es no no no
Fault P y y
SBETELE no artiall no es no
Fault P y y
RE Fault yes yes yes yes yes
AERELDE es es es es es
by Ideal RE Y Y Y Y Y
Easily/
Cheaply partially yes yes no no
Avoidable

Why do these accidents happen?

* There are two possible sources of problems that might lead to this
kind of accident.

= On the one hand, these accidents could show the limits of our
scientific understandig of the world.

= |t could be, that we simply could not know this, that we simply could not
possibly have prevented these accidents from happening, and that we had no
way of limiting or mitigating their effects.

= On the other hand, these accidents could be due to embarassingly
mundane and simple, if not downright stupid, errors.
= Almost always, this is the case.

= “One obvious lesson is that most accidents are not the result of unknown
scientific principles but rather of a failure to apply well-known, standard
engineering practices. A second lesson is that accidents will not be prevented
by technological fixes alone, but will require control of all aspects of the
development and operation of the system.”

[Nancy Leveson: "Safeware: System Safety and Computers" Addison-Wesley, 1995]

Requirements Engineering Is Hard

The hardest single part of building a software
system is deciding precisely what to build. No
other part of the conceptual work is as
difficult as establishing the detailed technical
requirements, including all the interfaces to
people, to machines, and to other software
systems. No other part of the work so cripples
the resulting system if done wrong. No other
part is more difficult to rectify later.

Therefore, the most important function that
the software builder performs for the client is
the iterative extraction and refinement of the
product requirements. For the truth is, the
client does not know what he wants. The
client usually does not know what questions
must be answered, and he has almost never
thought of the problem up the detail
necessary for specification.

Even the simple answer—"Make the new
software system work like our old manual
information-processing system" —is far too
simple. One never wants exactly that.
Complex software systems are, moreover,
things that act, that move, that work. The
dynamics of that action are hard to imagine.
So in planning any software-design activity, it
is necessary to allow for an extensive
iteration between the client and the designer
as part of the system definition.

| would go a step further and assert that it is
really impossible for a client, even working
with a software engineer, to specify
completely, precisely, and correctly the exact
requirements of a modern software product
before trying some versions of the product.

F.P. Brooks: “No Silver Bullet. Essence and Accidents of Software Engineering”, Computer Magazine, April 1987

www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html

DIU

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 1.2:

Fighting Software Failures through
Requirements Engineering

DTU course 02264

Why bother with RE?

= Today, software is ubiquitous.

= Many consumer devices and appliances are really computers; contemporary
vehicles and machines are mainly embedded systems; all critical infrastructures
highly depend on IT systems, virtually everything today contains a processor.

= Therefore, its quality (or lack thereof) affects us tremendously.
= The potential consequences range from minor inconveniences to global disaster.

= The most cost-effective way to achieve better quality is via RE.

= This fact has been proven again and again over the last 30 years, but it is still not
generally acknowledged.

= RE by itself is no solution, but every solution will contain RE.
= |t may be called differently or hidden behind something else, but is there.

= Therefore every person involved in creating software-intensive systems
must be knowledgeable in RE.

Better Software is expensive

" Creating (better) software is expensive and only makes sense
economically, if it significantly exceeds the likely cost.

* The most cost-effective way to achieve better quality software is
almost always through systematic Requirements Engineering.

= |Implementing the right requirements necessarily has a better Return on
investment (ROl) than implementing the wrong requirements, no matter
how cheap that is.

= Also, there have been many studies on the economic benefit of RE over the
last 30 years, and the result was always in favor of RE.

= Of course, RE can still fail, diverge, or be overly expensive.

" Looking at the way software is produced, it is obvious that projects
fail mostly due to lack of and faults in Requirements Engineering.

DTU course (02264)

Cost/Benefit of RE R ———

21

= Professional RE may be expensive, but it is still cheaper than not
doing it: many empirical studies have confirmed that RE has a
(large) positive ROI.

