
Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7: 
Specifying Features 

Chapter 7 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
2 

Agenda 
Abstract 
 In this chapter we will look at different techniques and styles of 

specifying features, also known as functional requirements. Each 
technique has an individual profile of pros and cons, so that we need to 
analyze the application conditions and discuss the factors contributing 
to them. 

 Among the many techniques that are known, we will select a few 
representative examples along the scale from informal prose, 
controlled languages, Use Cases, Snow Cards (e.g. Volere, XP User 
Stories), and detailed attribute tables.  

 
Contents 
1. Prose Descriptions of Requirements 
2. Requirements’ Attributes 
3. Reinforced Natural Languages 
4. Controlled Natural Languages 
5. Use Cases Templates 
6. Snow Cards 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7.1: 
Prose Descriptions of Requirements 

"The difference between the right word  
  and the almost right word is the same as  
  between a lightning and a glow worm.“ 
   Mark Twain 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
4 

Documenting Requirements with  
Natural Languages 
 The most straightforward way to document requirements for a 

system is to write them down in some natural language. 
 Any language could be used, e.g. English, German, or Danish. 
 

 Using natural language in this way offers a number of valuable 
benefits. 
 Natural language is universally well understood and spoken/written, and 

everybody in the project speaks it fluently. So, no time consuming and 
expensive trainings are needed. 

 Natural language comes natural, so it is easy to use and everybody has 
powerful tools for creating texts in natural languages. 

 Natural languages have unlimited expressiveness and flexibility. 
 

 Therefore, it is easy to start with a prose description of 
requirements and it is no wonder that many requirements 
documents are written as a prose text in a natural language. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
5 

Documenting Requirements with  
Natural Languages: Problems 
 The advantages of natural languages are not always warranted, however. 

 In international teams, there might not be a universal language equally well used by all (or 
even most) team members. 

 Even if a team is culturally homogeneous, language skills vary widely. Not all people are 
aware of their deficiencies. 

 Software Engineers (and IT people in general) are often not very talented in natural 
languages, including their native language; they often prefer diagrammatic representations 
or formal languages. 
 

 But what is more important, natural languages have no fixed formal structure. 
 They have no formal syntax or semantics. 
 Vocabularies are extremely large, and the domain vocabularies are often quite different 

from the base language (consider medicine, finance, IT).  
 Additionally, in many languages new words may be created routinely as compounds of 

other words, making the vocabulary also infinitely large. 
 The vocabulary, syntax, semantics, and grammar keep changing. 

 
 Therefore, it is very difficult to define or measure the quality of prose texts.  
 Generally, prose texts can not be reliably processed automatically (beyond 

spelling and basic grammar). 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
6 

Documenting Requirements with  
Natural Languages: Problems 
 As a consequence of their informality, natural language 

requirements specification have a tendency to be  
consistent Is this set of requirements consistent or contradictory?  
incomplete1  Is this set of requirements complete?  
incomplete2  Are all individual requirements complete? 
ambiguous  Is there more than one interpretation, and if so, which one is valid? 
vague  What does this requirement mean? 
viscous  What are the consequences of this change? 

 
 These problems are very widespread and have been around for 

decades. 
 They are not specific to software requirements, but many types 

of software afford only a small penalty of change 
 For a natural language text, it is difficult, time-consuming, error-

prone, and costly to ensure completeness. 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
7 

Problems in Expressing Requirements 
with Natural Language 
 To understand the problems with natural language, take a sheet 

of paper and draw a picture according to the following 
instructions. 

In the foreground, there is a lake shore, in the background, there 
are snow-covered mountain tops. The sky is bright, almost without 
clouds.  
 
The lake shore is dotted with trees and bushes. 
 
On the left foreground, there is a hotel with balconies and jutties. 
 
On the right there are a few houses, behind them on a small 
mound a church with a pointed tower. 
In the right foreground there is a landing stage, behind it two party 
tents. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
8 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
9 

The closest someone ever got… 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7.2: 
Requirement Attributes 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
11 

The Requirements Lifecycle 

 At different stages of the requirements lifecycle, our focus and 
purposes shift. Our tasks and focus shift accordingly. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
12 

Why must we elaborate requirements? 
 Assume our team has made a great job in eliciting all relevant 

requirements as a list of keywords or short phrases. 
 We are now faced with two problems: 
 As we have seen in the introduction, it pays to improve the quality as early 

on in the software lifecycle as possible.  
 But even if our requirements were perfect, they must be communicated to a 

team, to programmers, to contractors, to other stakeholders etc. We have to 
make sure that everybody during the whole process understands the 
requirements.  

 Also, the requirements may be in use for a long time. Will we ourselves 
understand our own requirements in just the same way we intended them 
when we wrote them, half a year ago? 

 So, we should try and remove all defects we can find with 
reasonable effort, and we should cast our requirements in a 
generally understood and durable form. 
 This process is called requirements elaboration. 
 The result is called a “Software Requirements Specification” (SRS). 
 Such specifications may easily be hundreds or thousands of pages long. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
13 

Requirements Attributes (Elicitation) 

 Probably the most frequently arising problem is incompleteness. 
 That is to say, an individual requirement dos not contain all the information 

needed to work with it. 

 Yet, it is very easy to act against this problem by simply defining 
explicitly all the attributes a requirement should have and 
collecting them in a table. 
 This way, any missing items may be spotted directly. 

