Chapter

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6:
Requirements Quality Assurance

DTU course 02264

© 2009, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Age n d a Chapter 6: Requirements QA

2

Abstract

= In this chapter we first revisit some famous software failures and discuss how
they relate to Requirements Engineering.

= Next we go through the most common problems and pitfalls when working with
requirements. According to their main trigger, they are classified into people,
process, individual requirement, and requirement set issues.

= We introduce formal inspections and error density estimation as two ,,V&V“
techniques and conclude with remarks on the nature of specifications.

Contents

1. Notions of Quality

Ot

Design Inspection

People Issues

Process Issues

Individual Requirement Issues

Requirement Sets Issues

N O v AW

Error Density and Estimation

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.1:
Notions of Quality

DTU course 02264

Some problems with requirements

A fast car

Shayn Fhe Sheep

door
The bc’c,cle from 1"11(sl‘op nc;nl'

X varivm
The 7ellow fish from +he ag

The +07 Hhat Miriam brw,l‘-l' +o

Kindergarden 7(:41»1&7

-

What is a good requirement?

= Any requirements must satisfy the following quality fundamental
criteria. It must be

Correct (technically and legally possible)

Complete (express a whole idea or statement)

Clear (unambiguous and not confusing)

Consistent (not in conflict with other requirements)

Verifiable (it can be determined that the system meets the requirement)
Traceable (uniquely identified and tracked)

Feasible (can be accomplished within cost and schedule)

Modular (can be changed without excessive impact)

Design-independent (do not pose specific solutions on design)
Modifiable (can be changed to adapt to new knowledge)
Usable (during Operation/Maintenance)

= Many of these properties have been defined a long time ago (e.g.,
in the IEEE Standard 830), but they are still not common-place.

Requirements Quality

vs. Quality Requirements

= Quality requirements refer to those requirements that are
concerned with the quality of the system under design.

= Requirements quality refers to the quality of the models,
documents, and other artifacts created as part of the RE process.

= The quality of the system under design is, obviously, affected by
the quality of the RE, in particular the quality of the requirements
as such.

= Without high quality requirements, it is impossible to create a high quality
system.

= However, the opposite is not true, unfortunately: high quality requirements
do not guarantee a high quality system built based on them.

= Either way, high quality of requirements is a desirable goal.

Constructive vs. Destructive QA

= Traditionally, quality is seen as the absence of faults in delivered
products, so that high quality may be assured in two different
ways.
= By removing faulty parts after production (destructive QA); or
= by creating parts with high quality to begin with (constructive QA).

= |n that sense, quality can be “tested into” a manufacturing
product.

This is clearly a wasteful
process: either, rejected
items are destroyed, or all items

quality all items
they have to be repaired. Pproduced items = delivered
' 100% 90% 100%

In the case of software,
they have to be program-
med from scratch again,
or debugged.

faulty repaired
20% 10%

Constructive vs. Destructive QA

= |n manufacturing, however, the wastefulness of destructive QA is
mitigated by large series of identical products.

" |n software development, all items and their requirements are inherently
different — otherwise, we’d just copy them.

= In some sense, destructive QA can be adopted for software, too.

= Forinstance, the Space Shuttle software was created twice, and was running
concurrently.

= Explorative prototyping can be seen as an attempt to emulate destructive QA
while avoiding some of the cost.

= Highly iterative processes also exhibit some characteristics of this approach,
but the only benefit of repetition is in learning of the underlying (mental) skill
of programming,

An Alternative View on Quality

= Since the 2000‘s, another view of quality has gained popularity, together
with light weight (“agile”) development methods, favoring small cycles &
process improvement over (“Abandon perfection for execution!”).

= This approach is often justified by reference to the manufacturing world, in
particular, the automotive industry for their appreciable levels of quality,
compared to the number of units produced.

= This comparison is deeply flawed since the error reduction strategies in the
manufacturing industry (and others) apply to production rather than
development.

= The development process in the automotive industry is highly restrictive, and
today uses almost entirely the model-based paradigm to software development.

= This is often believed to deliver more value quicker, at better quality.

= For a very small class of systems/projects, short-term improvements can be
realized, but after some time, the competitive edge disappears.

= “l have seen many such projects, and they all had their good reasons to go agile.
And it worked, for them! After a year or so, however, they hit a stone wall.”
Francis Bordeleau, Ericsson, MODELS Keynote 2014

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.2:
Design Inspection

DTU course 02264

Fagan-Style Inspections

= An Inspection is a structured procedure to find faults in artifacts.

= |nspections are mostly used for code and software architecture, but they may be
used in all areas of Software Engineering.

