
DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
1Requirements

02264 Harald Störrle

Engineering
A 21st century approach

Das Bild kommt vom Titel von CACM 10/09 Vol 52 no 10, ##3411

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
2

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 1:
Introduction

Chapter 1

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
4

Agenda
Abstract
 Starting from concrete examples, we will argue what can be

gained from Requirements Engineering (RE).
 Conversely, inadequate RE comes with the risk of substantial

socio-economic cost so that our professional responsibility as
engineers alone demands great care in RE, even though software
engineers may not yet face the same legal consequences of
malpractice as other kinds of engineers, say.

 We will introduce a working definition of RE and justify the
subtitle of the course.

Contents
1. Software Faults are a Paramount Problem
2. Fighting Software Faults trough Requirements Engineering
3. A Working Definition of Requirements Engineering
4. Requirements Engineering in the 21st Century

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 1.1:
Software Failures are a Paramount Problem

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
6

LH2904 Accident in Warsaw
 In 1993, an A320-211 landed in Warsaw under

heavy rain, overshot the runway at high speed,
crashed, and burst into flames.
 The two pilots were killed, 68 people on board were hurt,

51 of them seriously.

 The plane did not slow down because it took the
plane’s computer 9s to switch from „airborne“
into „ground“ mode.

 Until then, thrust reversal, spoiler deployment,
and wheel brakes were blocked .
 The state transition is triggered if both rear wheels turn

quickly enough and carry at least 12t of weight.
 Due to strong sideways wind, the left wheel bounced off

the ground several times.
 Due to aquaplaning, the wheels did not turn fast enough

to trigger the state transition.
[http://www.cadalyst.com/cad/product-design/what-grounded-airbus-a380-10903]

On 14.9.1993, flight
LH2904 crashed in
Warsaw when
landing, killing 2 and
injuring 68.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
7

LH2904 Accident in Warsaw

 As a consequence, the trigger has been changed (minimum weight
reduced to 2t), and spoilers and thrust reversal is not coupled to
wheel spin any more.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
8

Therac-25

 Radiation therapy is one of the three standard
treatments for cancer.
 The Therac-25 linear accelerator emits electron beams that

can be turned into x-rays by increasing the beam energy
and moving a tungsten target into the beam.

 Barring the beam by the target will significantly reduce the
effective energy delivered, so in this mode, the beam has
to be much more powerful to achieve the same result.

 Exposing patients to the high-energy beam without the
target results in massive radiation overdoses.

 In the 1980’s, this happened repeatedly, killing at
least 3 patients.
 The error was caused by operators typing in commands to

the control terminal faster than they could be processed.
 There were inadequate error messages („Malfunction 54“).

The software was (partially) reused from the Therac-20
which had a hardware interlock preventing this problem.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Different planned
operation modes of
the Therac-25 (top),
and the fatal
configuration
(bottom).

[IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
9

Ariane 5, Flight 501

 On her maiden flight, the Ariane 5 (flight 501) went
out of control after 40s and was auto-destructed
for safety reasons.
 The rocket and its payload had cost 500mio US$.

 36.7s after lift-off, both of the doubly redundant
flight control computers switched off due the same
overflow from converting the horizontal speed
from a 64bit float into a 16bit signed int.

 The software worked exactly as specified, but it
had been specified (and created) for the Ariane 4
which was flying much slower than the Ariane 5.
 Ironically, the software causing the error was not even

required for flight, but only for launch preparation. It was
kept active the first 40s after lift-off to be able to quickly
resume the launch procedure after count down standby.©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

On the 4.6.1996,
Ariane 501 exploded
after 40s flight.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
10

ALG-II Padding Error

 In 2004, a new system was put to operation to
handle unemployment benefits in Germany.
 This is one of the largest e-government systems in

Europe: as of 2004, there were 2.6m accounts main-
tained by 16k users paying out approx. 1.3bn€/month.

 To achieve uniform length of account numbers,
a post-processing system padded numbers with
zeros – but at the wrong end!