 The next to pages define the set of attributes with their names, 
purpose, and sample values. 
 The table also indicates whether they may be used for sorting the 

requirements by them which obviously depends on their usage and restricts 
the attribute values. 

 Also, the tale defines whether the attribute is facultative (optional) or 
mandatory (must be there). 

 The attributes should be filled in more or less in the order defined 
by the table. 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
14 

Requirements Attributes (Elicitation) 

Stage Attribute Description Values 

Identifier unique and persistent identifier project specific, e.g. integers 

Name  descriptive term, possibly phrase proper name, phrase 

Description  brief text describing what is included in 
this requirement 

3-10 sentences, at most two 
paragraphs  

Rationale  
A justification of this requirement: why is 
it being selected 

1-3 short sentences OR 
reference to a goal 

Source  
reference to origin of requirement reference to documents, 

workshops, individuals, 
existing systems etc. 

Details A more detailed treatment of this 
requirement 

reference to an external 
document 

Remarks  any additional remark, e.g. comments or 
open questions 

text in project language 

El
ic

ita
tio

n 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
15 

Requirements Attributes (Elicitation) 

Identifier 
 A unique and persistent identifier. Identifiers 

never change and may never be reused. 
 The simplest ID scheme is to use consecutive 

integers starting from 1. 
 More complex systems might encode 

additional information like the type, domain, 
or level into the identifier. 

Name 
 A short and descriptive term, possibly a 

phrase. 
 Usually, there are no constraints for 

requirement names, but with practice, people 
will be aware of what the requirement will be 
implemented as (e.g. a process), and name 
them according to the respective naming 
convention. 

Description 
 A brief text of 3-10 sentences, at most two 

paragraphs describing what is included in this 
requirement. 

 If at all possible, use bullet lists or 
enumerations to structure the contents. 

Rationale 
 A justification of this requirement: why is it 

being selected (1-3 brief sentences).  
 Even better is a reference to one of the goals 

from the goal model.  
 If a suitable goal is not readily found, adding a 

goal might solve the problem. 
Source 

 Describes where the requirement came from.  
 Typical values for this field include: 
 “interviews with users” 
 “Observation protocol #42, chief librarian 

Mads Tofte, 9.9.2009, 10:54:12-10:56:08” 
 “Usage scenario, line 27” 

Details 
 More lengthy description without constraints, 

or a references to external documents 
Remarks 

 Any additional comments that fit nowhere 
else. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
16 

Requirements Attributes (Elaboration) 

 Once the elicitation baseline has been established, the 
requirements need to be elaborated somewhat further so that 
they may be validated by the client. 

 After an initial validation, requirements are ready to be used for 
project management purposes such as planning and scoping. 
 Using the requirements as the basis for software development will need a 

further step (transition). 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
17 

Requirements Attributes (Elaboration) 

Stage Attribute Description Values 

Type  
classification of requirement - feature ("functional req.") 

- quality ("non-functional req.") 

Level  

granularity level or scope of the 
requirement 

-market / domain 
- product 
- feature 
-  component 

Derived From 

(1) Reference to a requirement that has 
been split up into several smaller 
requirements, that collectively replace 
the original requirement. 
(2) Reference to a requirement 

reference to an obsolete 
requirement  

Acceptance 
Test  

(1) operational procedure to test this 
requirement 
(2) quantification of minimum acceptable 
quality 
(3) reference to another artifact detailing 
the acceptance criteria such as a test 
class or test specification document 

(1, 2) text in project language 
(3) path on project drive, CM 
system etc. 

El
ab

or
at

io
n 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
18 

Aspects of Requirements: Elaboration 

Type 
 A classification of requirements 

according to a project specific schema. 
 The most generic schema would be to 

distinguish between the following. 
 feature ("functional requirement") 
 quality ("non-functional requirement") 
 constraint – a project side condition 

 Additional classifications might add 
interface requirements, or may want to 
differentiate features into crosscutting 
and self-contained requirements. 

 
Acceptance test 

 Any operational procedure to check 
whether a deliverable satisfies a given 
requirement. 

 Typical examples are tests of any kind, or 
observable parameters and qualities like 
response times or presence of artifacts. 

Derived From 
 Many requirements are split up or 

significantly changed. In order to keep 
track of where a requirement came 
from, the “derived from” attribute links 
such requirements to their predecessor. 

Level 
 The level of granularity or scope to which 

a requirement applies. 
 A raw collection of requirements will 

yield items at very different levels of 
abstraction. 

 For instance, the requirements “identify 
book”, “return book”, and “media 
lending & returning” belong to 3 
different levels: 
 “media lending & returning” is a domain 

containing a process “return book” which in turn 
contains the activity “identify book”. 

 All of these may be fine examples of 
requirements, but they should be 
treated rather differently. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
19 

Crosscutting Features 
 There are different kinds of problems that requirements engineers 

encounter when dealing with specifying and implementing features. 
 A feature may rely on other features being implemented before. 
 A feature may contain complex logic making it difficult to understand. 
 A feature may require large effort or advanced technology to implement. 

 
 While challenging in their own way, all of these cases are relatively 

benign, if the features are self-contained. 
 In the malignant case, a feature is closely connected to many other features, 

either by its logic, or by its implementation.  
 Such features are called crosscutting, typical examples include Undo/Redo, 

global search, logging and monitoring, high-level business rules (e.g., four-eyes-
principle), and legal constraints (e.g., auditable recording of bookings, 
compliance with capital market regulations). 
 