= |n contrast to Reviews (which are much less formal and structured), there are very
strict and detailed instructions for inspections (e.g. concerning roles, process,
constraints).

= |nspections may be used at any time during the development and for any kind of
artifact.

= “Proper” Inspections...
= use goal-oriented checklists,
= define roles for members of the inspection team, and
= keep statistics on discovered faults and duration of inspection.

= |Inspections target at substantial faults (“major defects”).

= A major defect is one that can cause significantly increased cost if it is not found
now.

= Minor defects like typos, deviations from conventions etc. can often be found in
cheaper and faster ways (i.e. spell checkers, style checkers/auto formatters).

Inspections are effective and efficient

= More than 60% of all defects can be found by informal inspections.
= Fagan, 1960

= More than 90% of al defects can be found by formal inspections.
= Mills et al., 1987

= |nspections are more effec tive and cheaper than tests.
= Selby & Basili, 1987
= Gilb & Graham, 1993

= |nspections have been identified as the root cause of substantial
increases in productivity (10...30%).
= 14% (ATT Bell Labs);
= 25% (Aetna Insurance Comp.);
= 30% (Gilb: Sw. Metrics)
= op cit. Humphreys: Managing the Software Process, p.186

Manual Inspection vs. Automated Test

= [nspections can be applied to all kinds of artifacts, automated tests
require a running system.

" |nspections can be applied to all artifacts and any time during development,
in particular in the early stages, when defect removal is most valuable.

= Tests can only show the presence of errors, inspections usually
provide improvement suggestions, too.

= |f a test finds an issue, something very similar to an inspection has to be
conducted to define and resolve the issue.

= Many tests can be automated, so that it is very cheap to repeat
them. Repeating an inspection is as expensive as the first round.

= |f some QA activity is to be repeated many times, automated tests are
cheaper. if it is to be repeated only a few times, inspection is cheaper.

© 2010, Prof. Dr. H. Storrle

Inspection Process

Preparation

Inspection Meeting

Follow-Up work

Inspection team

g

[Determine Rework J—

Change Requests

P

[Improve Artifact]

=
(F2=0)

Update Inspection
Statistics

®

]

|Proee:s Feedback

Prioritize Defects j

\

Moderator Author Inspectors Scribe
[Plan Inspection j sl
I Artifact \[/ Prepare for
/l\ Inspection
J \
L AR
[Read Artifact Aloudj [Inspect Artifact j [Log Defects]
L)
\L \L Inspection Log

DTU course (02264)
Requirements Engineering
Chapter 6: Requirements QA
14

Define inspection subject
(artifact/sections, version, goals)
Determine inspection team

(peaple, roles)

Organise meeting and distribute material

at most 2h, not after lunch

inspection rates
Code: 100-150 NLoC/h
Prose Spec: 1-5 p/h
Prose: 7-25 p/h
Maodels: 100-200 Model Elements/h
or 2-3 Diagrams/h

Fault rates
20-40 major defects/h

suggest improvements
or further examinations

provide feedback for the inspection
process as such, e.g. concerning the
guidelines or inspection rates

[Gilb, Graham: Software Inspection, Addison-Wesley, 1993]

Inspection Roles

= There are four roles in the inspection process:

= Author/Reader: a person presenting the artifact and reading it to the
inspection team.

= Moderator: organizes the process, guides the discussion,
= Scribe: helps the moderator by taking care of the writing.

" |nspector: a person assessing the artifact, taking notes in advance.

= A natural person may take on several different roles.

= Only the author is an exception: s/he may only act as an inspector.

= Only for large/controversial inspections is a scribe necessary.

Moderator Role

= Preparation

= Prepare and organize the review, select reviewers, set deadlines, distribute
artifacts, guidelines, and forms.

= Compiles the inspector comments before the inspection meeting, fills in
review entry checklist.

= |Inspection Meeting
= During session moderator leads the discussion.

= |f remarks are made up during inspection or if inspectors remarks are
modified, he (or the scribe) notes them down and this one is referred to in
the remarks section.

" Follow-Up work

= The moderator staples sheets together in right order, files and distributes

them to the participants. He enters the essential quantitative data into a
spreadsheet template.

= He keeps track of the rework assignments and signs off the whole process in
the end.

Inspection Artifacts

" The most important steps
in the inspection are
supported by forms.

= Asimple and effective way
of enforcing a process and
making sure all important
details are in place.
" The inspection guideline
explains the forms, their
fields, and how they are

supposed to be filled.