“Finding and fixing a software problem after delivery is often 100 times more
expensive than finding and fixing it during the requirements and design
phase.” [Boehm, Basili: Software Defect Reduction Top 10, S. 135]

120 1T

100

100 |

Cost Units
[e)]
(@]
T

40 +

20 +
10

1,5 1

During Design Before Code Before Test During Test In Production

[Gilb: Software Engineering Management]

DTU course (02264)
Reason for Cost/Benefit of RE R

22

Introduction of Faults

Analysis Design Implementation
20% 30% 50%

10% 10% 20% 20% 30% 10%

Analysis Design Implementation Integration System Test Operation

Fault Recognition and Removal

The longer an error remains undetected

the more follow up errors and aftereffects it causes,
and the more it costs.

[Boehm: Software Engineering economics, 1981, Prentice-Hall]

DTU course (02264)
Another factor for RE efficiency e Chapter 1 Introduction

23

= Since 1994, the consultancy Standish Group surveys the software
project market every two or three years.

= Their results are published in a paper aptly called the CHAOS report.

= |n 1994, 250.000 projects have been surveyed.
= They exhibited a large average overrun of cost (~800%),
= and time (~222%).
= Almost 50% of all projects surveyed
had more than 100% time overrun. SRR (L

16%
aborted

31%
= A project is considered successful,

if it delivers

= acceptable functionality and quality

troubled
53%

" intime and on budget.

© 2010, Prof. Dr. H. Storrle

DTU course (02264)

The CHAOS report over time " ehapter 1 ntroduction

24

= At first sight, the situation seems more or less stable since 1994.

= When looking closer, a slight improvement can be detected.

= This is probably just a statistical artifact, but we cannot find out for sure, since
the report’s methodology is not known in sufficient detail.

= |n fact, there has been substantial critique concerning the validity of the
CHAOQS report’s methodological soundness.

100%
80%
60% O failed
40% B challenged
20% M successful
0%

1994 1996 1998 2000 2004 2006 2008
[SYSTEM-Journal 04/2001, Standish Group, Web]

DTU course (02264)

ReqUirements are a key factor Requirements Engineering

Chapter 1: Introduction
25

others 19,2 % well defied interfaces
user involvement and responsibilities
15,9 % 5,3 %

qualified personnel
7,2 %

reasons for success

manageably sized
project phases

management 7,7%
support
13,9 % realistic expectations

8,2 %
clearly set reasonable project planning
requirements 9,6 %
13,0 %
insufficient user involvement 12,4 incomplete requirements
% 13,1%
insufficient Othezs
resources 20,4 %

10,6 %

obsolete features
unrealisti 7,5 %

expectations
9,9 %

reasons for failure

inadequate planning

lack of 8,1%
management requirements change
support 8,7%

9,3%

[Standish Group & Scientific American]

Benefit of Requirements Engineering

Requirements Engineering as a discipline is effective and efficient
in creating high quality software that does address the client
needs.

RE is also effective for making projects successful and, if lacking, a
main factor to failure.

This fact is still not generally acknowledged.

= E.g.in the last years many people in the agile camp deny the necessity of
requirements, notwithstanding the fact that they do quite a lot of RE
activities, if only under a different name.

A rational and mature discipline of Software Engineering will
incorporate a lot of RE; RE by itself is no solution, but every
solution will contain RE.

Benefit of RE

* The benefit of professional Requirements Engineering to
preventing software faults is very large.
= |tis probably the single largest contribution,
= jtis cost-effective (i.e., relatively cheap), and

" jtis no magic —even you can do it! :-)

* |n fact, no sizable piece of software can be created without
handling the requirements adequately.

= However, Requirements Engineering is a necessary condition for
fault-free software, but not a sufficient condition!

= QOther things have to come in, too, like Software Process, Architecture, and, of
course Coding and Testing.

Alice: Would you tell me, please, which
way | ought to go from here?