 Many required quality attributes (aka. non-functional requirements) 
are cross-cutting in nature, including integrity, much of usability, and 
performance. 
 ©

 2
01

0,
 P

ro
f. 

D
r. 

H
. S

tö
rr

le
 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7.3: 
Reinforced Natural Languages 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
21 

Reinforced Natural Languages (RNL) 
 There are several means of reinforcing natural languages. 

 
1) Glossary: Standardizing the vocabulary in a glossary helps reducing ambiguity. 
 
2) Tables/Outlines/Graphs: With predefined document outlines, templates, and fixed 

tables, omissions become easier to detect, and the context supports 
disambiguation. 

 
3) Writing Rules and Style Guides: Providing grammatical and stylistic rules helps to 

avoid potentially dangerous constructions and words. Writing stlye rules are 
language specific. 

 
4) Checkers: Modern word processors include checker s for spelling and grammar. 
 
5) Controlled Natural Languages (CNL): CNLs drastically constrain the grammar and 

vocabulary to the point where automated tools parse and check CNL texts.  
 

 Each RNL text is a text in the natural language it is based on, but not 
vice versa. Some of these means can be combined (1..4, 1+5). ©

 2
01

0,
 P

ro
f. 

D
r. 

H
. S

tö
rr

le
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
22 

Benefits and Problems with RNL 

 Obviously, glossaries, tables/outlines, and style guidelines are 
easy to implement, but hard to automate. 
 Manual effort is expensive, slow, and error prone ( regression). 

 Checkers and CNLs may be automated, but are expensive and 
difficult to create and use. 

 

 Reinforcing natural language is no silver bullet. 
 Reinforcing natural language will reduce the risk of mistakes originating from 

erroneous interpretation of RNL texts (e.g. a requirements specification), but 
there is no guarantee. 

 Also, avoiding mistakes does not automatically lead to a better end product, 
it just reduces the probability of delivering a bad one. 

 Finally, creating an error-free system does not necessarily lead to the right 
system (the one addressing the client‘s needs). 
 

 The general rule is to reduce complexity wherever possible. ©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
23 

R1: Verbs and Tenses 

 Usage of present tense. 
 Using the present tense generally makes for livelier and clearer prose. 
 Use IF-THEN, or PRE-ACTION-POST  structures to highlight the parts of your  

 

 Usage of future tense. 
 Sometimes, present tense is also used to describe preconditions. 
 Avoiding IF-THEN, or PRE-ACTION-POST structures requires to use future 

tense for the requirements. 
 

 Use key verbs consistently (see e.g. RFC 2119 guidelines). 
 The verbs “shall,” “will” or “must” express a definite need. 
 The verbs “should”, “should not” or “may” express only a wish or desire. 
 The verbs “shall not” and “must not” express a definite needs. 
 Avoid “may not” and “will not”. 
 Use the qualifiers “required” or “optional” to refer to required and optional 

features or behavior, respectively. 

 
 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
24 

R2: Prefer Active Voice 
 Passive allows to construct grammatical sentences without actor. 

 They “sound ok”, i.e., it is hard to spot the omission when just reading the sentence. 
 If no actor is specified, confusion may arise concerning who is doing what (e.g. the user, the 

system, some component of the system, a neighbor system). 
 In active voice, such omissions are not possible without breaking the sentences  (which is easy to 

detect). 

 
 

 

No. Wrong Risky Safe 
a If the query is refused, the 

reader issuing the query 
shall be referred to the 
front desk service. 

If the query is refused by the re-
mote catalog, the reader issuing 
the query shall be referred to the 
front desk service. 

If the remote catalog refuses 
the query, the LMS shall refer 
the reader issuing the query to 
the front desk service. 

b If the catalog search is 
closed, the LMS shall 
delete the search history. 

If the catalog search is closed by 
the user, the LMS shall delete the 
search history. 

If the user closes the catalog 
search, the LMS shall delete 
the search history. 

c Reports of all lent and 
reserved items may be 
created. 

Reports of all lent and reserved 
items may be created by 
librarians. 

Librarians may create reports 
of all lent and reserved items. 

d To register a guest, the 
login data is entered on a 
mobile device or terminal. 

To register a guest, the login data 
must be entered on a mobile 
device or terminal by the guest 

To register, a guest must enter 
login data on a mobile device 
or terminal. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
25 

R3: Avoid Empty Verbs 

 Empty verbs function as a predicate of a clause together with a 
noun, usually expressing a state or change of state. 
 Using empty verbs makes a requirement unnecessarily complex and may 

lead to misinterpretations. 
 Expressions using empty verbs can usually be simplified. 

 
 
 

No. Risky Empty Verb Safe 
a User registration is performed before <X>. perform A user must register before <X>. 

b <X> exerts influence on <Y> exert <X> influences <Y> 

c <X> gets access to <Y> get <X> accesses <Y> 

d <X> gives a reply to <Y> give <X> replies to <Y> 

e <X> makes a contribution to <Y> make <X> contributes to <Y> 

f <X> does increase <Y> do <X>  increases <Y> 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 

Before the guest can log into the 
system, registration must have 
been performed. 

Who or what is actually doing the 
registration?  Just when is it 
completed? What happens if it is 
only half-finished? 

Before the guest can log into 
the system, the guest must 
have completed registration.  



