
Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6:
Requirements Quality Assurance

Chapter 6

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
2

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Agenda
Abstract
 In this chapter we first revisit some famous software failures and discuss how

they relate to Requirements Engineering.
 Next we go through the most common problems and pitfalls when working with

requirements. According to their main trigger, they are classified into people,
process, individual requirement, and requirement set issues.

 We introduce formal inspections and error density estimation as two „V&V“
techniques and conclude with remarks on the nature of specifications.

Contents
1. Notions of Quality
2. Design Inspection
3. People Issues
4. Process Issues
5. Individual Requirement Issues
6. Requirement Sets Issues
7. Error Density and Estimation

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.1:
Notions of Quality

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
4

Some problems with requirements

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
5

What is a good requirement?

 Any requirements must satisfy the following quality fundamental
criteria. It must be
 Correct (technically and legally possible)
 Complete (express a whole idea or statement)
 Clear (unambiguous and not confusing)
 Consistent (not in conflict with other requirements)
 Verifiable (it can be determined that the system meets the requirement)
 Traceable (uniquely identified and tracked)
 Feasible (can be accomplished within cost and schedule)
 Modular (can be changed without excessive impact)
 Design-independent (do not pose specific solutions on design)
 Modifiable (can be changed to adapt to new knowledge)
 Usable (during Operation/Maintenance)

 Many of these properties have been defined a long time ago (e.g.,

in the IEEE Standard 830), but they are still not common-place.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
6

Requirements Quality
vs. Quality Requirements
 Quality requirements refer to those requirements that are

concerned with the quality of the system under design.

 Requirements quality refers to the quality of the models,
documents, and other artifacts created as part of the RE process.

 The quality of the system under design is, obviously, affected by
the quality of the RE, in particular the quality of the requirements
as such.
 Without high quality requirements, it is impossible to create a high quality

system.
 However, the opposite is not true, unfortunately: high quality requirements

do not guarantee a high quality system built based on them.

 Either way, high quality of requirements is a desirable goal.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
7

Constructive vs. Destructive QA

 Traditionally, quality is seen as the absence of faults in delivered
products, so that high quality may be assured in two different
ways.
 By removing faulty parts after production (destructive QA); or
 by creating parts with high quality to begin with (constructive QA).

 In that sense, quality can be “tested into” a manufacturing
product.

This is clearly a wasteful
process: either, rejected
items are destroyed, or
they have to be repaired.
In the case of software,
they have to be program-
med from scratch again,
or debugged.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
8

Constructive vs. Destructive QA

 In manufacturing, however, the wastefulness of destructive QA is
mitigated by large series of identical products.
 In software development, all items and their requirements are inherently

different – otherwise, we’d just copy them.

 In some sense, destructive QA can be adopted for software, too.
 For instance, the Space Shuttle software was created twice, and was running

concurrently.
 Explorative prototyping can be seen as an attempt to emulate destructive QA

while avoiding some of the cost.
 Highly iterative processes also exhibit some characteristics of this approach,

but the only benefit of repetition is in learning of the underlying (mental) skill
of programming,

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
9

An Alternative View on Quality
 Since the 2000‘s, another view of quality has gained popularity, together

with light weight (“agile”) development methods, favoring small cycles &
process improvement over (“Abandon perfection for execution!”).
 This approach is often justified by reference to the manufacturing world, in

particular, the automotive industry for their appreciable levels of quality,
compared to the number of units produced.

 This comparison is deeply flawed since the error reduction strategies in the
manufacturing industry (and others) apply to production rather than
development.

 The development process in the automotive industry is highly restrictive, and
today uses almost entirely the model-based paradigm to software development.

 This is often believed to deliver more value quicker, at better quality.
 For a very small class of systems/projects, short-term improvements can be

realized, but after some time, the competitive edge disappears.
 “I have seen many such projects, and they all had their good reasons to go agile.

And it worked, for them! After a year or so, however, they hit a stone wall.”
Francis Bordeleau, Ericsson, MODELS Keynote 2014

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.2:
Design Inspection

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
11

Fagan-Style Inspections
 An Inspection is a structured procedure to find faults in artifacts.

 Inspections are mostly used for code and software architecture, but they may be
used in all areas of Software Engineering.

