
Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 8: 
Specifying Quality Attributes 
(“Non-Functional Requirements”) 

Chapter 8 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
2 

Agenda 
Abstract 
 So far, we have dealt with functional requirements, but we have not 

covered non-functional requirements, more appropriately described as 
Required Quality Attributes (RQAs). 

 They are by no means less important than functional and interface 
requirements, quite the opposite: if major RQAs are not addressed, an 
implementation is very likely to completely unusable, irrespective of 
how good the rest may be. 

 Also, because RQAs or very often crosscutting concerns, it is much more 
difficult to retrofit an existing system with a new RQA than with (many) 
Features. 
 

Contents 
1. Issues of Software Qualities and RQAs 
2. Select and Justify Qualities 
3. Making Qualities Concrete and Measureable 
4. Determining the right level of RQAs 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 8.1: 
Issues of Software Qualities and  
Required Quality Attributes 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
4 

Qualities of Software Systems 

 There are many different qualities of software systems. 
 Quality is by itself a vague and subjective term. In the philosophy of mind, 

“Qualia” is a technical term referring to a subjective, conscious experience, 
such as pain, color perception, or the taste of wine. 

 Another account is “the ways things seem to us.“ (D.C. Dennett). 
 

 Assume, we observe issues with the LMS and want to describe 
them in terms of the qualities that are missing from the system. 

Observation Lacking Qualities 

Users have problems specifying catalog searches. Usability 

Processing queries takes too long. Performance 

LMS sometimes crashes. Availability 
Reliability 

My catalog search queries become publicly accessible. Integrity 

My catalog search queries become publicly accessible. Maintainability 

My catalog search queries become publicly accessible. Operatability 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
5 

Examples of RQAs 
 In order to ask for qualities in a system under specification, we 

specify Required Quality Attributes (RQAs). 
 RQAs are also known as non-functional requirements or “ilities”. 

 
 Typical (bad) examples for RQAs are  

 “The system should be easy to use”,   
 “The system should be very fast”,   
 “The system should be highly reliable“, or  
 “The system should protect the privacy of its users”. 

 
 In comparison to features, RQAs are more difficult to handle. 

 This includes elicitation, measurement, estimation, correction, and planning. 
 Adding insult to injury, we have less tools and theory to help us with RQAs, 
 Finally, many RQAs are rather technical in nature and difficult to 

communicate to a customer (e.g. maintainability, testability). 
 At the same time RQAs are often in conflict with each other, requiring 

complex trade-offs that involve a lot of experience and judgment. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
6 

RQAs are often critical 
 Features may be more or less important, but most RQAs are critical: if they are not 

met, the system may be completely useless, irrespective of the rest. 
 Your airbag is really cheap, but inflates too late (performance, availability), not at all, or at a 

time when it ought not to inflate (reliability). 
 Your e-banking site has all the features in the world, but it takes 5min to load 

(performance), you can’t operate it (usability), and exposes your password (privacy). 
 Your MP3 player looks really cool, but skips beats every few seconds (performance, 

reliability). 
 

 Usability is often just a nuisance under normal conditions, and may thus be 
mistaken for a second rate quality. 
 However, when the human operators are challenged and stressed, or when the system’s 

usual operating parameters are violated, a bad user interface provokes errors.  
 Thus, lack of usability may turn into a safety/security problem. 

 The Therac-25 incident was, among others, a usability problem 
 Destruction of the Iran Air Flight 655 in 1988 has been attributed to poor usability of the Aegis electronic warfare 

system. 
 The Warsaw incident, although officially qualified as human error, might have been prevented by a better user 

interface. 
 

 Many integrity requirements derive directly from legislation. Violating them may 
amount to negligence or worse. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
7 

RQAs are difficult to validate 

 For many qualities, 99% is not good enough. 
 Thus, testing is not effective: “tests can only demonstrate the presence of 

bugs, not their absence” (Dijkstra). 
 Even if we can test in theory, it may not be practical. Testing makes no sense 

for requirements like “The system fails only once in 10 years”. 
 Formal verification techniques (e.g., theorem proving, model checking) do 

apply, but are often not practically ore economically viable. 
 If we manage to turn today‘s UML models into formal entities suitable for verification, we 

get specifications for free (almost): formal verification may be closer than we think. 

 

 Other qualities may be validated by testing. 
 This requires substantial effort in elaborating the requirements accordingly. 
 Usability is typically tested empirically, which is difficult and very expensive. 
 Also, there is margin for error: Unexpected usage conditions may be outside 

the tested conditions so our results are meaningless there.  



