Chapter 1 O

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 10:
Information Modeling

DTU course 02264

H. Storrle

P WN

© 2010, Prof. Dr.

DTU course (02264)
Requirements Engineering

Age n d a Chapter 10: Information Modeling

2

Abstract

= |In this chapter we will specify information items, their
relationships, and their attributes and behaviors (“object
lifecycles”) using UML class, object and state machine models.

= |tis important not to confuse class models and information
models. Even if they use just the same notation, they refer to
completely different things: domain concepts and relationships on
the one hand, and implementation elements on the other.

Contents

1. Elements of Information Models
Creating Information Models
Refactoring Information Models
Splitting Large Information Models

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 8.1:
Elements of Information Models

DTU course 02264

Information Model

= An Information Model describes the information items of a
domain, including their attributes and relationships, in a purely
logical, domain-oriented way.

= The information model is part of the requirements and elaborates the
problem space, not the solution space.

= |n a UML-setting, we use analysis-level class models (ACM) to
represent the information items and their relationships.

= [Information Models do not just contain static structure, however:
they contain all there is to be known from a domain point of view
on information items, individually and collectively.

= That includes their attributes and states, but also their operations and state
transitions, and possibly their interactions. Therefore, an information model
may contain class diagrams as well as state machines, and interaction
diagrams.

Information Items

= Sometimes, we have to integrate widely contradicting sources of
information for creating class models.

= |n such situations, it might be a good strategy to create object
models first and only later abstract them to class models.

" |t seems that it is much easier for people to agree on given individual cases,
particularly when they are real cases.

= When we have collected many such individual scenarios, we may
abstract recurring elements to the type level and improve the
resulting class diagram by refactoring (see below).

Analysis vs. Design Level Models

= |tis important not to confuse analysis and design (or implementation)
level models.
= Even if they use just the same notation, they refer to completely different things,

namely domain concepts and relationships on the one hand, and design (or
implementation) elements on the other.

= Analysis-level Models describe the problem space, not the solution
space. Their purpose is understanding, not construction.
= Therefore, they do not include design- or implementation-related information.

= This includes technological details such as programming-language specific
features or constraints.

= Similarly, whether a given model will lend itself to an efficient implementation (or,
in fact, any implementation) is irrelevant.

= Addressing design and implementation issues would prematurely
constrain the set of possible solutions, and thus obstruct the search for
the optimal solution.

Concepts of A-level class models

Pa/ckage Association
Z L
EJ Flights l A /
2 /
Flights /
/
Card /
Class = = - 1 _|owner 1
number /
validUntil : /
CediCod | | [Posenger -

Operation -

7/

/7
Inheritance

’b

’D

- ~
s

controlNumber |cc

4 disjoint let
P {disjoint, complete}

AccessCard
securityLevel

MilesCard 0.1

status mc

company

ra
£
{ mc.number = ma.number }Br'

creditMiles()
consumeMiles()

7

| cancelMiles()
o" g
l, /
l’ /
’ ma

MilesAccount

number
flightMiles
statusMiles
status

r Property
7/

7/

Constraint
(e.g., OCL or English)

Concepts of A-level class models

= Many basic concepts of class models can be used on any level.

= E.g. Class, Feature, Multiplicity, Type, Parameter, InstanceSpecification
(“Object”)

= Other concepts are restricted to specific levels, or sets of levels
= ACM: AssociationClass, GeneralizationSet, reading direction
= A/DCM: Association,
= DCM: Navigation, Realization/Substitution, keys
= D/ICM: Interface, Uses/Realizes, visibilities, TemplateClass

= Some concepts even have different meanings and constraints at
different levels.

= Forinstance, there may be a difference between single and multiple
Generalization (,,Inheritance®) at the D- and I-levels, but not at the A-level.

= Similarly, a Package at the D/I-levels refers to a system element, whereas a
package at the A-level is only a grouping mechanism for model elements.

Scenarios

= At times, class models are too complex to create or use

= Forinstance, the model grew too large to comprehend, or the audience lacks
the required skill or experience.

= In such cases, it might be easier to work with specific examples
rather than the generic description.

= The UML provides Object Models (OM) for this purpose. Technically, they are
a restricted form of class diagrams containing only objects of classes, their
slots and links.

= OMs present a certain state of the information model, e.g.
= a pre/post-condition of an acceptance test;
= the formalization a business rule; or

= an example of the capabilities and constraints of an information model.