12345  0012345 12345  1234500
123456  0123456 123456  1234560

 A lot of fund transfers failed and the benefits
did not reach their intended recipients.
 When sending out the money as cash cheques by

paper mail, it was discovered that another system
truncated the street name in a way that many of the
letters couldn’t be delivered.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

A large portion of
the German unem-
ployment benefits
did not reach their
recipients when the
new system was put
into operation in
2004.

 

 

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
11

ALG-II Padding Error

 The problem could have been caused by a simple programming
mistake, but what really happened is that a thoughtless
programmer interpreted an underspecified requirement wrongly.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Fund Transaction
System of Bank

ALG2 Core System

R2a: An account number consists
of up to 12 numerical characters.

R2c: Pad account number
with zeros to consists of
exactly 12 numerical
characters.

R2b: An account number consists
of 12 numerical characters.

R2c’: Pad account number with
preceeding

zeros to consists of exactly
12 numerical characters.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
12

DB Datacenter breakdown
 On the 14.1.2009, the complete IT backbone of the

German national railway system gradually broke
down and couldn‘t be restarted.

 It took two days before train traffic would be back
to normal.
 During routine maintenance works, the power supply for

a regional data center in Berlin was cut off crashing the
entire facility.

 Other systems and eventually the overall network failed
domino-style.

 In the end, there were no more ticket sales via any
channel, and no more train and travel information.

 The problem turned out to be that the crash had left
corrupted data in some data bases that crashed
other dependent systems and prevented a restart.

 Apparently, nobody had ever considered the case of
a restart.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

The complete IT
backbone of
Deutsche Bahn broke
down on 14.1.2009
leaving tens of
thousands of
travelers stranded.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
13

DB Datacenter Breakdown

 Adding (and satisfying) either of the following requirements would
have avoided the problem.

 But very likely, the system has grown during operation over many
years in an unstructured way.

 Probably, it has never been planned and analyzed systematically.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

R3: The regular
operations personnel
shall be able to start or
restart the system in less
than 1h.

R3’: Starting the system
may not depend on the
status of other systems
or the integrity of the
system‘s input data.

R3’’: There is a function
to roll back to the last
consistent state in less
than 15 minutes.
The last consistent state
is never older than 1h.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
14

The Tacoma Narrows Bridge (1940)
Puget Sound, Washington State, USA

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
15

Comparison of Accidents
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

LH2904
(Warsaw) Therac-25 Ariane 501 ALG-2 DB

Datacenter

Material
Damage

2 dead
68 hurt

3 dead
many injured 500mio US$

Many
thousands

without cash

Many
thousands
stranded

Immaterial
Damage considerable massive considerable massive massive

Operator
Fault partially yes no no no

Software
Fault no partially no yes no

RE Fault yes yes yes yes yes

Avoidable
by Ideal RE yes yes yes yes yes

Easily/
Cheaply
Avoidable

partially yes yes no no

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
16

Why do these accidents happen?
 There are two possible sources of problems that might lead to this

kind of accident.

 On the one hand, these accidents could show the limits of our
scientific understandig of the world.
 It could be, that we simply could not know this, that we simply could not

possibly have prevented these accidents from happening, and that we had no
way of limiting or mitigating their effects.

 On the other hand, these accidents could be due to embarassingly
mundane and simple, if not downright stupid, errors.
 Almost always, this is the case.

 “One obvious lesson is that most accidents are not the result of unknown
scientific principles but rather of a failure to apply well-known, standard
engineering practices. A second lesson is that accidents will not be prevented
by technological fixes alone, but will require control of all aspects of the
development and operation of the system.”

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

[Nancy Leveson: "Safeware: System Safety and Computers" Addison-Wesley, 1995]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
17

Requirements Engineering Is Hard
 The hardest single part of building a software

system is deciding precisely what to build. No
other part of the conceptual work is as
difficult as establishing the detailed technical
requirements, including all the interfaces to
people, to machines, and to other software
systems. No other part of the work so cripples
the resulting system if done wrong. No other
part is more difficult to rectify later.

 Therefore, the most important function that
the software builder performs for the client is
the iterative extraction and refinement of the
product requirements. For the truth is, the
client does not know what he wants. The
client usually does not know what questions
must be answered, and he has almost never
thought of the problem up the detail
necessary for specification.