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
26 

R4: Avoid Incomplete Verbforms 

 Many verbs have implicit references to various objects involved 
in the activity described by the verb. 
 Common examples are: prepare, communicate, report, and notify. 

 Often, not all of these objects are present. They can be detected 
by asking: who, what, when, how, … 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 

No. Risky Questions Safe 
a LMS processes and 

saves the data. 
Which data? What 
processing? 

LMS processes and saves the 
registration data. 
+ specification of “registration data” (e.g. glossary 
entry, data model entity, bullet list) 

b When a reserved 
medium is returned, 
the librarian is 
notified. 

Where/How is it returned? 
When is which librarian noti-
fied? With which message? 
How is he notified?  

When a medium is returned at the 
front desk, the librarian present there 
is notified within 1s if the medium is 
currently reserved. 

c Each reader is 
provided with a 
unique identifier. 

When is he provided with 
the id and by whom? 

The subsystem “ReaderAccount” 
provides a new unique reader 
identifier when a reader is registered 
for the first time. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
27 

R5: Avoid Negation 

 Reduce negations whenever possible. 
 Express requirements positively. 

 Absolutely avoid double negations. 
 Double negation is difficult to process cognitively and invites errors and 

misinterpretations. 

 Be explicit about different cases.  
 If necessary, split requirements up into several individual cases. 

 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 

No. Risky Safe 
a Nobody except chief librarians may edit the 

transaction log.  
Only chief librarians may edit the transaction 
log. 

b The input length is not unrestricted.  The input length is restricted. 

c All but the most wanted media have an 
unrestricted loan period. 

The most wanted media have a loan period 
restriction. 
Media other than the most wanted media 
have no loan period restriction. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
28 

R6: Complete Comparisons and Attributes 

 If your requirement involves system properties with a degree, 
quantify them. 
 Many attributes (grammatically speaking) imply a quantity or measure, that 

is, they all answer the question “how (much)” (e.g., easy, fast, large, etc.). 
 This also applies to more technical notions: modularity, coupling/binging, 

reusability. 
  We will elaborate this topic in the next Chapter”Quality Attributes”. 

No. Risky Questions Safe 
a Reserving a medium 

from a search result list 
must be easy. 

How easy? 
In comparison to what? 
Under all circumstances? 

If the reader is logged in and has 
conducted a catalog search, any of the 
search results may be reserved by a 
single mouse click, the status of the 
reader and the medium permitting. 

b The most common 
queries are cached to 
speed them up. 

How many queries? 
When is a query 
considered „common“? 
How fast shall they be? 

The 100 most common queries of the 
last 3000 library opening hours are 
cached. 
Cached queries shall be executed with a 
latency of less than 1s. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
29 

©
 2

00
9,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 

Rule 4: Incomplete Comparisons 

 Comparisons and all kinds of quantifications should be made 
complete and precise. 
R4a: “All other readers will receive their monthly lending status by email.”  
 To what does the comparative “all other” refer? 
R4b: “All readers that have selected the “lending status by email” will receive 

their monthly lending status by email.”  
  

 Adjectives may also hide a comparison. 
R5a: “It must be simple for readers to access their lending status online.”  
 Simple to access… in comparison to what? 
 How is accessing the lending status made simple for readers? 
 How can we measure simplicity of access? 
R5b: “For 95% of the Readers obtaining access to their lending status online for 

the first time must not take them longer than 30s from login to status 
display”. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
30 

R7: Use Specific Conditions 

 Specify all branches of a condition, if necessary with a catch-all. 
 This commonly leads to splitting up requirements. 
 Rules similar to refactoring of code apply. 

 

No. Risky Questions Safe 
a Readers may reserve 

media if they are leased. 
Do you mean to say “Any 
Reader” or does it take two to 
reserve? How many media are 
there in a reservation? 

The reader may reserve any 
leased medium. 

b Readers have unique 
identifiers in the LMS. 

How many readers?  
How many identifiers? 

Each reader has exactly one 
unique identifier. 

c - - When the reader returns 
several books at once, … 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
31 

R8: Use Specific Quantities 

 Be specific about numbers and quantities. 
 use: all, exactly one, one or more, at least one 
 avoid: one, several, many 

 Prefer definite articles over indefinite articles 
 use: he/she/it, the, this, that, these, any, all 
 avoid: no article, a/an 
 Prefer singular over plural (use plural only if essential) 

 
 

No. Risky Questions Safe 
a If two readers with „Proust“ 

status have reserved the 
same medium, … 

What if there are three such 
readers? What happens when 
the readers have another 
status? 

If two or more readers with 
„Proust“ status have reserved 
the same medium, … 
If two or more readers with 
different status … 
In any other combination of 
two or more conflicting 
reservations, … 

b If the reader asks for mail 
delivery of the leased media, 
he will be notified of the 
costs. 

What about other forms of 
delivery? - 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
32 

R9: Make Universal Quantifiers Explicit 

 Universal quantification is a powerful concept – make sure you 
really intend what you say! 
 Look for exceptions to the rule, check boundary cases. 
 Universal quantification hides behind: all, no, none, always, never, every, etc. 

 Reduce ambiguity by using only a small number of approved 
quantifiers. 
 use: no/none, any/each, always, every, either/neither 
 avoid: some ( one or more),  

 No. Risky Questions Better 
a Librarians may enter new 

readers to the system with a 
reader dialog. 

ALL Librarians – really? Is that 
what we want? - 

b The 100 most common queries 
of the last 3000 library opening 
hours are cached. 