Concepts of Object Models

= Object Models contain only the following concepts

= |nstanceSpecification (more commonly known as Object)

- —+Hink

= Slot

= Literal

InstanceSpecification InstallnceVaIue
¢42 : Connection t42 : Travel raw4711 : TravelHandling
conn —— travel)

from="MUC" € I dep=2003-09-23 < numOfBag=2 - =l = = S|ot with
to="AKL" I arr=2003-09-24 e .
dep=07:45 ink |dass="economy" ValueSpecification
arr=06:30 (+24)
status="planned"

= Due to the paucity of the notation, there is no difference between
different levels of abstraction.

Object Life Cycle

= A scenario may be considered as a snapshot of a trace, i.e., a
sequence of scenarios.

= |f there are several such traces, they can be abstracted into a more
compact description using a state machine: the , Object Lifecycle”.

= The object life cycle represents the states and transitions of all
instances of a class:
= the triggers correspond to the classes’ operations;

" the states are usually represented as a single attribute or small subset of all
the attributes of the class.

H. Storrle

© 2010, Prof. Dr.

Concepts of A-level StateMachines

State machines model behavior

" using states interconnected ...

= with transitions triggered ...

" by event occurrences.

initial Pseudostate

trigger $CaIIEvent)

DTU course (02264)
Requirements Engineering
Chapter 10: Information Modeling

12

C S —-‘rrfgger [guard]/ eﬁ’ec;C A j

J

gu,ard (Constraint)

\
oking ! e
\l change() [kind <> #Economy]
' ay() startOff()
Gieservecg I Ll {Buukedj >@tartedO@
cdncell) : cancel() handle() /
passenger.creditMiles(self)
/ |
" /
/ i 7
/ ! / \
7 — 7 —
simple State Transition effect (CallAction) FinalState

Overall Structure of Information Models

= In MagicDraw, Object Behavior Models may be
modeled as a part of a Class, establishing their
connection directly.

If not placed there, a hyperlink ought to be
established.

In other tools, e.g. ADONIS, such a connection must
be established explicitly by a hyperlink, whose
consistency may be validated automatically.

Observe that the placement will have direct
influence on the version control regime and the
work organisation.

For instance, when placing a StateMachine under a
Class, they must be versioned together, which
means they must be created together.

So, team specializations for structural vs.
behavioral modeling are not possible any more.
Instead, team specialization must follow early
structural break downs, which, when changed later
on, are likely to give rise to dangerous ripple
effects.

= Either way, the name of the Class and lifecycle
(and possibly the package containing all the
models, diagrams, and elements belonging to it)
should coincide.

An object lifecycle may be illustrated by some scenarios, each of

which will consist of a set of traces and some states.

Traces emphasize the triggers and effects occurring during a run.

States emphasize the attribute values at some momentin time,
usually including more than those attributes that define the states
of the object lifecycle.

| Information Model

e |

—

=l

Domaln Overview

—EE Types
—Sﬁ Scenarios

| <ABC> Interaction
| <XYZ> State

—| || Domain <XYZ>

Taxonomy

_% Aggregation Hierarchy
%':"_ Class Overview
EE <Area> Details

—iEl_ <ABC> Scenario

—? <Class>
=

<Class> Lifecycle

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 8.2:
Creating Information Models

DTU course 02264

Creating Information Models

= Information models capture static structure, that is, entities, their
attributes and relationships.
= |n Database design, this type of model is known as logical design.
= The Abbott-Technique proposes to go through interview notes, and pick
nouns to become classes, attributes, and associations, while verbs become
operations.
= Clearly, this only works only under very restricted conditions:
= for small scale systems,
= only for an initial draft, and
= domain novices with severely restricted abstraction capacity.
In other words: don’t try this at work.

" On the other hand, it is useful as a teaching device, and we have to

start at some place.

= So we go back once more to the usage scenarios of the Taarbaek Library and
extract our first information model from it.