 In contrast to Reviews (which are much less formal and structured), there are very
strict and detailed instructions for inspections (e.g. concerning roles, process,
constraints).

 Inspections may be used at any time during the development and for any kind of
artifact.

 “Proper” Inspections...
 use goal-oriented checklists,
 define roles for members of the inspection team, and
 keep statistics on discovered faults and duration of inspection.

 Inspections target at substantial faults (“major defects”).

 A major defect is one that can cause significantly increased cost if it is not found
now.

 Minor defects like typos, deviations from conventions etc. can often be found in
cheaper and faster ways (i.e. spell checkers, style checkers/auto formatters).

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
12

Inspections are effective and efficient
 More than 60% of all defects can be found by informal inspections.

 Fagan, 1960

 More than 90% of al defects can be found by formal inspections.
 Mills et al., 1987

 Inspections are more effec tive and cheaper than tests.

 Selby & Basili, 1987
 Gilb & Graham, 1993

 Inspections have been identified as the root cause of substantial

increases in productivity (10…30%).
 14% (ATT Bell Labs);
 25% (Aetna Insurance Comp.);
 30% (Gilb: Sw. Metrics)
 op cit. Humphreys: Managing the Software Process, p.186

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
13

Manual Inspection vs. Automated Test

 Inspections can be applied to all kinds of artifacts, automated tests
require a running system.
 Inspections can be applied to all artifacts and any time during development,

in particular in the early stages, when defect removal is most valuable.

 Tests can only show the presence of errors, inspections usually
provide improvement suggestions, too.
 If a test finds an issue, something very similar to an inspection has to be

conducted to define and resolve the issue.

 Many tests can be automated, so that it is very cheap to repeat
them. Repeating an inspection is as expensive as the first round.
 If some QA activity is to be repeated many times, automated tests are

cheaper. if it is to be repeated only a few times, inspection is cheaper.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
14

Inspection Process

[Gilb, Graham: Software Inspection, Addison-Wesley, 1993] ©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
15

Inspection Roles

 There are four roles in the inspection process:
 Author/Reader: a person presenting the artifact and reading it to the

inspection team.
 Moderator: organizes the process, guides the discussion,
 Scribe: helps the moderator by taking care of the writing.
 Inspector: a person assessing the artifact, taking notes in advance.

 A natural person may take on several different roles.
 Only the author is an exception: s/he may only act as an inspector.

 Only for large/controversial inspections is a scribe necessary.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
16

Moderator Role

 Preparation
 Prepare and organize the review, select reviewers, set deadlines, distribute

artifacts, guidelines, and forms.
 Compiles the inspector comments before the inspection meeting, fills in

review entry checklist.

 Inspection Meeting
 During session moderator leads the discussion.
 If remarks are made up during inspection or if inspectors remarks are

modified, he (or the scribe) notes them down and this one is referred to in
the remarks section.

 Follow-Up work
 The moderator staples sheets together in right order, files and distributes

them to the participants. He enters the essential quantitative data into a
spreadsheet template.

 He keeps track of the rework assignments and signs off the whole process in
the end.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
17

Inspection Artifacts

 The most important steps
in the inspection are
supported by forms.
 A simple and effective way

of enforcing a process and
making sure all important
details are in place.

 The inspection guideline
explains the forms, their
fields, and how they are
supposed to be filled.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
18

Selection of Inspection Targets
 Inspections are cost-effective, but they are still effective. In order to

maximize the benefit from an inspection, the inspection artifact should
be selected carefully.

 Select an artifact, that is
 Central, i.e. one where mistakes and omissions will have a great impact;
 Improvable, i.e. one where you expect (or hope for) improvements; and
 Critical, i.e. one that realizes requirements of great importance.

 Prepare the artifact such that

 the artifact is accepted for inspection (rejection is very embarassing);
 there are no trivial complaints (typos, formatting); and
 The inspectors understand the what, how, and why of the inspection.

 Handing in sloppy, trivial, risk-free, or irrelevant artifacts is a bad idea.

 Make sure your inspectors understand what you want as developers want to get
out of the inspection and why.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
19

Inspection Caveats

 The artifact is being inspected, not the author!
 Be tough on faults, but gentle on people.

 Faults and remedies are not just discussed but written down,
followed up on, and eventually signed off.

 All team members are informed of all steps until the end.
 They are responsible for the outcome, all of them, collectively.