Inspection Preparation Summary

1) Project
Tite

||smp | |:onru

| — oue |||-u_w.-.:vnmmng | |Rumaue ||.=,—pm;m~|_pm |

Individual Inspection Preparation

1) Project
Tite

| | |smp | |:onru

2) Inspector

wama ||srm._n | |_r.mucrsmnr_nmn:ngn Evtension

. Inspection Process Summary
4) Assigned Rey 3) Preﬂi::f’ir:ﬂm 1) Project
Inspector 4 RRRERS
C [|
4) Results —
T 2) Timeline
cue [I
O g
Scrit I— l:l
Author E El
5) Commen t e L O
___________ _ . 0o 0O
___________ | e o o
........... —| 4) Artifact inspect ovaitanie resay
___________ | Type. fiorme Comy Fotl |_r Version I: l:l
| R — _ | H
Continy ¥
o= _ L O O
___________ i] 0 O
........... _ o
____________ C O O
_________ 5) Inspection Criteria
|:| Continued Guideine | Appictwpn = Tocts
6) Status & Results
|:|Inspecri oooooo uctzd l:lnemlksdneduled l:l RRRRR
[Moderstor signature

Selection of Inspection Targets

= |Inspections are cost-effective, but they are still effective. In order to
maximize the benefit from an inspection, the inspection artifact should
be selected carefully.

= Select an artifact, that is
= Central, i.e. one where mistakes and omissions will have a great impact;
= |mprovable, i.e. one where you expect (or hope for) improvements; and
= Critical, i.e. one that realizes requirements of great importance.

= Prepare the artifact such that
= the artifact is accepted for inspection (rejection is very embarassing);
= there are no trivial complaints (typos, formatting); and
= The inspectors understand the what, how, and why of the inspection.

= Handing in sloppy, trivial, risk-free, or irrelevant artifacts is a bad idea.

= Make sure your inspectors understand what you want as developers want to get
out of the inspection and why.

Inspection Caveats

= The artifact is being inspected, not the author!
= Be tough on faults, but gentle on people.

= Faults and remedies are not just discussed but written down,
followed up on, and eventually signed off.

= All team members are informed of all steps until the end.

= They are responsible for the outcome, all of them, collectively.

= [tis essential that the inspectors prepare for the inspection.
= Read and understand the material (the artifact) at hand.

= Use guidelines and/or checklists to direct your attention, but don’t let them
keep you from using your common sense.

= The moderator compiles inspection remarks in advance to find “hot spots”
and guide discussion.

= Don’t start the inspection unless everybody is prepared.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.3:
People Issues

DTU course 02264

. iy
Gold-Plating f
= Plating water taps with gold does not alt unction in any
perceivable way, but does add to the cost considerably.

= From an engineering point of view, this is to be avoided as it is not cost-
effective.

"= From a marketing point of view, it may be just what is needed, though.

= The Volere-Approach tries to achieve this using two separate
dimensions for the customer satisfaction and dissatisfaction.

= This is based on results from psychology (Motivator/Hygiene-Theory) that
seemingly opposites are often at the ends of two different scales altogether.

= (Classical examples include happiness/unhappiness in relationships or jobs.

= Forinstance, great mutual love will cause happiness. Incompatibility of living
styles (responsibilities, fidelity, leisure activities, ...) will cause unhappiness.

= Experiencing happiness and unhappiness at the same time is considered a
schizophrenic state.

Avoiding Gold-Plating

= Thus, prioritizing requirements
purely on the basis of satisfaction customer
scores is likely to suffer from gold

plating. dissatisfaction

high low

= There is no doubt that class A
requirements ought to be imple-
mented, and that class D require-
ments may be deferred: they are
gold plating requirements.

Yl A

low D

customer
satisfaction

= But What about C|aSSES B and C? = So, the overall priority would be
= A-B-C-D for selling the project

= Class B requirements are so called * B-A-C-Dforreduced overall cost
bread-and-butter-requirements: where, typically, C and D never get
features that must be in place, but implemented.
do not add to the attractiveness.

Developer Gold-Plating

= Naturally, many developers are more interested in the technology
than in the solution.

= They may want to explore their language/framework/IDE rather than the
client's problem space.

= Therefore, solutions may pay undue attention to technical detail
rather than the big picture or customer value.

= Also, complex technical solutions are preferred over minor
changes in the business requirements and procedures making
these solutions obsolete.

Silver Bullet Syndrome

= Developers and technical managers often believe in solutions that
resolve all issues magically.

= Forinstance, they might say something like this.

= “Using UML will improve our modeling”.

"Using XP will speed up our development".

»If only we get the requirements right, the project will be successful.”

,,By using Java, we have eliminated all portability issues.”

,Making Eclipse our standard IDE will double our productivity”.

= But as we all (should) know ,, There is no Silver Bullet” (F.P. Brooks
in ,,The mythical man-month®).