Creating the first classes and objects

= [...] adding [the new librarian] to the

. . , _ Librarian Group Medium
right group, and equipping him with

the appropriate rights to perform the Catalog Section Right

tasks he will be doing. Later on,

Bjarne will enter his personal data Biarne Childrens’ Classics of
and upload a photo to complete his e sclediion |f| el Cneme
account.
= [...] taking [media] out of the catalog
when they have been stolen :
, y ’ Right Catalog
misplaced, or badly damaged.
= [..] when people swap media from
the -Chlld-rens Selection m(?V|e | Group Medium
section with those from the libraries
well-renowned and popular "Classics
of Erotic Cinema" section. Librarian Section
A A A LS
1 ,// \\\
1 2 S
Bi Childrens’ Classics of
bjarne Selection Erotic Cinema

H. Storrle

© 2009, Prof. Dr.

Creating Classes and Actions

The first reader [...] has just one book.
Anders logs in, takes the book, points
its ID badge to the work place’s scanner
and the system recognizes that the
book has been checked in again, while
Anders puts it on the "returned books"
shelf just behind him. When he turns
round again, the system still displays
the books' main data (title, author, id),
plus an indication that the book was
handed in late.

It also displays the reader's account
indicating the list of books she has lent
right now, when they are due, and the
amount of fees accumulated.

[...] the slip stating that he has received
the money and that her balance is now
positive.

DTU course (02264)

Requirements Engineering
Chapter 10: Information Modeling
17

Reader — Account
- due dates [*
log in() balance "l
hand in(Book) -
log in()
display()
Lease T
due date
lent | *
Book
] hand in(Book) : Fee
Receipt display()
amount
new balance ‘
account
print() MainData
title
author
id

Completing Actions by Lifecycle

By experience we know, that many
operations also have an inverse
operation, adding more actions to
our class model.
= |n fact, many operations come as
CRUD-groups (Create, Read, Update,

Delete), representing a minimum
lifecycle.

= Creators and destructors are
inherent in OO languages, so we may
ignore them here.

create | : I
Object delete @
Uu pdate

Reader l—

log in()

log out()

hand in(Book)
hand out(Book)

Account

due dates [*]
balance

log in()
log out()

display()

Lease

due date

Receipt

amount
new balance
account

print()

lent | *

Book

hand in(Book) : Fee
hand out(Book): ()

display()

1

MainData

title
author
id

Extracting Information Model Fragments

from Features

= Another way of starting with models is to start at textual
descriptions of features and qualities of a system and extract a
fragment of a UML model directly from them.
= |f a certain information item, property, or relationship is mentioned, this can
be captured as part of a class model.
= Likewise, mentioning a state or transition may be incorporated into a state
machine.
= Similarly, a function that is being mentioned may be turned into an operation
of a class, a use case, or an action in an activity.

= There are several benefits to this approach.
" |tis often straightforward and fast to derive these fragments.

= |t ties the fragment directly to the requirements, thus allowing tracing and
justification of the model.

" |tis easy to explain each individual fragment to a person without UML
expertise, allowing to justify (parts of) the model.

Example: Extraction from MLC1

= MLC1l: Media follow a
defined lifecycle from
suggested, via acquired,
incorporated, to removed.

= The availability of
incorporated media may be

restricted, e.g. in terms of age
restrictions, access restrictions

suggested

acquired

incorporated

removed

for valuable copies and highly
demanded media and so on.

= The status of incorporated
media is regularly updated to
reflect damages and lending
status.

= Creating new media requires
information such as title,
author, type, publication date,
etc.

availability: Availability

AVvailability

minimun age

H. Storrle

© 2010, Prof. Dr.

Example: Extraction from MLC11

= MLC11: The corpus may
contain several copies to a
medium.

= The catalog shall provide
readers with access to media
rather than individual copies.

= Readers shall be able to find
out, whether there is a copy of
a given medium available for
lending.

DTU course (02264)

Requirements Engineering
Chapter 10: Information Modeling
21

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 8.3:
Refactoring Information Models

DTU course 02264

Restructuring Large Information Models

= After working on an information model for a while, it may get
large and complex, presenting more detail than can easily be
handled. Such a model does not serve its purpose any more:
= |t does not provide the overview that we need.
= |t will be difficult to create a clear layout easily.
= |t does not easily fit into a printed report or a slide presentation.

= Complexity makes it difficult to detect errors, so we may run into quality
issues later.

= Thus, we may have to spend some effort on consolidating the
information model before we move on. There are several
maneuvers we may apply to this end:
= Apply the model structure template
= Refactor class models
= Split Aspects, Tiles, and Abstraction Levels
= Split the over all model into domain modules

Refactoring class models

DTU course (02264)

Requirements Engineering
Chapter 10: Information Modeling

24

* There are several possible ways to refactor overlapping sets of
features.