 It is essential that the inspectors prepare for the inspection.
 Read and understand the material (the artifact) at hand.
 Use guidelines and/or checklists to direct your attention, but don’t let them

keep you from using your common sense.
 The moderator compiles inspection remarks in advance to find “hot spots”

and guide discussion.

 Don’t start the inspection unless everybody is prepared.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.3:
People Issues

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
21

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Gold-Plating

 Plating water taps with gold does not alter their function in any
perceivable way, but does add to the cost considerably.
 From an engineering point of view, this is to be avoided as it is not cost-

effective.
 From a marketing point of view, it may be just what is needed, though.

 The Volere-Approach tries to achieve this using two separate

dimensions for the customer satisfaction and dissatisfaction.
 This is based on results from psychology (Motivator/Hygiene-Theory) that

seemingly opposites are often at the ends of two different scales altogether.
 Classical examples include happiness/unhappiness in relationships or jobs.
 For instance, great mutual love will cause happiness. Incompatibility of living

styles (responsibilities, fidelity, leisure activities, …) will cause unhappiness.
 Experiencing happiness and unhappiness at the same time is considered a

schizophrenic state.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
22

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Avoiding Gold-Plating
 Thus, prioritizing requirements

purely on the basis of satisfaction
scores is likely to suffer from gold
plating.

 There is no doubt that class A
requirements ought to be imple-
mented, and that class D require-
ments may be deferred: they are
gold plating requirements.

 But what about classes B and C?

 Class B requirements are so called
bread-and-butter-requirements:
features that must be in place, but
do not add to the attractiveness.

 So, the overall priority would be
 A-B-C-D for selling the project
 B-A-C-D for reduced overall cost

 where, typically, C and D never get
implemented.

low

high

high low

cu
st

om
er

 sa

tis
fa

ct
io

n

customer
dissatisfaction

C

D

A

B

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
23

Developer Gold-Plating

 Naturally, many developers are more interested in the technology
than in the solution.
 They may want to explore their language/framework/IDE rather than the

client's problem space.

 Therefore, solutions may pay undue attention to technical detail

rather than the big picture or customer value.

 Also, complex technical solutions are preferred over minor
changes in the business requirements and procedures making
these solutions obsolete.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
24

Silver Bullet Syndrome

 Developers and technical managers often believe in solutions that
resolve all issues magically.

 For instance, they might say something like this.
 “Using UML will improve our modeling”.
 "Using XP will speed up our development".
 „If only we get the requirements right, the project will be successful.“
 „By using Java, we have eliminated all portability issues.“
 „Making Eclipse our standard IDE will double our productivity“.

 But as we all (should) know „There is no Silver Bullet“ (F.P. Brooks
in „The mythical man-month“).
 Believing in it anyway is a sign of inadequate professional standards and lack

of knowledge.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.4:
Process Issues

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
26

Requirements Creep

 Also called „Scope Creep“ or „Feature Creep“.
 Over time, more and more features are included in the scope of the project

so that it never reaches the end.
 Empirical studies show that the yearly rate of changed and/or added

requirements („churn“) may be around 3-10%.
 Older studies suggest that by the deployment, 25% of all requirements have

changed (Capers Jones, 1994).

 Usually, this is a continuous process, where people change the
requirements process in an uncontrolled way.
 Sometimes, however, requirements are also collected in several places. When

a new collection is „discovered“, sudden changes to the requirements
specification may result.

 Generally, this is a process problem and may be overcome by a

change process.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
27

An Industrial Change Control Process

 This activity diagram describes the process of entering and
managing requirements over a prolonged period.

 It could equally well be used for handling bugs/issues.
 In order to allow for names, final states are marked with a small diagonal

slash instead of the proper notation.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
28

Analysis Paralysis

 Sometimes, requirements elicitation and/or elaboration drags on
and on, without the completion ever getting closer.
 Most of the tax software in Germany was created in the 1960s and 1970s in

Cobol and Assembler running on mainframe computers.
 The FISCUS project started 1991 with the intention of replacing all of this

software over the course of a decade. After 10 years without adequate
results, the project was reshaped (“fiscus GmbH”), and very nearly aborted in
2005.