All queries, including those that 
come via the web? 

The 100 most common queries issued 
from any library terminal within the 
last 3000 library opening hours are 
cached. 

c Cached queries shall be 
executed with a latency of less 
than 1s. 

Under all circumstances, even 
when configuring the system?  

Cached queries shall be executed with 
a latency of less than 1s under normal 
operation. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
33 

R10: Move conditions to the front 

 Many requirements are restricted to a specific operational mode, 
a time when they may be applied, or some system state. 
 If such conditions are only mentioned at the end, it amounts to an implicit 

negation making such a requirement more difficult and time consuming to 
interpret. 

 Move conditions to the front to avoid negation and to allow readers to abort 
reading a requirement earlier if it does not specify their case. 

No. Difficult Easier 
a The reader may not create another 

reservation, initiate a new lease, or 
prolong an existing lease while the LMS is 
updating the reservation log. 

If LMS is updating the reservation log, a reader 
may not create another reservation, initiate a 
new lease, or prolong an existing lease. 
 

b Cached queries shall be executed with a 
latency of less than 1s under normal 
operation. 

Under normal operation, cached queries shall 
be executed with a latency of less than 1s. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
34 

R10: Reduce complexity 

 Obscure and complex terms and expressions make your 
requirements difficult to interpret. 
 Remove all redundant expressions!  
 Replace all complex expressions and obscure terms by simpler ones! 

 Complex Simple 
bring to an end… complete, end 

at all times always 

at the present moment, at this point in time now, currently 

by means of  by 

grace to, by virtue of because of 

as to whether  whether 

being that  since 

so as to, in order to to 

utilize use 

is capable of can 

all of all 

on a daily basis daily 

Redundant 
along the lines of 

as a matter of fact 

actual, actually 

as it were 

basically, essentially 

completely 

extremely, totally 

in terms of 

moreover 

very 

quite 

the fact that 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
35 

Rules for Glossary Entries 

 A glossary definition could be an analytical definition, an 
enumeration of characteristics, or a behavioral description. 

 Refering to other glossary entry in the definition is fine (including 
circular references), if the reference is made explicit, e.g. by 
preceeding it with . 
 A reader is a natural person posessing exactly one set of person-specific data 

(including address and media preferences) who leases media. 

 Always follow the schema <Subject> <Verb> <Object>. 
 Split up different aspects into separate sentences. 
 A reader is a natural person. 
 A reader posesses exactly one set of person-specific data (including address 

and media preferences). 
 A reader leases media. 

 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
36 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7.4: 
Simplified and Controlled Natural Languages 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
38 

Simplified Languages 
 Many major languages have simplified forms. 
 Plain Language http://en.wikipedia.org/wiki/Plain_English 
 Leichte Sprache http://de.wikipedia.org/wiki/Leichte_Sprache 

 
 Purpose & Audience 
 These languages are primarily directed towards people with language-

related challenges, such as non-native speakers, semi-illiterate people, and 
people with cognitive or perceptual deficits. 

 The United Nations support plain language as one of the "modes, means and 
formats of communication.“  

 Requirements engineering may also benefit from simplified languages. 
 

 Simplified languages disallow certain ambiguous constructions, 
and impose rules to make the language easier to understand. 
 Sentences may not exceed 8 words, no passive voice, defined vocabulary, … 
 One statement per sentence, one sentence per line, … 
 In German: keep verbs together, hyphenate concatenated words, … 

http://en.wikipedia.org/wiki/Plain_English
http://de.wikipedia.org/wiki/Leichte_Sprache


DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
39 

Requirement Templates 

[adapted from Rupp: Requirements Engineering und Management, Hanser, 2009] 

 A common way to reinforce prose for requirements specification 
is to apply language patterns or templates. 
 These can be expressed in EBNF-like structures, such as railroad diagrams. 

 

 Below, there is a template that allows to express three kinds of 
requirements pertaining to reactive/proactive system behavior, 
and user interactions, respectively. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
40 

Requirements Templates 

 Another set of templates is proposed by ISO 29148:2011, which is 
presented here in an abridged and extended version. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
41 

Controlled Languages 
 The strongest kind of reinforcement possible for natural 

languages are Controlled Natural Languages (CNL). 
 

 A CNL is a strict subsets of some proper Natural Language (e.g. 
English, German, or Chinese), but with a tightly restricted 
vocabulary and grammar. 
 Only a relatively small subset of the original natural language is used. 
 This allows for fully automatic processing of texts written in these languages, 

like error checking, translation, and summarizing. 
 For some CNLs, there is even a direct translation into some formal logic (cf. 

ACE  DRT-E)*. 
 Reading CNL texts is somewhat boring to humans (like most technical texts), 

but requires only limited knowledge of the base language. 
 

 Writing CNL is hard, when no interactive checkers with good 
advice are available, but feasible nevertheless.  

*See paper by Fuchs, Schwertel, and Schwitter. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
42 

Simplified Technical English  (ASD-STE100) 

 One example of a Controlled Natural Language is the Simplified 
Technical English (STE). 
 STE consists of 61 rules and approximately 2800 words and word forms. 
 Texts conforming to STE are regular simple English, although they do sound 

somewhat mechanical and inelegant at times. 
 However, everyone who speaks a fair amount of English can understand it. 
 Sentences conforming to STE are rather safe from ambiguity and 

misunderstandings. 