Move common features to... ...in order to...

highlight the commonality of the domain concepts

super class

interface

associated class

highlight behavioral similarities or expected technical

differences (D/I-level only!)

create a reusable/domain class from the factored out

set of features

X:t

Xt

Common

x:t

4&

Common

x:t

Note:

Some programming languages
do not allow static elements in
interfaces (e.g., Java).

© 2009, Prof. Dr. H. Storrle

<<interface>>
Common
Xt
0 n
<<realizes>» | 1 <<realizes>>
1 1
A B

Feature or Association?

= In UML, association-ends are
represented as properties.

= To be precise, the structures on the
right are each semantically
identical in the sense that they give
rise to the same set of object
models.

= This leaves us with a choice —
how do we know when to use
which?

= As a rule of thumb, use
Associations for more important
properties: their visual prominence
sets them apart.

o

by

ha

a:A

b:B

A

b : B {composite}

© 2009, Prof. Dr. H. Storrle

Refactoring class models (Example)

= Assume we have the
following class model.

= |tis notvery clear, and
contains redundancies.

= We may refactor it
following some simple
steps.

DTU course (02264)
Requirements Engineering
Chapter 10: Information Modeling

26

m Initial State

/

Reader Librarian
name; String login: Strimg
id: int password: Sttring
street: String name; String
City: 3tring street; String
Zip code: String City: 3tring
leased media: Medium [0..%] id: int
login: String solicited leases: Medium®Reader [0..%]
email; String Zip code: String

password: String

reader type: 5tring
status: String
preferences: Strimg [0..*]
photo: IPG

email; String

save(): void

save(): void

H. Storrle

© 2009, Prof. Dr.

Factor out Redundancies

DTU course (02264)
Requirements Engineering
Chapter 10: Information Modeling

27

extract datatype

<<Datatypes>
Address

street: String
zZip code: String
City: String
email: String

What to do

1) Create a datatype with
common properties

2) Delete properties from
original classes

3) add new prioperty with
type of datatype

Benefit:

- new reusable datatype
- smaller dormain classes

extract common component

Reader Librarian
leased media solicited leases
0.* 0.*
Medium
What to do

1) Create a common class

2) Delete properties from
original classes that refer
to class

3) add mew associations between
originial classes and commaon
class

Benefit:

- new domain class

- connection between existing
domain classes

factroing out common properties

into superclass

Person
£ N
Reader Librarian
What to do

1) Create a common superclass
2) Delete factored out
properties from original classes
3) add new generalizations from all
originial classes to super class

Benefit:
- new reusable domain class
- smaller domain classes

- connection between existing
domain classes

© 2009, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

St ru Ctu re a nd E I a bo rate Chapter 10: Information Modeling

28

extract domain component elaborate enumerations
and add enumeration
Library User Account Person S<Enumeration:>
Reader Type
<<Enumerationss ;_EII-:EF
Acco i
unt Type student
librarian luxury
reader
foreign reader
What to do What to do

1) Create a new dormain class
2} Move properties from original class
3) add association between classes

1) Create a new enumeration
2) replace tpe String with new

4) in order to maintain specific information, enumeration
add type property with enumeration type Bencfi:
- more specific typed

Benefit:
- new reusable domain class
- smaller domain dasses
- connection between existing
domain classes

- more information

© 2009, Prof. Dr. H. Storrle

Refactoring class models (Example)

DTU course (02264)
Requirements Engineering

Chapter 10: Information Modeling

29

m Final State

/

ZEFnumerationss
Reader Type

regular
child
student
luxury

<<Datatypes>
Address

street: String
Zip code: String
city: String
email: String

Library User Account Person
login: String name: String
password: String id: imt
account type: Account Type photo: IPG
address: Address
AN £
Reader Librarian

reader kind: Reader Type

preferences: String [0..%]

save(): void save(): void

leased media solicited leases
0. 0.*
Medium

“CFnumerationss
Account Type

librarian
reader
foreign reader

Quality Criteria for Information Models

= After the consolidation effort, the improved information model
ought to possess following qualities.
= Focus

= afocus on the specific entities and their properties and relationship for the
particular domain.