 By then, the project had delivered “50,000 pages of documentation and 1.6
Million Lines of mostly useless code”. Depending on the source, estimates of
the cost vary between 250-900, 330-900, and 500 mio€, plus 4.5 bn€ in
unclaimed taxes.

 Common reasons for such phenomena include uncertainty and fear
of being made responsible personally.

 This is, ultimately, a problem of organizational culture.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
29

Sleeping Beauty
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

 Sometimes, there are important requirements that are truly
essential to the system, but considered uninteresting, obvious, or
self-evident, and thus may be forgotten.
 In developing the LMS case study in the RE course 2009, it went unnoticed by

25 students for two months that leases and returns will need to be recorded,
somehow.

 Obviously this is an essential requirement: without it, most of the core
functions will not work.

 Possible reasons are over-motivation, or over-excitement on behalf
of the development personnel that make “basic” requirements are
simply forgot.

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.5:
Individual Requirement Issues

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
31

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Over-Specification
 Some requirements may be too specific, defining a solution when

all they should do is asking for one.
 Assume the requirement were
 R1a: “The system must provide a tape drive unit”.
 But is it really a tape drive unit that is required? Probably, we really need

something to backup and/or archive our data.
 So, the requirements should have just been
 R1b: “The system must provide an archiving facility for data.”

 While being more abstract, R1b also implies additional aspects not

covered by R1a.
 For instance, the purpose (archiving or backup), suitable software, and so on.
 When thinking about these, we might also become aware that we need to be

specific about the amount of data we need to archive, the price, and so on.
 Realizing this, we may improve R1 even further.
 R1c: “The system must provide an archiving facility for data capable of

handling 15GB/month at a price of less than 100€/GB.”

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
32

Over-Specification

 Sometimes, it is hard to detect instances of over-specification.
 There may be a common and generally accepted way of achieving some goal

so that everybody confuses the goal with achieving it.
 Observe that „being commonly used“ does not imply quality.

R2a: Every reader is identified to the LMS by his CPR-number.
 This is a blatant violation of data protections laws, irrespective of the fact that

in Denmark everybody wants your CPR number all of the time and for
everything.

 The CPR number certainly identifies the reader, but it also does identify the
reader in many other ways and contexts, which is strictly unwanted.

R2b: Every reader is identified to the LMS by an unique identifier.

R3a: Every user is authenticated by login/password.
 But what about personal presence? What about young readers?
R3b: Every user is authenticated before he can do reader actions.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
33

Premature Commitment

 Model based specification has an inherent tendency towards
specifying solutions rather than problems.
 Many people with a technology background find it hard to step into the shoes

of people without this background and take on their perspective, temporarily.

 There are several methods we have considered that contribute to

address this premature commitment.
 Creating Personas helps to understand end-users.
 Talking about goals rather than features helps understanding stakeholders.
 Explicitly assigning layers to features, goals etc. highlights gaps and clutter.
 Social interaction (i.e., anything from acting out to formal inspections) adds

new perspectives.

 All of these, however, are not sufficient. We need to constantly
monitor our activities, and take a step back when necessary.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
34

Ambiguity

 Natural language has many advantages as a language for
specifying requirements.

 Possibly its most important benefit is its expressiveness: there is
no other language that is more expressive (for this purpose).

 However, this very power is also the greatest weakness of natural
language: natural languages are ambiguous, and prone to errors.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
35

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Detecting Ambiguity in Prose (1)

 There are many heuristic techniques that help finding ambiguity in
(written) text.
 They all imply considerable effort, but recall that putting in effort up front

pays later on.

H1: Prose Review

 Find people with different backgrounds (including software people, domain
specialists and user communities).

 Make sure, they’re independent (i.e. not the authors).
 Ask, what would happen to the structure and behavior of the system, if a

requirement were removed.
 Check references for clarity (e.g. “update the field”… which field? “the system

will then”… when?)
 State a requirement in two different ways (possibly, one of them formal) and

check whether people understand both statements as being identical.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
36

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Detecting Ambiguity in Prose (2)

H2: Effort Estimation Convergence
 Find a set of experienced, competent professionals.
 Pick a requirement or set of requirements.
 Ask the experts to estimate effort, cost, and duration of implementing the set

of requirements.
 If the estimates vary greatly, ambiguity might be the cause.