 As for most controlled languages, STE is geared towards 
mechanical engineering/maintenance application domains  
 A typical example is a technical handbook for the maintenance of planes.  
 The vocabulary is not particularly well suited for describing IT purposes like 

typical commercial business processes. 
 Applying STE to such applications will require to modify the vocabulary 

substantially. 

Aerospace and Defence Industries Association of Europe:  
Simplified Technical English. Specification ASD-STE100, Issue 4, 2007 (2007-01-05) 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
43 

STE Dictionary 

 The STE Dictionary defines the admissible vocabulary by: 
1. Acceptable words with part of speech, meaning and examples. 
2. Unacceptable words with part of speech, meaning, acceptable replacement, 

examples and counter examples. 

 
 Generally, ACCEPTABLE TERMS ARE WRITTEN IN UPPER CASE, while 

unacceptable terms are written in lower case. 

Word 
Meaning 

Alternative term 
approved example 

non-approved 
 example 

abnormality (n) DEFECT (TN) EXAMINE THE CANOPY SEAL FOR 
DEFECTS. 

Inspect the canopy seal for abnormalities 

ACCESS (n) The “ability” to go into or 
near 

GET ACCESS TO THE ACCUMULATOR. - 

evenly (adv) GRADUALLY, 
EQUALLY 

INCREASE THE TEMPERATURE 
GRADUALLY.  

Increase the temperature evenly. 

APPLY THE LOAD EQUALLY ON THE AREA. Apply the load evenly on the area. 

exactly (adv) CORRECT (adj), FULLY THE SEAL MUST BE OF THE CORRECT 
DIMENSION FOR THE GROOVE. 

The seal must fit the groove exactly. 
 

OBEY THE PROCEDURE FULLY. Obey the procedure exactly. 

ASD100 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
44 

STE Rules 
Rule 1.2: Use approved words from the Dictionary only as the part of speech given. 

Each approved word in the Dictionary has a part of speech.  
Do not use it as another part of speech for which it is not approved.  
For example, if a word is given only as a noun, do not use it as a verb. 
 Example: “Test” is approved as a noun but not as a verb. 

Non-STE: Test the system for leaks. 
STE: Do the leak test for the system. 
STE: Do a test for leaks in the system. 
 

 Example: “Close” is a verb and not an adverb. 
Non-STE: Do not go close to the landing gear if … 
STE: Do not go near the landing gear if … 

 
Rule 1.3: Keep to the approved meaning of a word in the Dictionary.  

Do not use the word with any other meaning. 
 Example: “Follow” means “come after”. It does not mean “obey”. 

Non-STE: Follow the safety instructions. 
STE: Obey the safety instructions. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
45 

Comparison 

Natural Language 
Removal of the Overspeed Governor. 
1. Any leaking oil can be collected by placing the cleaning 

cloth under the overspeed governor (3). 
2. Disconnect electrical connector (2) from electrical 

receptacle (1). 
3. Note the position of bracket (6), it must be installed in 

the same position. Remove nut (4) and washer (5), which 
attaches bracket (6) and overspeed governor (3) to the 
gearbox. Nut (4) is to be discarded. 

4. The bracket (6) is to be safetied to the aircraft structure 
with a temporary tie, away from work area. 

5. Holding the overspeed governor (3), remove remaining 
three nuts (9) and three washers (8), which attach 
overspeed governor (3) to gearbox. Three nuts (9) are to 
be discarded. 

6. Remove overspeed governor (3) from gearbox. 
7. Protect electrical connector (2), electrical receptacle (1), 

and mounting pad of gearbox by installing an applicable 
blanking cap. 

8. Remove packings (10 and 11) from overspeed governor 
(3). Packings (10 and 11) are to be discarded. 

9. Remove, and safely discard cleaning cloth. 

ASD-STE100 
Remove the Overspeed Governor. 
A. Put the cleaning cloth below the overspeed governor (3) 

to collect the oil leakage. 
B. Disconnect the electrical connector (2) from the electrical 

receptacle (1). 
C. Record the position of the bracket (6), you must 

subsequently install it in the same position. 
D. Remove the nut (4) and the washer (5) that attach the 

bracket (6) and the overspeed governor (3) to the 
gearbox. 

E. Discard the nut (4). 
F. Use a temporary tie to safety the bracket (6) to the 

aircraft structure, away from the work area. 
G. Hold the overspeed governor (3). Remove the remaining 

three nuts (9) and the three washers (8) that attach the 
overspeed governor (3) to the gearbox. 

H. Discard the three nuts (9). 
I. Remove the overspeed governor (3) from the gearbox. 
J. Install an applicable blanking cap to prevent damage to: 

• The electrical connector (2) 
• The electrical receptacle (1) 
• The mounting pad of the gearbox. 

K. Remove the packings (10 and 11) from the overspeed 
governor (3). 

L. Discard the packings (10 and 11). 
M. Remove, and safely discard the cleaning cloth. 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7.5: 
Use Case Templates 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
47 

Use Cases 

 A Use Case is a scenario of a user interaction with a system. 
 The ”User” may be another system, and the Use Case may comprise more 

than just one scenario. 
 

 Use Cases have been made popular with the Objectory Method. 
 Their popularity is to a large degree explained by the fact that they are the 

only way to abstractly specify functionality, i.e., doing top-down analysis in 
an OO setting: Use Cases are to Object-Oriented methods what Data-Flow-
Diagrams are to structured methods. 
 