= Balance / Right Size

" |n terms of size, we typically want to achieve a good balance between the
class number (<104#), size (<10 features), and density of associations (<10).

= Correctness

= There is a set of detailed correctness criteria for the elements of information
models, see the review criteria in Document QA3 (in version 3.3, Appendices
l,J, M, and N, and sections A and E of Appendix L apply).

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 8.4:
Splitting Large Information Models

DTU course 02264

Extract Aspects and Abstraction Levels

= After refactoring a class model, there is often the opportunity to
extract specific aspects into separate diagrams.

" Frequently used aspects include
= types and enumerations, and

= taxonomies and aggregation hierarchies.

= [tis usually sufficient to distinguish between one outline and one
detailed view.

" |n the abstract view, all features (properties and operations) are hidden; most
tools allow this as a standard filter. For instance, in MagicDraw, select all
diagram elements, and use ?? from the context menu.

Splitting Models into Aspects

= Another contribution to the same goal is to concentrate individual
aspects in special models (and diagrams).

= Typical examples are generalization or composition hierarchies.

= While tiles are notationaly symmetric, model aspects are
asymmetric, and only a few of them have practical value.

= Typically, aspects can only complement and support other structuring means.

= Tree structured views like taxonomies or composition trees are
particularly easy to understand.

= For instance, creating a taxonomy of a large and confusing class model or
indeed a system written in an OO language is almost inevitable as a start.

Taxonomy

= A taxonomy groups elements Taxunumy/

into a specialization tree of
classes.

= The concept has been
developed in biology as a tool to
help grouping living beings into
classes (“taxa”, sing. taxon).

= A taxonomy contains only

classes without features and
Generalizations.

= |tis always presentedin a tree
layout.

Person

PaN

Librarian

Reader

Taxonomy /

Person

AF.\.

Reader

Librarian

Aggregation Hierarchy

= An Aggregation Hierarchy [Yor) Aggregation Hierarchy /
composes wholes from Parts.

= Aggregation hierarchies are Library

very common in mechanical ’
. . Media Dispenser

engineering, where they are
also known as part-whole- or Catalog
composition hierarchies. K 3

= An Aggregation hierarchy Header
contains only classes without Medium
features and composition —?
associations. Title

= Itis always presentedin a tree Corpus
layout (similar to a taxonomy). _L

Copy

Split large model in to tiles

= Even after refactoring and extracting aspects and abstraction levels, the
model and/or the diagrams may still be to large.

= |n order to reduce the model to a size easily handled, we may have to
split the diagram into several ones focusing on different topics.
= Select a small number of very important classes, each of which can be moved to a
different “tile” together with immediately adjacent classes.
= Tiles should correspond to elements of the domain architecture.

= Each class should be defined on exactly one tile, but might have to be referred to
from several other tiles — those references should be distinguished visually.

= This tiling can be deepened further by creating separate packages for
each tile.
= This also allows to split up previously extracted aspects into tile-specific subsets,

which should be included in the tile’s package.
= This should only be done when these aspects themselves are too large to be kept together.

= Aspects that cut across tiles should be placed one level above the tiles in the
package structure.

Splitting up class models

m Overal Information Model/

Medium

<<Enumerations:
N Reader Type
Library User Account Person
lar
login: String name: String :f:j
password: String id: int student
account type: Account Type photo: IPG Iweury
address: Address
<<Datatype>>
Address
Librarian sFreet: String
zip code: String
reader kind: Reader Type city: String
preferences: String [0..*] email: String
save(): void save(): void Z<Enumerafonss
leased media solicited leases Account Type
librarian
* *
(o 15 reader

foreign reader

DTU course (02264)

Requirements Engineering
Chapter 10: Information Modeling

37

r E a: Types /
<<Datatypes>
Address Reader Type Account Type
street: String regular librarian
zip code: String child reader
city: String student foreign reader
email: String luxury
m: Overview /
| Library User Account }’—‘ Person |

| Reader

| | Librarian

leased media

0.

solicited leases

0.8

Medium

m: Details /

Library User Account

login: 5tring
password: String

Person

account type: Account Type

name: String
id: int
photo: JPG

address: Address

T T

Reader Librarian
reader kind: Reader Type
preferences: String [0..%]
save(): void save(): void
leased media solicited leases
0.* 0.*
Medium

Restructuring Large Information Models

= Sometimes, information models become rather large over time.