 Small to medium sized differences are likely.
 If only a few estimates differ, it might be individual variations.
 Estimates that differ by a factor of 10 or more and that have been estimated by several

people suggest widely different interpretations and, therefore, the presence of ambiguity.

H3: Memorization
 Ask different people to memorize a specific issue (e.g., a requirement) and

then later ask them to recall that issue verbatim.
 Parts that were not remembered well by the participants are likely to be

places where meaning is not clear and therefore a source of problem
statement ambiguity and/or vagueness.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
37

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Detecting Ambiguity in Prose (3)

H4: Shift emphasis
 Systematically shift emphasis of a requirement statement and check whether

the meaning changes.

 So we will get
“Mary had a little lamb…” it was hers, not someone else’s.
“Mary had a little lamb…” but she doesn’t have it anymore.
“Mary had a little lamb…” just one, not several.
“Mary had a little lamb…” it was very, very small.
“Mary had a little lamb…” neither a goat nor a chicken.
“Mary had a little lamb…” but John still has his.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
38

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Detecting Ambiguity in Prose (4)

H5: Use Synonyms
 Systematically replace keywords by synonyms and check whether the

meaning changes.
 Here are some synonyms for “had” and “lamb” from the dictionary:

Had  Held in possession, acquired, accepted, marked or characterized by, held in a
 position of disadvantage, tricked or fooled, beget, ate, ...
Lamb  A young sheep, a gentle person, a pet, a person easily cheated or deceived (esp.
 in trading securities), ...

 Thus we may get
“Mary had a little lamb.”  “Mary conned the trader.”

H6: Shift Context
 Add another phrase and see if the meaning of the first one changed.
 So we may get

“Mary had a little lamb.”  “Mary had a little lamb and John had a lot of pasta.”

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
39

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Acceptance tests reduce vagueness

 Even if a requirements is expressed with all due diligence, it may
still be unclear, just when a system satisfies this requirement. In
other words, the requirement is vague.

 The main measure against requirements vagueness are acceptance
criteria (“acceptance tests”) for each requirement.
 Acceptance criteria must be explicit and operational, that is, executable in a

repeatable and predictable way by man or machine.
 The most reliable way to achieve this is by writing test cases: they can be run

at virtually no extra cost as often as we like.
 However, writing them is expensive, and whenever the system changes, test

cases must be changed with it.
 The fastest and (initially) cheapest way to establish acceptance tests is

manual testing.
 However, this is inherently unreliable and soon becomes tedious (and thus

error-prone), and expensive.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
40

©
 2

00
9,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Informal Acceptance Tests
 Any acceptance test consists of three parts:

 the trigger or pre-condition, and possibly some parameters;
 an operational procedure or action to be tested
 the expected result, side effect, or post-condition.

R7: Librarians may remove or deactivate entries to the wish list.
T7.a: Trigger: -
 Action: 1) log in as reader, open item on wish list, log off
 2) log in as librarian, open item from wish list, delete, log off
 3) log in as reader, look for same item from wish list, log off
 Outcome: On second log in, the item shall not be found any more.
 Instead, a message shall appear indicating what happened.

 Very simple actions might testing for properties indirectly. This can
be cheap and effective.

R6: The application shall not contain absolute file paths.
T6.a: Trigger: -
 Action: 1) Deploy application as self-contained jar to two different machines
 running WinXP and Linux.
 2) Start the application, load an example, modify it, and save it again.
 Outcome: no errors

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
41

More Variants of Acceptance Tests

 Test cases may test several requirements collectively when
appropriate.

 R4a: Every Tuesday at 8.00, LMS creates a list containing all the media that have been
due in the preceding 7 days.

 R4b: For all items in this list, a reminder is issued to the respective readers.
 T4.1: Trigger: Tuesday, 8.00
 Action: Compare a manually created list with the system output.
 Result: List of all overdue media items, grouped by lender.