 Use cases can be used for prioritizing and project/release 
planning. 
 The processes summarized in the domain architecture are basically (bundles 

of) use cases. 

 Use cases are not well-suited for expressing cross-cutting 
concerns, including quality attributes. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
48 

Describing Use Cases 

 Use cases may be described in different degrees of formality: 
 Basic: a sequence of steps described in prose. 
 Simple: a predefined tabular schema with a couple of properties, one of 

which is a basic use case description. 
 Complete: a simple use case description embedded in prose text defining the 

purpose and side conditions of the use case, and complemented by one UML 
use case model for each individual use case to illustrate its embedding, and 
one or more overview use case diagrams to show the relationships between 
the whole set of use cases. 

 
 It is helpful to describe all use cases in the basic format before 

going on to elaborate individual use cases. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
49 

Simple Use Cases (Tabular Description) 

 Tables are common to help refining 
basic use cases.  
 There are many different templates 

like this. 
 The user (i.e., a person or a system) 

is called Actor here to be in line with 
the UML terminology. 

 
 Remarks to table 

 The slots marked with 1) and 2) are 
optional, but at least one of them 
must be filled, respectively; the slots 
marked with * are optional. 

 Slots that are empty on purpose 
must be filled with a dash. 

 The text in angle brackets are 
placeholders, the italic texts 
describe the slots. 

<ID> <Name> 

Description a few sentences at most 

Actors primary actor triggers this UC 
secondary actors may participate 

Trigger1) an event or command 

Parameter1) data needed to trigger this UC 

Preconditions1) system states required to trigger this 
UC 

Regular Scenario 
the most common or least 
problematic course of action 
(“sunshine scenario”) 

Variants 
any other courses of action 
with exceptions, problems, 
etc. 

Postconditions2) system states guaranteed after 
completing this UC 

Result2) data provided or computed by this UC 

Incidence* frequency of this UC 

Duration* duaration of this UC (average, best 
case, worst case) 

References* references to other documents 

Remarks open questions, comments 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
50 

Simple Use Case (Example) 

 

 

UC_1 Return Medium 

Description A medium is scanned by a user (either a reader at a self-service terminal or a librarian at a front 
desk terminal) in order to identify the medium and take the obvious action (i.e. lending or returning) 

Actors 1: Librarian / Reader 

Trigger identification of reader OR selecting action  from menue 

Parameter - 

Preconditions - 

Regular Scenario 
1. identify reader and medium 
2. determine lease, reader account and medium state 
3. terminate lease, update reader account 
4. acknowledge medium being returned 

Variants 
a) lease is overdrawn  computer due fees 
b) allow to settle outstanding fees 

Postconditions regular scenario: lease terminated, reader account updated: 
b) outstanding fee decreased by payment amount 

Result 

Incidence 500 times a day 

Duration <0.3 seconds 

References - 

Remarks - 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
51 

Complete Use Cases 
 Complete Use Cases provide illustrations to the basic and simple use case 

descriptions. These illustrations (and only these) are UML’s use case diagrams. 
 

 The purpose of Use Case Diagrams is just  to collect information in a visual 
way, provide overview, and facilitate the communication between the 
stakeholders. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
52 

Use Cases vs. Business Processes 
 A Use Case is a sheaf of similar scenarios or interaction of users with a system 

 similar pre-/post conditions 
 similar primary Actor 
 same user goal/rationale 
 similar individual steps 

 
 Use Case Models may be used 

 either to describe a (business) process (“Business Use Case”) 
 or to describe individual activities inside a process (“System UC” or “Product UC”). 

 A Business Process (BP) is a value-/cost-producing process. 
 It may span more than one organization, usually involving several people and 

systems, and often lasts for days to months, possibly even longer. BPs may often be 
interrupted and suspended, they frequently have multiple courses and outcomes and 
require a substantial amount of interaction. 

 A System Use Case (SUC) is a usage scenario of a system. 
 It spans only one system and its users (sometimes also systems contributing to the 

SUC), and lasts up to minutes, possibly hours. Use cases may not be suspended or 
interrupted and often run automatically or require very little interaction outside the 
system. 

 Most of the time, the term Use Case is used for either of these… 
…and, unsurprisingly, many people confuse the two. 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 7.6: 
Snow Cards 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
54 

Snow Cards 
 A popular technique for gathering and elaborating requirements 

are “Snow Cards”. 
 A Snow Card is an index card with a set of attributes any requirement needs.  
 Capturing them as index cards allows to use them in group exercises and 

visualizations, but may also be useful for sorting and clustering them. 
 The predefined structure makes it easy to check a requirement for formal  

completeness. 
 Another big advantage is the size limit imposed by the medium. 
 Sometimes, however, the size limit is perceived more as a disadvantage. 
 

 Probably the most well known example of snow cards in RE is the 
“Volere-Template” (also popular: CRC-cards). 
 In XP, User Stories are supposed to be captured on index cards, too, mainly 

for practical reasons like sorting them in the cards game. 
 Since User Stories are plain text and not table-like structures, completeness 

is not easily checked. Here, the plain-text rules should be used. 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
55 

Volere-Template 

[Roberts& Roberts, 1995, www.volere.co.uk] 

Obsolete version 
new version contains also priority 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
56 

XP User Stories 
 Developer and User write a scenario together. 

 Using A5 index cards to write them down restricts the size. 
 Later on, the index cards may be used conveniently for planning and prioritizing, 

as well as distributing and tracking requirements. 
 Involving the customer ensures commitment and validity (theoretically). 