= Believing in it anyway is a sign of inadequate professional standards and lack
of knowledge.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.4:
Process Issues

DTU course 02264

Requirements Creep

= Also called ,,Scope Creep” or , Feature Creep”.

= Qver time, more and more features are included in the scope of the project
so that it never reaches the end.

= Empirical studies show that the yearly rate of changed and/or added
requirements (,,churn®) may be around 3-10%.

= QOlder studies suggest that by the deployment, 25% of all requirements have
changed (Capers Jones, 1994).

= Usually, this is a continuous process, where people change the
requirements process in an uncontrolled way.

= Sometimes, however, requirements are also collected in several places. When
a new collection is ,, discovered”, sudden changes to the requirements
specification may result.

= @Generally, this is a process problem and may be overcome by a
change process.

An Industrial Change Control Process

= This activity diagram describes the process of entering and
managing requirements over a prolonged period.

= It could equally well be used for handling bugs/issues.

" |n order to allow for names, final states are marked with a small diagonal
slash instead of the proper notation.

m Requirements Change Process /

Requirements Engineer Changgaegntrol Developers

submit N\ consider under
QH[entered J /L review
~ Q.
reject rejected

cancel (| cancelled
y/

reject duplicate
r/

concluded

'

reassign

reconsider

103/a.
VEIE)
[ubisso

assigned

deferred

QL
under
constructio

Analysis Paralysis

= Sometimes, requirements elicitation and/or elaboration drags on
and on, without the completion ever getting closer.

= Most of the tax software in Germany was created in the 1960s and 1970s in
Cobol and Assembler running on mainframe computers.

= The FISCUS project started 1991 with the intention of replacing all of this
software over the course of a decade. After 10 years without adequate
results, the project was reshaped (“fiscus GmbH”), and very nearly aborted in
2005.

= By then, the project had delivered “50,000 pages of documentation and 1.6
Million Lines of mostly useless code”. Depending on the source, estimates of
the cost vary between 250-900, 330-900, and 500 mio€, plus 4.5 bn€ in

unclaimed taxes.

= Common reasons for such phenomena include uncertainty and fear
of being made responsible personally.

= This is, ultimately, a problem of organizational culture.

Sleeping Beauty

Sometimes, there are important requirements that are truly
essential to the system, but considered uninteresting, obvious, or
self-evident, and thus may be forgotten.

" |n developing the LMS case study in the RE course 2009, it went unnoticed by
25 students for two months that leases and returns will need to be recorded,
somehow.

= QObviously this is an essential requirement: without it, most of the core
functions will not work.
Possible reasons are over-motivation, or over-excitement on behalf
of the development personnel that make “basic” requirements are
simply forgot.

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.5:
Individual Requirement Issues

DTU course 02264

Over-Specification

= Some requirements may be too specific, defining a solution when
all they should do is asking for one.
= Assume the requirement were
Rla: “The system must provide a tape drive unit”.

= Butis it really a tape drive unit that is required? Probably, we really need
something to backup and/or archive our data.

= So, the requirements should have just been
R1b: “The system must provide an archiving facility for data.”

= While being more abstract, R1b also implies additional aspects not
covered by Rla.
= For instance, the purpose (archiving or backup), suitable software, and so on.

= When thinking about these, we might also become aware that we need to be
specific about the amount of data we need to archive, the price, and so on.

= Realizing this, we may improve R1 even further.

Rlc: “The system must provide an archiving facility for data capable of
handling 15GB/month at a price of less than 100€/GB.”

Over-Specification

= Sometimes, it is hard to detect instances of over-specification.

= There may be a common and generally accepted way of achieving some goal
so that everybody confuses the goal with achieving it.

= QObserve that , being commonly used” does not imply quality.

R2a: Every reader is identified to the LMS by his CPR-number.

= This is a blatant violation of data protections laws, irrespective of the fact that
in Denmark everybody wants your CPR number all of the time and for
everything.

= The CPR number certainly identifies the reader, but it also does identify the
reader in many other ways and contexts, which is strictly unwanted.

R2b: Every reader is identified to the LMS by an unique identifier.

R3a: Every user is authenticated by login/password.
= But what about personal presence? What about young readers?
R3b: Every user is authenticated before he can do reader actions.

Premature Commitment

= Model based specification has an inherent tendency towards
specifying solutions rather than problems.

= Many people with a technology background find it hard to step into the shoes
of people without this background and take on their perspective, temporarily.

= There are several methods we have considered that contribute to
address this premature commitment.
= Creating Personas helps to understand end-users.
= Talking about goals rather than features helps understanding stakeholders.
= Explicitly assigning layers to features, goals etc. highlights gaps and clutter.

= Social interaction (i.e., anything from acting out to formal inspections) adds
new perspectives.