 Instead of trigger and outcome, pre- and postconditions may be

used, typically expressed in terms of a system state.
 R5: The fee for late returning is computed based on the lenders‘ status.
 T5.1: State: L has expired 2 days ago, R has status „Proust“, M is currently reserved.1

 Action: terminate L
 State: R.fees‘=R.fees+fee(„Proust“,2)²

©
 2

01
1,

 P
ro

f.
D

r.
H

. S
tö

rr
le

1 Lease L refers to medium M leased by reader R. ² x’ marks the next state of a variable x.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
42

Semi-Formal Acceptance Tests

Case Pre-condition or Variables User Actions or Parameters Post-condition or Results
T4.1 R [logged in]

M [lendable]
R searches the catalog for M,
R reserves M

M [reserved for R]

T4.2 R [logged in]
M [lendable, not lent]

R scans M,
R leases M

M [leased by R],
appropriate record written

T4.3 R [logged in]
M [leased by R]

PL scans M,
PL returns M

L(R,M) [terminated],
appropriate record written

T4.4 R [logged in],
M [leased by R, not reserved],
L(R, M) [not expired]

R selects M from his account,
R prolongs M

L(R,M) [prolonged]

 Define abbreviations for recurring objects or
variables.
 M : Medium
 R : Reader
 L(R, M) : Lease of M by R

 Postfixing o with [α] says that o is in state α.

 M [leased] : M is leased

 Use dot notation to specify individual fields or
properties of objects.
 M.isbn : the isb number of M

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

 Priming denotes the next state of a
variable.
 R.fees‘ = R.fees + x

 Refer to other acceptance test cases when

possible.
 like T2 : like the same column of row T2
 call T2 : invocation of case T2 (conjunction

of pre/post-conditions, sequencing of
actions).

 Use comma for conjunction and sequential
composition.

Adding formality supports the transition to coded test cases.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
43

Limitations of Acceptance Tests
 Besides pure functionality (i.e. features), acceptance tests may also be

used to check many quality attributes such as performance or reliability.
 Other properties are not so easily tested, e.g.:

 end-to-end performance, stress resistance/resilience;
 maintainability, code quality;
 input validation, usability, accessibility.

 For these kinds of requirements, alternative test methods are needed:
 Specialized testing tools and manual test scripts are expensive, and often require

large effort to get started.
 Web applications and RIAs may often be tested by specialized Browser-plugins,

but these are usually platform dependent, i.e. not easily portable.
 Adherence to styleguides (e.g., concerning GUI, Coding) can be checked by

reviews with appropriate checklists, or specialized tools.
 Usability may be tested by dedicated usability tests (very expensive), or expert

reviews (not quite as reliable).

©
 2

01
1,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.6:
Requirement Set Issues

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
45

Feature Interaction

 A Feature Interaction occurs, if two features that are fine
individually lead to unwanted, unspecified, or nondeterministic
behavior, when used together.

 This problem has first been noticed in the telecom domain, but
occurs almost naturally from a certain level of system complexity
on.

 Theoretically, if features are specified formally, feature interaction
can be detected by formal space exploration techniques such as
Model Checking.

 Practically, however, feature interaction occurs in complex
systems, that is, they are usually neither formally specified, not is
the state space small enough to allow exploration of a significant
part of it.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
46

Feature Interaction CD/CLIP
 A Feature Interaction occurs, if two features together lead to

unwanted behavior, although they are fine individually.
 This problem has first been noticed in the telecom domain, but occurs in

many places.
 Consider these two common telephone network features.

 Anders‘ number will not be shown to Bjarne, but if Bjarne forwards to Cecilie,
will Cecilie see Anders‘ number or not?

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

CLIP [ON], CD  Cecilie CLIP [OFF]

Anders Bjarne Cecilie

CD (Call deflection):
unanswered incoming calls are forwarded to another
line which behaves just as the one originally called.
Also called call forwarding.

CLIP (Calling Line Identification Presentation):
the caller’s number is presented to the callee.
Also called call screening.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
47

Feature Interaction CD/CW

 Now consider a more complicated case, where CD and Call Waiting
are activated at the same phone.

 Anders calls Bjarne who picks up the phone. While they are talking, Amalie

calls Bjarne.
 Should Bjarne be notifiedher or Amalies call be forwarded to Cecilie?

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

CW [ON],
CD  Cecilie

Anders Bjarne Cecilie

Amalie

CW (Call Waiting):
If the line is busy and a new call arrives, the callee is
notified and decides which call to continue.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
48

More FI examples in other domains

 LMS
 Suppose the chief librarina decreases the maximum number of leased media

for your account type from 15 to 10 while you have leased 12 books.
 Do you have to pay an overdraft fee? Will your account be blocked?