 Even the simple answer—"Make the new
software system work like our old manual
information-processing system" —is far too
simple. One never wants exactly that.
Complex software systems are, moreover,
things that act, that move, that work. The
dynamics of that action are hard to imagine.
So in planning any software-design activity, it
is necessary to allow for an extensive
iteration between the client and the designer
as part of the system definition.

 I would go a step further and assert that it is
really impossible for a client, even working
with a software engineer, to specify
completely, precisely, and correctly the exact
requirements of a modern software product
before trying some versions of the product.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

F.P. Brooks: “No Silver Bullet. Essence and Accidents of Software Engineering”, Computer Magazine, April 1987
www.virtualschool.edu/mon/SoftwareEngineering/BrooksNoSilverBullet.html

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 1.2:
Fighting Software Failures through
Requirements Engineering

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
19

Why bother with RE?
 Today, software is ubiquitous.
 Many consumer devices and appliances are really computers; contemporary

vehicles and machines are mainly embedded systems; all critical infrastructures
highly depend on IT systems, virtually everything today contains a processor.

 Therefore, its quality (or lack thereof) affects us tremendously.
 The potential consequences range from minor inconveniences to global disaster.

 The most cost-effective way to achieve better quality is via RE.
 This fact has been proven again and again over the last 30 years, but it is still not

generally acknowledged.

 RE by itself is no solution, but every solution will contain RE.
 It may be called differently or hidden behind something else, but is there.

 Therefore every person involved in creating software-intensive systems
must be knowledgeable in RE.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
20

Better Software is expensive

 Creating (better) software is expensive and only makes sense
economically, if it significantly exceeds the likely cost.

 The most cost-effective way to achieve better quality software is
almost always through systematic Requirements Engineering.
 Implementing the right requirements necessarily has a better Return on

investment (ROI) than implementing the wrong requirements, no matter
how cheap that is.

 Also, there have been many studies on the economic benefit of RE over the
last 30 years, and the result was always in favor of RE.

 Of course, RE can still fail, diverge, or be overly expensive.

 Looking at the way software is produced, it is obvious that projects
fail mostly due to lack of and faults in Requirements Engineering.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
21

1,5 1

10

60

100

0

20

40

60

80

100

120

During Design Before Code Before Test During Test In Production

Co
st

Un
its

Cost/Benefit of RE

 Professional RE may be expensive, but it is still cheaper than not
doing it: many empirical studies have confirmed that RE has a
(large) positive ROI.

“Finding and fixing a software problem after delivery is often 100 times more
expensive than finding and fixing it during the requirements and design
phase.” [Boehm, Basili: Software Defect Reduction Top 10, S. 135]

[Gilb: Software Engineering Management]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
22

Reason for Cost/Benefit of RE

The longer an error remains undetected
the more follow up errors and aftereffects it causes,
and the more it costs.

[Boehm: Software Engineering economics, 1981, Prentice-Hall]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
23

Another factor for RE efficiency

 Since 1994, the consultancy Standish Group surveys the software
project market every two or three years.
 Their results are published in a paper aptly called the CHAOS report.

 In 1994, 250.000 projects have been surveyed.
 They exhibited a large average overrun of cost (~800%),
 and time (~222%).
 Almost 50% of all projects surveyed

had more than 100% time overrun.

 A project is considered successful,
if it delivers
 acceptable functionality and quality
 in time and on budget.

successful
16%

troubled
53%

aborted
31%

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
24

The CHAOS report over time

 At first sight, the situation seems more or less stable since 1994.
 When looking closer, a slight improvement can be detected.
 This is probably just a statistical artifact, but we cannot find out for sure, since

the report’s methodology is not known in sufficient detail.
 In fact, there has been substantial critique concerning the validity of the

CHAOS report’s methodological soundness.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