= All of these, however, are not sufficient. We need to constantly
monitor our activities, and take a step back when necessary.

Ambiguity

= Natural language has many advantages as a language for
specifying requirements.

= Possibly its most important benefit is its expressiveness: there is
no other language that is more expressive (for this purpose).

= However, this very power is also the greatest weakness of natural
language: natural languages are ambiguous, and prone to errors.

Detecting Ambiguity in Prose (1)

= There are many heuristic techniques that help finding ambiguity in
(written) text.

= They all imply considerable effort, but recall that putting in effort up front
pays later on.

H1: Prose Review

= Find people with different backgrounds (including software people, domain
specialists and user communities).

= Make sure, they’re independent (i.e. not the authors).

= Ask, what would happen to the structure and behavior of the system, if a
requirement were removed.

= Check references for clarity (e.g. “update the field”... which field? “the system
will then”... when?)

= State a requirement in two different ways (possibly, one of them formal) and
check whether people understand both statements as being identical.

H. Storrle

© 2009, Prof. Dr.

DTU course (02264)
Requirements Engineering

Detecting Ambiguity in Prose (2) Chaptor & Requirements O

36

H2: Effort Estimation Convergence
= Find a set of experienced, competent professionals.
= Pick a requirement or set of requirements.
= Ask the experts to estimate effort, cost, and duration of implementing the set
of requirements.

= |f the estimates vary greatly, ambiguity might be the cause.
= Small to medium sized differences are likely.
= If only a few estimates differ, it might be individual variations.

= Estimates that differ by a factor of 10 or more and that have been estimated by several
people suggest widely different interpretations and, therefore, the presence of ambiguity.

H3: Memorization

= Ask different people to memorize a specific issue (e.g., a requirement) and
then later ask them to recall that issue verbatim.

= Parts that were not remembered well by the participants are likely to be
places where meaning is not clear and therefore a source of problem
statement ambiguity and/or vagueness.

H. Storrle

© 2009, Prof. Dr.

DTU course (02264)
Requirements Engineering

Detecting Ambiguity in Prose (3) Chapter & Reauirements OA

37

H4: Shift emphasis

= Systematically shift emphasis of a requirement statement and check whether
the meaning changes.

= So we will get

“Mary had a little lamb...” it was hers, not someone else’s.
“Mary had a little lamb...” but she doesn’t have it anymore.
“Mary had a little lamb...” just one, not several.

“Mary had a little lamb...” it was very, very small.

“Mary had a little lamb...” neither a goat nor a chicken.
“Mary had a little lamb...” but John still has his.

H. Storrle

© 2009, Prof. Dr.

DTU course (02264)
Detecting Ambiguity in Prose (4) Chapter &: Requirements A

38

H5: Use Synonyms

= Systematically replace keywords by synonyms and check whether the
meaning changes.

= Here are some synonyms for “had” and “lamb” from the dictionary:
Had - Held in possession, acquired, accepted, marked or characterized by, held in a
position of disadvantage, tricked or fooled, beget, ate, ...
Lamb - A young sheep, a gentle person, a pet, a person easily cheated or deceived (esp.
in trading securities), ...
= Thus we may get
“Mary had a little lamb.” = “Mary conned the trader.”

H6: Shift Context

= Add another phrase and see if the meaning of the first one changed.

= So we may get
“Mary had a little lamb.” = “Mary had a little lamb and John had a lot of pasta.”

Acceptance tests reduce vagueness

= Even if a requirements is expressed with all due diligence, it may
still be unclear, just when a system satisfies this requirement. In
other words, the requirement is vague.

* The main measure against requirements vagueness are acceptance
criteria (“acceptance tests”) for each requirement.

Acceptance criteria must be explicit and operational, that is, executable in a
repeatable and predictable way by man or machine.

The most reliable way to achieve this is by writing test cases: they can be run
at virtually no extra cost as often as we like.

However, writing them is expensive, and whenever the system changes, test
cases must be changed with it.

The fastest and (initially) cheapest way to establish acceptance tests is
manual testing.

However, this is inherently unreliable and soon becomes tedious (and thus
error-prone), and expensive.

Informal Acceptance Tests

= Any acceptance test consists of three parts:

= the trigger or pre-condition, and possibly some parameters;
= an operational procedure or action to be tested

= the expected result, side effect, or post-condition.
R7: Librarians may remove or deactivate entries to the wish list.
T7.a: Trigger: -
Action: 1) login as reader, open item on wish list, log off
2) log in as librarian, open item from wish list, delete, log off
3) log in as reader, look for same item from wish list, log off
Outcome: On second log in, the item shall not be found any more.
Instead, a message shall appear indicating what happened.