 Automotive
 Suppose your car has automatic gear shift (e.g., US market, big engines) with

auto-brake release (“Anfahr-Assistent”) and air conditioning.
 Suppose further you are standing in a queue on a slope. Switching on the air

conditioning increases engine load (rotations), which then triggers auto-brake
release, and your car rolls backwards, down the slope.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
49

Tracing

 During requirements elicitation and elaboration, the focus is on
getting the right requirements and getting them right.
 Relationships between the requirements are not so important, although e.g.

relationships between goals and features/quality attributes may be used to
justify and derive requirements.

 When implementing and maintaining the requirements, however,
the relationships are predominant as they capture knowledge
needed when changing requirements.

 Here are some dependency types and the activities they support
 depends on, supports  Removal/Change
 Rationale, conflicts/obstructs Prioritization/Planning
 Part of  Refinement / Elaboration

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
50

Cross-cutting Requirements

 Requirements that affect many parts of the system, the software
architecture, or just the elaboration/implementation of other features
are called cross-cutting requirements.
 Therefore, cross-cutting requirements are difficult to add or change.

 Most quality attributes are cross-cutting, e.g. performance or usability.

 But there are also cross-cutting features, e.g. Undo/Redo, or Auto-Save vs.
Response time.

 Consider a personal backup application that saves and restores files
from a PC to some medium.
 Typical features are automatic jobs at predefined times, encryption, validation,

restoring/inspection of backups.
 Typical qualities are reliability, ease of use, and speed.
 However, the requirement “During backup and requirement, the user can keep

working with the files /drives that are being backed up” is obviously very
important for many users, but it is difficult to add once the system has been
designed/created.

 ©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 6.7:
Error Density and Estimation

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
52

Error Density

 We can never know how many faults there are in an artefact we
have not yet studied. In fact, even if we have thoroughly reviewed
an artifact or tested some systems, we cannot be sure about the
number of errors it contains.

 However, we can estimate the number of residual errors in a
systematic way, based on stochastic sampling.

 This will help us assess the quality of a system with a given degree
of certainty.

 The base argument goes like this: if k out of n items are faulty,
then there will be x times as many faults in x times as many items.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
53

Size of area by Monte-Carlo-Technique

 You can easily calculate the
area of regular shapes like
rectangles, but can you do it
for irregular shapes, too?

 The Monte-Carlo-Technique
can.
 Place an arbitrary area of

known size around the shape.
 Drop an arbitrary number of

points in this area.
 Select an arbitrary area of

known size inside the shape,
and count the number of points
in it.

 Compute the ratio of points in
the various areas and compare
it to the ratio of the known
sizes.

= pred
pgrey

ared
agrey

pred
pgrey ared agrey

where
ared = area of red rectangle
agrey = area of greyshape
pred = number of points in red rectangle
pgrey = number of points in grey area

=

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
54

Monte-Carlo estimation of residual
faults
 We can apply this technique

to estimate fault density.
 Insert a known number of

random bugs (“seeding” or
“injection”).

 Test and record the faults found.
 Remove all found faults.

 Example

 Suppose there we seed 10 faults.
 During test, we find 120 faults, 6

of which were seeded.
 We estimate that there is a total

of 10*120/6 = 200 faults.
 We remove 120+10-6 = 124

faults.
 The software is shipped with 76

remaining faults.

= detected faults
detected seeded faults

total faults in system
seeded faults

known number
of seeded bugs

unknown number
of faults in program

fault

=
detected faults

detected seeded faults
total faults in system seeded faults

total faults in system
detected faults

seeded faults
 detected seeded faults

faults delivered

–
–
+

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
55

Limits to the Monte-Carlo-Approach

 Enchanting as it may seem, the Monte-Carlo-approach does have
its limits.
 Faults have different severity: 100 minor bugs are less important than one

show-stopper.
 Faults may hide other faults so that removing faults increases their number,

and sometimes fixing a mistake introduces a new one.
 Some faults are easily found (e.g. the classical one-off-mistake), while some

are difficult to track down.
 Some bugs occur only rarely or in special situations (e.g. race conditions).

 Still, there is no better and more proven way to estimate residual

errors.

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
56

Error Estimation by Finite Sampling

 Assume that two inspectors I1
and I2 find n1 and n2 major
issues when preparing for an
inspection. To some degree,
their findings overlap, that is,
the number of issues they
both find n1,2>0.