= We could create larger and larger print outs to stick up at our office’s wall to
handle the complexity, but that is clearly no sustainable solution.

= A more methodical approach for splitting up information models is
needed. There are basically four ways of doing this.

1. Split one large model into several independent modules using UML packages
and import-relationships between them.

2. Split one diagram into several partially overlapping diagrams that collectively
cover the whole model.

3. Move isolated information model fragments like individual concerns, or
enumerations and data types to separate diagrams (“tiles”).

4. Concentrate some aspects like generalization or composition in specialized
diagrams.

= Each of these approaches has their own benefits and drawbacks, and
they should be combined where appropriate.

= Tosome degree, these techniques also apply to other model types.

Splitting Information Models into Tiles

= A lightweight way of splitting up large information models is to
simply use a set of overlapping diagrams to present separate
portions of the class model individually (,,tiles”).

All the tiles are equal in generality, expressive means used, and importance.

= Of course, this will not work well for large numbers of tiles.

But tiles can easily be created such that they fit well on printed pages.

= Again, the UML standard itself provides good examples of this
technique.

There, the meta model concerned with the abstract syntax of static structure
models (i.e., class models) is spread out over 16 diagrams.

Looking for all relationships of one class is rather difficult to do using just
these diagrams.

Creating a complete taxonomy of part or all of UML is a very tedious task.

© 2010, Prof. Dr. H. Storrle

DTU course (02264)

Split Information Models into tiles Chapter 10, Information Modeling

40

. L T
Ea: Details / ee—

Library User Account Person

login: String name: String

password: String id: int
account type: Account Type photo: JPG Create On(
address: Address

maybe spl

Prolongation
issued: Date Lease Reader Librarian
number: int
loaned: Date reader kind: Reader Type
due: Date preferences: String [0..*]
i leaseType: LeaseType
Reservation yp ¥P! \ave(): void save(): void
issued: Date
leased media
Copy Medium
status: CopyStatus title: DanMarc4-Info
number: int ageClass: AgeClass

_1?

m: Details / E: Details /

Prolongation Reservation Library User Account Person
issued: Date issued: Date login: String name: String
number: int password: String id:int

account type: Account Type photo: IPG
address: Address
Lease ———+ Library User Account | Ar T

loaned: Date Reader Librarian
due: Date
leaseType: LeaseType

reader kind: Reader Type
preferences: String [0..*]

save(): void save(): void
Copy Medium leased media solicited leases
status: CopyStatus title: DanMarc4-Info 0. 0.
number: int ageClass: AgeClass F= = === = =l "_I
] Medium
_________ .

© 2009, Prof. Dr. H. Storrle

Prof. Dr. Harald Storrle

Software Engineering Section

Department of Informatics and Mathematical Modelling
Technical University of Denmark

Richard Petersens Plads

Building 322, Room 024

DK-2800 Kgs. Lyngby

hsto@imm.dtu.dk
www . imm.dtu.dk/~hsto

DTU course (02264)

Requirements Engineering
Chapter 10: Information Modeling
41

HEE

	Chapter 10:�Information Modeling
	Agenda
	Chapter 8.1:�Elements of Information Models
	Information Model
	Information Items
	Analysis vs. Design Level Models
	Concepts of A-level class models
	Concepts of A-level class models
	Scenarios
	Concepts of Object Models
	Object Life Cycle
	Concepts of A-level StateMachines
	Overall Structure of Information Models
	Chapter 8.2:�Creating Information Models
	Creating Information Models
	Creating the first classes and objects
	Creating Classes and Actions
	Completing Actions by Lifecycle
	Extracting Information Model Fragments�from Features
	Example: Extraction from MLC1
	Example: Extraction from MLC11
	Chapter 8.3:�Refactoring Information Models
	Restructuring Large Information Models
	Refactoring class models
	Feature or Association?
	Refactoring class models (Example)
	Factor out Redundancies
	Structure and Elaborate
	Refactoring class models (Example)
	Quality Criteria for Information Models
	Chapter 8.4:�Splitting Large Information Models
	Extract Aspects and Abstraction Levels
	Splitting Models into Aspects
	Taxonomy
	Aggregation Hierarchy
	Split large model in to tiles
	Splitting up class models
	Restructuring Large Information Models
	Splitting Information Models into Tiles
	Split Information Models into tiles
	Slide Number 41