= Very simple actions might testing for properties indirectly. This can
be cheap and effective.
R6: The application shall not contain absolute file paths.
T6.a: Trigger: -
Action: 1) Deploy application as self-contained jar to two different machines
running WinXP and Linux.

2) Start the application, load an example, modify it, and save it again.
Outcome: no errors

More Variants of Acceptance Tests

= Test cases may test several requirements collectively when

appropriate.
= R4a: Every Tuesday at 8.00, LMS creates a list containing all the media that have been
due in the preceding 7 days.
= R4b: Forallitems in this list, a reminder is issued to the respective readers.
= T4.1: Trigger: Tuesday, 8.00
Action: Compare a manually created list with the system output.
Result: List of all overdue media items, grouped by lender.

= [nstead of trigger and outcome, pre- and postconditions may be

used, typically expressed in terms of a system state.
= R5: The fee for late returning is computed based on the lenders’ status.
= T5.1: State: L has expired 2 days ago, R has status ,,Proust”, M is currently reserved.?
Action: terminateL
State: R.fees’=R.fees+fee(, Proust”,2)?

1 Lease L refers to medium M leased by reader R. 2 x’ marks the next state of a variable x.

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Semi-Formal Acceptance Tests Chapter 6: Requirements QA

42

Adding formality supports the transition to coded test cases.

R [logged in] R searches the catalog for M, M [reserved for R]

M [lendable] R reserves M
T4.2 R [logged in] R scans M, M [leased by R],

M [lendable, not lent] R leases M appropriate record written
T4.3 R [logged in] PL scans M, L(R,M) [terminated],

M [leased by R] PL returns M appropriate record written
T4.4 R [logged in], R selects M from his account, L(R,M) [prolonged]

M [leased by R, not reserved], R prolongs M
L(R, M) [not expired]

= Define abbreviations for recurring objects or - Priming denotes the next state ofa
variables. variable.
= M: Medium . R.fees’ = R.fees + x
= R:Reader
*= L(R, M) : Lease of M by R u Refer to other acceptance test cases when
possible.
= Postfixing o with [a] says that o is in state a. = like T2: like the same column of row T2
= M [leased] : M is leased . call T2 : invocation of case T2 (conjunction
of pre/post-conditions, sequencing of
actions).

= Use dot notation to specify individual fields or

p:opert.les (_)f Ob,jeCts' = Use comma for conjunction and sequential
M.isbn : the isb number of M composition.

Limitations of Acceptance Tests

= Besides pure functionality (i.e. features), acceptance tests may also be
used to check many quality attributes such as performance or reliability.

= Other properties are not so easily tested, e.g.:
= end-to-end performance, stress resistance/resilience;
= maintainability, code quality;
= input validation, usability, accessibility.

= For these kinds of requirements, alternative test methods are needed:

= Specialized testing tools and manual test scripts are expensive, and often require
large effort to get started.

= Web applications and RIAs may often be tested by specialized Browser-plugins,
but these are usually platform dependent, i.e. not easily portable.

= Adherence to styleguides (e.g., concerning GUI, Coding) can be checked by
reviews with appropriate checklists, or specialized tools.

= Usability may be tested by dedicated usability tests (very expensive), or expert
reviews (not quite as reliable).

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.6:
Requirement Set Issues

DTU course 02264

Feature Interaction

= A Feature Interaction occurs, if two features that are fine
individually lead to unwanted, unspecified, or nondeterministic
behavior, when used together.

= This problem has first been noticed in the telecom domain, but
occurs almost naturally from a certain level of system complexity
on.

= Theoretically, if features are specified formally, feature interaction
can be detected by formal space exploration techniques such as
Model Checking.

= Practically, however, feature interaction occurs in complex
systems, that is, they are usually neither formally specified, not is
the state space small enough to allow exploration of a significant
part of it.

H. Storrle

© 2010, Prof. Dr.

DTU course (02264)

Feature Interaction CD/CLIP o o reme e

46

= A Feature Interaction occurs, if two features together lead to
unwanted behavior, although they are fine individually.

= This problem has first been noticed in the telecom domain, but occurs in
many places.

= Consider these two common telephone network features.

CD (Call deflection): CLIP (Calling Line Identification Presentation):
unanswered incoming calls are forwarded to another the caller’s number is presented to the callee.

line which behaves just as the one originally called. Also called call screening.

Also called call forwarding.

Cecilie

Anders

CLIP [OFF] CLIP [ON], CD = Cecilie
= Anders’ number will not be shown to Bjarne, but if Bjarne forwards to Cecilie,

will Cecilie see Anders’ number or not?