 Then we can estimate the
true number N of major issues
based on the assumptions
that
 the two inspectors are

stochastically independent, and
 all errors are found with the

same probabilities p1 and p2 by
inspectors I1 and I2.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

n1,2: number of major issues
 found by both inspectors

n1: number of major
 issues found by I1

n2: number of major
 issues found by I2

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
57

Error Estimation by Finite Sampling

 Under these assumptions, each of the
n2 errors found by I2 will be
independently found by I1 with
probability p1.

 Because I1 found n1,2 of those n2 errors,
it is reasonable to estimate
 for p1 with

 On the other hand, since I1 found n1 of

the N errors, it is also justified to
assume

 and thus

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

N = n1*n2
n1,2

n1,2
n2

n1
N =

p1 = n1,2
n2

^

p1 ^

p1 = n1
N

^

⇔

n1,2: number of major issues
 found by both inspectors

n1: number of major
 issues found by I1

n2: number of major
 issues found by I2

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
58

Problems & Solutions

 The two inspectors find no overlap.
 We assume there is one major issue they both found and estimate N=n1*n2.

 There are three inspectors but only two of them overlap (I1 and I2,
say).
 As a simple heuristic, assume I2 and I3 (two non-overlapping inspections) to be

just one inspection and estimate
 .

 There are three inspectors and they all overlap.
 The proper solution is complicated. As a simple heuristic, apply the method to

all pairs and take the maximum of the estimates.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

N =
n1*(n2+n3)

n1,(2+3)

DTU course (02264)
Requirements Engineering

Chapter 6: Requirements QA
59

Applications of error injection

 The error injection technique can be used in multiple ways in the
area of requirements engineering quality assurance.
 Inject errors to any of the artifacts created and keep track of where they were

injected. This can be applied for various error levels.
 For instance, for personas, we could

 add a mistake to an existing persona or persona set;
 remove an important aspect from a persona;
 remove a necessary persona or add a inappropriate/superfluous/erroneous persona.

 Comparing the number of seeded errors and found errors as
shown above, we can estimate
 the number of residual errors in the artifact, and thus
 the thoroughness of the inspection.

 We could also trace effective and ineffective guidelines, and by
reducing their number possibly reduce the overall effort.

	Chapter 6:�Requirements Quality Assurance
	Agenda
	Chapter 6.1:�Notions of Quality
	Some problems with requirements
	What is a good requirement?
	Requirements Quality�vs. Quality Requirements
	Constructive vs. Destructive QA
	Constructive vs. Destructive QA
	An Alternative View on Quality
	Chapter 6.2:�Design Inspection
	Fagan-Style Inspections
	Inspections are effective and efficient
	Manual Inspection vs. Automated Test
	Inspection Process
	Inspection Roles
	Moderator Role
	Inspection Artifacts
	Selection of Inspection Targets
	Inspection Caveats
	Chapter 6.3:�People Issues
	Gold-Plating
	Avoiding Gold-Plating
	Developer Gold-Plating
	Silver Bullet Syndrome
	Chapter 6.4:�Process Issues
	Requirements Creep
	An Industrial Change Control Process
	Analysis Paralysis
	Sleeping Beauty
	Chapter 6.5:�Individual Requirement Issues
	Over-Specification
	Over-Specification
	Premature Commitment
	Ambiguity
	Detecting Ambiguity in Prose (1)
	Detecting Ambiguity in Prose (2)
	Detecting Ambiguity in Prose (3)
	Detecting Ambiguity in Prose (4)
	Acceptance tests reduce vagueness
	Informal Acceptance Tests
	More Variants of Acceptance Tests
	Semi-Formal Acceptance Tests
	Limitations of Acceptance Tests
	Chapter 6.6:�Requirement Set Issues
	Feature Interaction
	Feature Interaction CD/CLIP
	Feature Interaction CD/CW
	More FI examples in other domains
	Tracing
	Cross-cutting Requirements
	Chapter 6.7:�Error Density and Estimation
	Error Density
	Size of area by Monte-Carlo-Technique
	Monte-Carlo estimation of residual faults
	Limits to the Monte-Carlo-Approach
	Error Estimation by Finite Sampling
	Error Estimation by Finite Sampling
	Problems & Solutions
	Applications of error injection