 
 A User Story consists of five elements: 

1. administrative data (author, date, version); 
2. planning data (effort estimate, dependencies/prerequisites); 
3. a unique identifier and a descriptive name; 
4. the story proper (necessary); 
5. an acceptance test (optional, use flip side, reference to code base). 
 

 The story proper is a very concrete account of how the system shall 
behave from the perspective of the user. 

 Can contain functional as well as non-functional requirements e.g. ”As a 
library user, I want to search for books and see the results within a 
second” 

 acceptance tests are the formal documentation of the requirements 
 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
57 

XP User Story Example for LMS 

 Using a template can help 
you getting started writing 
user stories.   
 As a <role>, I want <goal>         

[so that <benefit>]. 
 

1. For the first sentence of a 
user story, fill in values for 
the variables. Then, … 
 

2. …describe the current state, 
 

3. …the actions and reactions 
that occur, … 
 

5. … and a final state. 

1. As a reader I want to return a book to 
the library.  
 

2. I have a small amount of outstanding 
fees, the lease for the book I want to 
return has not yet expired. 
 

3. I scan my ID card and then the ID badge 
of the book I want to return. 
 

4. If the book is not damaged, the system 
terminates the lease and records this 
fact. The book is made “available” 
again, and the reader holding the first 
reservation (if there is any) is informed 
of this state change. 

5. After log out or time out, a receipt is 
printed for me that states the amount of 
fees I owe, and the session is ended. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
58 

Techniques in contrast 

 There is a large number of techniques to specify requirements 
ranging from very informal techniques to completely formal 
techniques. 
 Most practically relevant techniques are semi-formal. 
 The higher the formality, the higher is the degree of automatable tasks. 

Natural Languages (Prose) 
 
Prose with glossary and style guidelines (incl. XP Stories) 
 
Structured text, Tables, Templates 
 
Controlled Natural Languages 
 
Modeling Languages (UML, EPCs, SDL/MSC, IDEF) 
 
Formal Methods 

informal 

formal 

semi- 
formal 



DTU course (02264) 
Requirements Engineering 

Chapter 7: Features 
59 

Techniques in contrast 

Technique Strengths Weaknesses automatable tasks 

Prose 
generally available 
no learning effort 
understandable 

no formal structure 
ambiguous and vague 
little automation 

spell check 
grammar check 

Prose 
(+glossary, 
guidelines) 

flexible 
reduces ambiguity 
understandable 

no formal structure 
little automation 
checks mostly manual 

conformance to guideline 
review support 

Structured 
text Tables 

easy to implement 
omissions are obvious 
comparison is easy 

weak formal structure 
designing good tables is difficult 

conformance to outline 
simple transformations 

Controlled 
Languages 

reduces ambiguity 
understandable 

not visual 
inelegant language 
needs tailoring to domain 
learning effort 

strict conformance 
testing 
translation to other lang. 

Modeling 
Languages 

visual languages support 
understanding and 
presentation 
powerful tools available 

learning effort 
needs tool support 
not yet fully standardized 

(partial) code generation 
model transformation 
simple verification tasks 

Formal 
Methods 

many mathematical 
methods may be applied 

 

enormous learning effort 
difficult to apply 

full scale verification 


	Chapter 7:�Specifying Features
	Agenda
	Chapter 7.1:�Prose Descriptions of Requirements
	Documenting Requirements with �Natural Languages
	Documenting Requirements with �Natural Languages: Problems
	Documenting Requirements with �Natural Languages: Problems
	Problems in Expressing Requirements with Natural Language
	Slide Number 8
	The closest someone ever got…
	Chapter 7.2:�Requirement Attributes
	The Requirements Lifecycle
	Why must we elaborate requirements?
	Requirements Attributes (Elicitation)
	Requirements Attributes (Elicitation)
	Requirements Attributes (Elicitation)
	Requirements Attributes (Elaboration)
	Requirements Attributes (Elaboration)
	Aspects of Requirements: Elaboration
	Crosscutting Features
	Chapter 7.3:�Reinforced Natural Languages
	Reinforced Natural Languages (RNL)
	Benefits and Problems with RNL
	R1: Verbs and Tenses
	R2: Prefer Active Voice
	R3: Avoid Empty Verbs
	R4: Avoid Incomplete Verbforms
	R5: Avoid Negation
	R6: Complete Comparisons and Attributes
	Rule 4: Incomplete Comparisons
	R7: Use Specific Conditions
	R8: Use Specific Quantities
	R9: Make Universal Quantifiers Explicit
	R10: Move conditions to the front
	R10: Reduce complexity
	Rules for Glossary Entries
	Slide Number 36
	Chapter 7.4:�Simplified and Controlled Natural Languages
	Simplified Languages
	Requirement Templates
	Requirements Templates
	Controlled Languages
	Simplified Technical English  (ASD-STE100)
	STE Dictionary
	STE Rules
	Comparison
	Chapter 7.5:�Use Case Templates
	Use Cases
	Describing Use Cases
	Simple Use Cases (Tabular Description)
	Simple Use Case (Example)
	Complete Use Cases
	Use Cases vs. Business Processes
	Chapter 7.6:�Snow Cards
	Snow Cards
	Volere-Template
	XP User Stories
	XP User Story Example for LMS
	Techniques in contrast
	Techniques in contrast