© 2010, Prof. Dr. H. Storrle

DTU course (02264)

Feature Interaction CD/CW e

47

= Now consider a more complicated case, where CD and Call Waiting
are activated at the same phone.

CW (Call Waiting):
If the line is busy and a new call arrives, the callee is
notified and decides which call to continue.

Cecilie/ D,
Amali
E matle CD - Cecilie

= Anders calls Bjarne who picks up the phone. While they are talking, Amalie
calls Bjarne.

= Should Bjarne be notifiedher or Amalies call be forwarded to Cecilie?

More Fl examples in other domains

= LMS

= Suppose the chief librarina decreases the maximum number of leased media
for your account type from 15 to 10 while you have leased 12 books.

= Do you have to pay an overdraft fee? Will your account be blocked?

= Automotive

= Suppose your car has automatic gear shift (e.g., US market, big engines) with
auto-brake release (“Anfahr-Assistent”) and air conditioning.

= Suppose further you are standing in a queue on a slope. Switching on the air
conditioning increases engine load (rotations), which then triggers auto-brake
release, and your car rolls backwards, down the slope.

Tracing

= During requirements elicitation and elaboration, the focus is on
getting the right requirements and getting them right.

= Relationships between the requirements are not so important, although e.g.
relationships between goals and features/quality attributes may be used to
justify and derive requirements.

* When implementing and maintaining the requirements, however,
the relationships are predominant as they capture knowledge
needed when changing requirements.

= Here are some dependency types and the activities they support
= depends on, supports = Removal/Change
= Rationale, conflicts/obstructs = Prioritization/Planning
= Part of 2 Refinement / Elaboration

Cross-cutting Requirements

= Requirements that affect many parts of the system, the software
architecture, or just the elaboration/implementation of other features
are called cross-cutting requirements.

= Therefore, cross-cutting requirements are difficult to add or change.

= Most quality attributes are cross-cutting, e.g. performance or usability.

= But there are also cross-cutting features, e.g. Undo/Redo, or Auto-Save vs.
Response time.

= Consider a personal backup application that saves and restores files
from a PC to some medium.

= Typical features are automatic jobs at predefined times, encryption, validation,
restoring/inspection of backups.

= Typical qualities are reliability, ease of use, and speed.

= However, the requirement “During backup and requirement, the user can keep
working with the files /drives that are being backed up” is obviously very
important for many users, but it is difficult to add once the system has been
designed/created.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 6.7:
Error Density and Estimation

DTU course 02264

Error Density

= We can never know how many faults there are in an artefact we
have not yet studied. In fact, even if we have thoroughly reviewed
an artifact or tested some systems, we cannot be sure about the
number of errors it contains.

= However, we can estimate the number of residual errorsin a
systematic way, based on stochastic sampling.

= This will help us assess the quality of a system with a given degree
of certainty.

= The base argument goes like this: if k out of n items are faulty,
then there will be x times as many faults in x times as many items.

DTU course (02264)

Size of area by Monte-Carlo-Technique .o o

" You can easily calculate the
area of regular shapes like
rectangles, but can you do it
for irregular shapes, too?

* The Monte-Carlo-Technique

can.

Place an arbitrary area of
known size around the shape.

Drop an arbitrary number of
points in this area.

Select an arbitrary area of
known size inside the shape,
and count the number of points
in it.

Compute the ratio of points in
the various areas and compare
it to the ratio of the known
sizes.

53

pgrey _ agrey

pred ared
pgrev

d
red
pred

= Agrey

Where

a .4 = area of red rectangle

a,.ey = area of greyshape

P,.q = NumMber of points in red rectangle

Pgrey = NUMber of points in grey area

DTU course (02264)
Requirements Engineering

Monte-Carlo estimation of residual
Chapter 6: Requirements QA
faults

= We can apply this technique
to estimate fault density.
" |nsert a known number of

random bugs (“seeding” or
“injection”).

= Test and record the faults found.

= Remove all found faults.

= Example

= Suppose there we seed 10 faults.

= During test, we find 120 faults, 6
of which were seeded.

= \We estimate that there is a total
of 10*120/6 = 200 faults.

= Weremove 120+10-6 =124
faults.

* The software is shipped with 76
remaining faults.

____ unknown number
of faults in program

____ known number
of seeded bugs

-=-= fault

detected seeded faults seeded faults
detected faults "~ total faults in system

detected faults
detected seeded faults

total faults in system = seeded faults

total faults in system

- detected faults
- seeded faults
+ detected seeded faults
faults delivered

Limits to the Monte-Carlo-Approach

= Enchanting as it may seem, the Monte-Carlo-approach does have

its limits.

= Faults have different severity: 100 minor bugs are less important than one
show-stopper.