0%

20%

40%

60%

80%

100%

1994 1996 1998 2000 2004 2006 2008

failed
challenged
successful

[SYSTEM-Journal 04/2001, Standish Group, Web]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
25

reasons for success

well defied interfaces
and responsibilities
5,3 %

qualified personnel
7,2 %

manageably sized
project phases
7,7 %

realistic expectations
8,2 %

reasonable project planning
9,6 %

clearly set
requirements

13,0 %

management
support

13,9 %

user involvement
15,9 %

others 19,2 %

[Standish Group & Scientific American]

others
20,4 %

obsolete features
7,5 %

inadequate planning
8,1 %

requirements change
8,7 %

lack of
management
support
9,3 %

insufficient
resources

10,6 %

incomplete requirements
13,1 %

unrealistic
expectations

9,9 %

insufficient user involvement 12,4
%

reasons for failure

Requirements are a key factor

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
26

Benefit of Requirements Engineering

 Requirements Engineering as a discipline is effective and efficient
in creating high quality software that does address the client
needs.

 RE is also effective for making projects successful and, if lacking, a
main factor to failure.

 This fact is still not generally acknowledged.
 E.g. in the last years many people in the agile camp deny the necessity of

requirements, notwithstanding the fact that they do quite a lot of RE
activities, if only under a different name.

 A rational and mature discipline of Software Engineering will
incorporate a lot of RE; RE by itself is no solution, but every
solution will contain RE.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
27

Benefit of RE

 The benefit of professional Requirements Engineering to
preventing software faults is very large.
 It is probably the single largest contribution,
 it is cost-effective (i.e., relatively cheap), and
 it is no magic – even you can do it! :-)

 In fact, no sizable piece of software can be created without
handling the requirements adequately.

 However, Requirements Engineering is a necessary condition for
fault-free software, but not a sufficient condition!
 Other things have to come in, too, like Software Process, Architecture, and, of

course Coding and Testing.

©
 2

01
0,

 P
ro

f.
D

r.
H

. S
tö

rr
le

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

DTU course 02264

Chapter 1.3:
A working definition of
Requirements Engineering

Alice: Would you tell me, please, which
way I ought to go from here?

The Cat: That depends a good deal on
where you want to get to.

Alice: I don't much care where.
The Cat: Then it doesn't much matter which

way you go.
Alice: …so long as I get somewhere.
The Cat: Oh, you're sure to do that, if only

you walk long enough.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
29

We want to do precise symbolic computations
like differentiation. Thus we need rational
numbers (Q) instead of floating point numbers.

Example: how RE reduces complexity
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

Goals

Features: Normalize, add, multiply, negate,
convert to Floats, print, …

Qualities: Degree of precision and performance
Constraints: unskilled developers, time pressure

Requirements

Represent fractions as pairs of INT with the con-
vention that the denominator is always positive.
Use Euklids algorithm for normalization

Design

Choose data & control structures, identifier
names, messages, exceptions, tests, …

Implementation

There is an enormous number of alternatives to
consider. It is impossible to find the “right”
solution by just looking at that set.
A stepwise process of successive decisions makes
the choices explicit, thus rational, traceable, and
accountable. This way, the process becomes
much easier.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
30

RE terms and methods
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

Oriented towards company strategy and the
competition, focuses on the market and
application domain

Goals

Oriented towards product or product line,
its subsystems and components, or
individual functions and properties

Requirements

Oriented towards solution, taking into account
The solution space (i.e. technology).
May contain feasibility studies.

Design

The running systems: all decisions are fixed
Change incurs substantial effort

Implementation

Multimedia, PowerPoint
Informal, communication oriented
Create and innovate

Prose and Diagrams

Controlled Languages, tabular text schemas,
weak modeling languages with little formality
Capture and describe

Structured Text

UML, ARIS/EPC, RIVA/RAD, SDL/MSC, Matlab
Potentially full, but de facto often little formality
Elaborate and specify

Modeling Languages

Java, C#, Cobol, PL/1
Executable (i.e. fully formal)
Formalize and determine all details

Programming Languages

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
31

Positivistic view
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

Firewall
(Specification)

“Correctness Problem”

“Pleasantness Problem”

Implemented System

Wishes & Needs

Design & Implementation
 doing it in the right way

Elicitation & Analysis
 doing the right thing

"The choice of functional specifications [...] may
be far from obvious, but their role is clear: it is to
act as a logical firewall between two different
concerns.
The one is the 'pleasantness problem', i.e. the
question of whether an engine meeting the
specification is the engine we would like to have;
the other one is the 'correctness problem', i.e.
the question of how to design an engine meeting
the specification.
I firmly believe that whenever we succeed in
erecting such a firewall, the effort will pay off
handsomely. The reason for this belief of mine is
that the two problems are most effectively
tackled by totally different techniques.“