The Cat: That depends a good deal on
where you want to get to.

Alice: | don't much care where.

The Cat: Then it doesn't much matter which
way you go.

Alice: ...s0 long as | get somewhere.

The Cat: Oh, you're sure to do that, if only
you walk long enough.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 1.3:
A working definition of
Requirements Engineering

DTU course 02264

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Example: how RE reduces complexity S

29

There is an enormous number of alternatives to

consider. It is impossible to find the “right”

We M{ant to Qo Preuse symbolic computatlons solution by just Iooking at that set.

like differentiation. Thus we need rational A . f ive decisi K

numbers (Q) instead of floating point numbers. stepw.lse pr‘OC?S.S 0 succes.swe ecisions makes
the choices explicit, thus rational, traceable, and

Requirements accountable. This way, the process becomes
much easier.

Features: Normalize, add, multiply, negate,
convert to Floats, print, ...

Qualities: Degree of precision and performance

Constraints: unskilled developers, time pressure

Represent fractions as pairs of INT with the con-
vention that the denominator is always positive.
Use Euklids algorithm for normalization

Implementation

Choose data & control structures, identifier
names, messages, exceptions, tests, ...

© 2010, Prof. Dr. H. Storrle

RE terms and methods

Oriented towards company strategy and the
competition, focuses on the market and
application domain

Requirements

Oriented towards product or product line,
its subsystems and components, or
individual functions and properties

Oriented towards solution, taking into account
The solution space (i.e. technology).
May contain feasibility studies.

Implementation

The running systems: all decisions are fixed
Change incurs substantial effort

DTU course (02264)
Requirements Engineering
Chapter 1: Introduction

30

Prose and Diagrams

Multimedia, PowerPoint
Informal, communication oriented
Create and innovate

Structured Text

Controlled Languages, tabular text schemas,
weak modeling languages with little formality
Capture and describe

Modeling Languages

UML, ARIS/EPC, RIVA/RAD, SDL/MSC, Matlab
Potentially full, but de facto often little formality
Elaborate and specify

Programming Languages

Java, C#, Cobol, PL/1
Executable (i.e. fully formal)
Formalize and determine all details

© 2010, Prof. Dr. H. Storrle

Positivistic view

"The choice of functional specifications [...] may
be far from obvious, but their role is clear: it is to
act as a logical firewall between two different
concerns.

The one is the 'pleasantness problem’, i.e. the
question of whether an engine meeting the
specification is the engine we would like to have;
the other one is the ‘correctness problem’, i.e.
the question of how to design an engine meeting
the specification.

| firmly believe that whenever we succeed in
erecting such a firewall, the effort will pay off
handsomely. The reason for this belief of mine is
that the two problems are most effectively
tackled by totally different techniques.”

[Edsger W. Dijkstra:
On the Cruelty of Really Teaching Computing Science,
CACM 12/1989 vol. 32 no.12 pp. 1398-1414]

DTU course (02264)
Requirements Engineering
Chapter 1: Introduction

31

Wishes & Needs

“Pleasantness Problem”

Elicitation & Analysis
= doing the right thing

Firewall

(Specification)

Implemented System

“Correctness Problem”

Design & Implementation
= doing it in the right way

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Locating Requirements Engineering Chapter 1 Introduction

32

Business

Goals & Needs
Budget & Organisational

Schedule Strategy

Solution Domain

Technology

Feasibility

Business Line
Organization Laws & Development

Regulations Requirements BEYSAEILS Organization
Engineering Process

Stakeholders
Management

Methodology Capabilities

Software Tools

Clients .
Existing Architecture

Users

Software

Problem Domain Application

Landscape

DTU course (02264)

{4 - »” - Requirements Engineering
Th e TWI n Pea kS VI ew Chapter 1: Introduction
33
Independent Implementation Dependence Dependent
General
Path of exploration
Level
of
Detail
Detailed

Problem Statement Implementation
(e.g. tender, specification)

Definition ,,Requirement”

= A Requirement is a statement asserting a desired property of a product, process
or the people involved in a process.