= Faults may hide other faults so that removing faults increases their number,
and sometimes fixing a mistake introduces a new one.

= Some faults are easily found (e.g. the classical one-off-mistake), while some
are difficult to track down.

= Some bugs occur only rarely or in special situations (e.g. race conditions).

= Still, there is no better and more proven way to estimate residual
errors.

Error Estimation by Finite Sampling

= Assume that two inspectors /,
and /, find n, and n, major

n,: number of major n,: number of major
issues when preparing for an issues found by /, issues found by /,
inspection. To some degree, \ /
their findings overlap, that is,
the number of issues they major major
both find n, ,>0. found by /, W found b:

found E\ilz/

* Then we can estimate the -
true number N of major issues

based on the assumptions n,,: number of major issues
that found by both inspectors

= the two inspectors are
stochastically independent, and

= all errors are found with the
same probabilities p, and p, by
inspectors /, and /.

© 2010, Prof. Dr. H. Storrle

DTU course (02264)
Requirements Engineering

Error Estimation by Finite Sampling Chomter 6 Reaements O

57

= Under these assumptions, each of the

n, errors found by /, will be
independently found by /; with
probability p,.

= Because /; found n, , of those n, errors,
it is reasonable to estimate
N .
p, for p,with

n,: number of major n,: number of major
issues found by /, issues found by /,

A _ hg,
P;=
h,

On the other hand, since /, found n, of

the N errors, it is also justified to n, ,: number of major issues
found by both inspectors

assume
I
1IN
and thus "
n,, _ ny h;"n,

Problems & Solutions

= The two inspectors find no overlap.

= We assume there is one major issue they both found and estimate N=n,*n,.

* There are three inspectors but only two of them overlap (/, and I,,
say).

= As asimple heuristic, assume /, and /5 (two non-overlapping inspections) to be
just one inspection and estimate

n,*(ny+n,)
Ny (243
= There are three inspectors and they all overlap.

= The proper solution is complicated. As a simple heuristic, apply the method to
all pairs and take the maximum of the estimates.

N =

Applications of error injection

= The error injection technique can be used in multiple ways in the
area of requirements engineering quality assurance.

" |nject errors to any of the artifacts created and keep track of where they were
injected. This can be applied for various error levels.

= For instance, for personas, we could
= add a mistake to an existing persona or persona set;
= remove an important aspect from a persona;
" remove a necessary persona or add a inappropriate/superfluous/erroneous persona.

= Comparing the number of seeded errors and found errors as
shown above, we can estimate
= the number of residual errors in the artifact, and thus
= the thoroughness of the inspection.

= We could also trace effective and ineffective guidelines, and by
reducing their number possibly reduce the overall effort.

	Chapter 6:�Requirements Quality Assurance
	Agenda
	Chapter 6.1:�Notions of Quality
	Some problems with requirements
	What is a good requirement?
	Requirements Quality�vs. Quality Requirements
	Constructive vs. Destructive QA
	Constructive vs. Destructive QA
	An Alternative View on Quality
	Chapter 6.2:�Design Inspection
	Fagan-Style Inspections
	Inspections are effective and efficient
	Manual Inspection vs. Automated Test
	Inspection Process
	Inspection Roles
	Moderator Role
	Inspection Artifacts
	Selection of Inspection Targets
	Inspection Caveats
	Chapter 6.3:�People Issues
	Gold-Plating
	Avoiding Gold-Plating
	Developer Gold-Plating
	Silver Bullet Syndrome
	Chapter 6.4:�Process Issues
	Requirements Creep
	An Industrial Change Control Process
	Analysis Paralysis
	Sleeping Beauty
	Chapter 6.5:�Individual Requirement Issues
	Over-Specification
	Over-Specification
	Premature Commitment
	Ambiguity
	Detecting Ambiguity in Prose (1)
	Detecting Ambiguity in Prose (2)
	Detecting Ambiguity in Prose (3)
	Detecting Ambiguity in Prose (4)
	Acceptance tests reduce vagueness
	Informal Acceptance Tests
	More Variants of Acceptance Tests
	Semi-Formal Acceptance Tests
	Limitations of Acceptance Tests
	Chapter 6.6:�Requirement Set Issues
	Feature Interaction
	Feature Interaction CD/CLIP
	Feature Interaction CD/CW
	More FI examples in other domains
	Tracing
	Cross-cutting Requirements
	Chapter 6.7:�Error Density and Estimation
	Error Density
	Size of area by Monte-Carlo-Technique
	Monte-Carlo estimation of residual faults
	Limits to the Monte-Carlo-Approach
	Error Estimation by Finite Sampling
	Error Estimation by Finite Sampling
	Problems & Solutions
	Applications of error injection