[Edsger W. Dijkstra:
On the Cruelty of Really Teaching Computing Science,
CACM 12/1989 vol. 32 no.12 pp. 1398-1414]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
32

Locating Requirements Engineering
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
33

The “Twin Peaks” View

Implementation Dependence DependentIndependent

General

Detailed

Level
of

Detail

Solution
Space

Problem
Space

ImplementationProblem Statement
(e.g. tender, specification)

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
34

Definition „Requirement“

 A Requirement is a statement asserting a desired property of a product, process
or the people involved in a process.

Requirement
(1) A condition or capability needed by a user to solve a problem or achieve an

objective.
(2) A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally
imposed documents.

(3) A documented representation of a condition or capability as in (1)or (2).

Requirements Analysis
(1) The process of studying user needs to arrive at a definition of system,

hardware, or software requirements.
(2) The process of studying and refining system, hardware, or software

requirements.
[IEEE 610.12-1990]

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
35

Terminology
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

 The term „Requirement“ is used in many different contexts, and
with many different meanings.
 All of the following are (sometimes) called „Requirement“.
 We will use „Requirement“ only in reference to those notions in the red

boxes in the middle layer.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
36

©
 S

te
ve

 E
as

te
rb

ro
ok

Requirements Engineering (RE)
is a set of activities concerned with
identifying and communicating the
purpose of a software-intensive
system, and the contexts in which it
will be used.

Hence, RE acts as the bridge
between the real world needs
of users, customers, and other
constituencies affected by a
software system, and the
capabilities and opportunities
afforded by software-intensive
technologies.

Definition “Requirements Engineering”

Not a phase
or stage!

Communication
is as important
as the analysis.

RE means
“organizing truth”.

The purpose determi-
nes the qualities and
features of a system :

“form follows function”.

Designers need to
know how and where

the system will be used

Requirements are
partly about what

is needed…
…and partly about

what is possible
Need to identify

all the stakeholders,
not just the customer

and user

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
37

Purpose of RE
©

 2
01

0,
 P

ro
f.

D
r.

H
. S

tö
rr

le

Successful Requirements Engineering can contribute to a project success in
four different ways.
 Knowledge
 Doing requirements engineering creates (or compiles) knowledge necessary to

achieve the objective, including finding out what the objective is.

 Control
 Non-crosscutting features and quality attributes can be used as a unit of project

planning and control in a very straightforward way. Most „agile“ development
methods (e.g., XP, Scrum, FDD, and DSDM) critically rely on this RE usage.

 Contract
 If the specification is written down in great detail and quality, it can be used easily

in contractual agreements between client and supplier.

 Consensus
 If everybody agrees on an issue, there is no need for a specification. If people

disagree, even a written and signed contract can be taken to court. With trust,
knowledge is dispensable, only distrust requires knowledge.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
38

The System/Software Lifecycle

In all phases, RE activities are necessary

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
39

The Early Software Lifecycle in Detail

Project Definition (also: Inception)
 Formulate a project vision, communicate it, and
 gain support from project sponsors.
 Conduct feasibility/viability studies for vital parts.
 Select and tailor a development method/process,
 set up a tool chain, and
 create initial versions of project guidelines.

 Draft an initial realization plan.

Analysis (also: Requirements Analysis)
Understand, validate, and specify:
 the customer's goals and needs, and the system vision
 the system context, stakeholders, and domain architecture;
 the project's constraints and the system's requirements;
 the application domain, its entities, behaviors, and interactions.

DTU course (02264)
Requirements Engineering

Chapter 1: Introduction
40

Prof. Dr. Harald Störrle

Software Engineering Section
Department of Informatics and Mathematical Modeling
Technical University of Denmark
Richard Petersens Plads
Building 322, Room 024
DK-2800 Kgs. Lyngby

hsto@imm.dtu.dk
www.imm.dtu.dk/~hsto