Requirement

(1) A condition or capability needed by a user to solve a problem or achieve an
objective.

(2) A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally
imposed documents.

(3) A documented representation of a condition or capability as in (1)or (2).

Requirements Analysis

(1) The process of studying user needs to arrive at a definition of system,
hardware, or software requirements.

(2) The process of studying and refining system, hardware, or software

requirements.
[IEEE 610.12-1990]

© 2010, Prof. Dr. H. Stérrle

DTU course (02264)
H Requirements Engineering
Te rm I nOIOgy Chapter 1: Introduction

35

* The term ,Requirement” is used in many different contexts, and
with many different meanings.
= All of the following are (sometimes) called ,,Requirement”.

= We will use ,Requirement” only in reference to those notions in the red
boxes in the middle layer.

Constraint

Vision Policy / Organizational Project

Objective Procedure Constraint Constraint

Feature Quality Attribute

("functional requirement”) ("non-functional requirement”)

Function / Component / Capability

Definition “Requirements Engineering’

Not a phase
or stage!

The purpose determi-

nes the qualities and

features of a system :

“form follows function”.

© Steve Easterbrook

Need to identify
all the stakeholders,
not just the customer
and user

4

Requirements Engineering (RE)

IS a concerned witi
the
of a software-intensive
system, and the In which it
will be used.

Hence, RE acts as the bridge

between the

of users, customers, and other
affected by a

software system, and the

afforded by software-intensive
technologies.

DTU course (02264)
Requirements Engineering
Chapter 1: Introduction
36

Communication
is as important
as the analysis.
RE means
“organizing truth”.

Designers need to
know how and where
the system will be used

Requirements are
partly about what
is needed...
...and partly about
what is possible

Purpose of RE

Successful Requirements Engineering can contribute to a project success in
four different ways.

= Knowledge

= Doing requirements engineering creates (or compiles) knowledge necessary to
achieve the objective, including finding out what the objective is.

= Control

= Non-crosscutting features and quality attributes can be used as a unit of project
planning and control in a very straightforward way. Most ,agile” development
methods (e.g., XP, Scrum, FDD, and DSDM) critically rely on this RE usage.

= Contract

= |f the specification is written down in great detail and quality, it can be used easily
in contractual agreements between client and supplier.

= Consensus

= |f everybody agrees on an issue, there is no need for a specification. If people
disagree, even a written and signed contract can be taken to court. With trust,
knowledge is dispensable, only distrust requires knowledge.

DTU course (02264)
The System/Software Lifecycle e gt 1 roduction

38

Analysis Design

"o
SW

>

Operations igration & Deployment

Definition
Implementation

Maintenance
Renovations

Integration
Closedown &

In all phases, RE activities are necessary

DTU course (02264)

The Early Software Lifecycle in Detail " ehapter 1 ntroduction

39

Analysis (also: Requirements Analysis)
Understand, validate, and specify:
= the customer's goals and needs, and the system vision
= the system context, stakeholders, and domain architecture;
= the project's constraints and the system's requirements;
= the application domain, its entities, behaviors, and interactions.

Project Definition (also: Inception)
= Formulate a project vision, communicate it, and
= gain support from project sponsors.
= Conduct feasibility/viability studies for vital parts.
= Select and tailor a development method/proces
= set up a tool chain, and
= create initial versions of project guidelines.
= Draft an initial realization plan.

DTU course (02264)
Requirements Engineering
Chapter 1: Introduction
40

Prof. Dr. Harald Storrle

Software Engineering Section

Department of Informatics and Mathematical Modeling
Technical University of Denmark

Richard Petersens Plads

Building 322, Room 024

DK-2800 Kgs. Lyngby

HE

hst o@ nm dt u. dk
www. | mm dt u. dk/ ~hst o