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
8 

RQAs are often difficult to retrofit 
 Most features are relatively easy to add, remove, or change, even after the 

construction. 
 If we miss out some product use cases in the implementation of the LMS, we can always add 

them.  
 Even if it’s a very important feature like “return books”, it is usually no problem to provide a 

work-around and add this feature later. 
 

 The reason for that is that most functionalities are isolated and self-contained. 
 Notable exceptions to this rule include undo/redo, logging, or business rules and policies, such as 

“All lending activities shall be recorded”. 
 

 Many RQAs, on the other hand, are not implemented as isolated pieces of code, but  
by design-decisions, technological choices, or elements of the software architecture. 
 Thus, RQAs are very often tightly intertwined with many other requirements (“crosscutting”). 

 
 For example, increasing the level of availability is difficult, and often impossible. 
 Similarly, if a system has not been built for testability from the beginning, it is very 

hard to add this quality afterwards. 
 It is difficult to understand complex systems, and systems that do not have adequate test 

coverage usually also lack documentation.  
 Developers don’t know whether something is like it is on purpose by accident. 
 Also, some test frameworks/tool impose certain restrictions on the software to be tested. 

Examples include disallowed language elements, limited choice of testable  middleware, demands 
on certain patterns or architectures, … 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
9 

RQAs are difficult to specify (1) 

 RQAs must be clear and precise, without providing too much 
detail. 
 It is very tempting to specify a solution rather than only requirement. 
 This might exclude better solutions we can‘t think of at this moment.  

 

 Example 
 Many technology-minded people are tempted to specify the following. 

R1a:  LMS Users are identified by a unique login name and a secret password. 
R1b: Every LMS user possess a machine readable card by which the users are 

uniquely identified to the system using card readers attached to all terminals. 
  
 Both of these requirements demand specific features rather than asking for a 

RQA. The underlying RQA that both R1.a and R1.b implement may be this. 
R1:  The LMS.Lending subsystem may only be used by authorized persons. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
10 

RQAs are difficult to specify (2) 
 However, R1: “The LMS.Lending subsystem may only be used by authorized 

persons” is not detailed enough for a contract or to be checked against a 
solution. 
 Our supplier may implement R1 by restricting physical access, or by using special 

equipment (HW-tokens, smartcards).  
 Also, R1 allows for an implementation that grants all rights to all authorized users. 
 And what about authorizing other machines that use the LMS-Lending subsystem online? 

 
 Refining R1 to R1.1…R1.4 provides more details, and still allows different 

solutions (e.g., R1a and R1b). 
R1.1: Only users equipped with the appropriate capability level may use the associated 

functions of the LMS.Lending subsystem. 
Specifies which system has the access restrictions and indicates that there are different capability levels that 
vary with user. 
 

R1.2: The authentication solution must be easy to use by all readers. 
Excludes all of the technologically advanced solutions,  
 

R1.3: Every LMS terminal is suitable to be used by any user. 
Guarantees a minimum accessibility 
 

R1.4: Every LMS function is associated with a capability level.  
Allows fine control, but requires some capabilities table. 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
11 

RQAs are difficult to specify (3) 

 Specifying a solution may make follow-up requirements necessary. 
 

 Example 
 Assume that, after all, we do decide on passwords as the means of 

authentication (R1.a). This may ask for the following additional requirements. 
R1.a1: Every user must change the initial default password after the first login.  
R1.a2: The initial password may never be reused and is valid only one week. 
R1.a3: Passwords are stored in such a way, that they cannot be stolen. 

 
 If, conversely, we decide for a keycard as the means of authentication, we 

may have the following additional requirement. 
R1.b1: The keycard must be embossed in Braille letters 
 These requirements build on previous decisions, but again, they are open to 

the extent that we may still choose from a variety of solutions. 
 Name/reader no./CPR no. as ID, strength of password, Question/Reply, … 
 RFID cards, bar code, magnetic strip, SmartCard, … 

 
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
12 

Issues with Specifying RQAs 

 Leaving the implementation and technological issues aside, there 
are mainly three issues in the specification of RQAs. 

 

1. Turning the subjective priorities and perceptions of qualities into 
an objective assessment that is accountable and justifiable. 
 We do this by tying the RQAs to goals and stakeholders, similar to the way we 

justify Features. 
 

2. Refining the imprecise notions of quality to operational metrics. 
 We do this by following the Goal-Question-Metric (GQM) approach of 

breaking down the top level quality notions into more and more detailed 
attributes, that, eventually, can be measured. 
 

3. Aiming for just the right level of these qualities. 
 We will consider several approaches for this in the last section in this chapter. 

 
 
 

 

 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 8.2: 
Select and Justify RQAs 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
14 

Tailoring  the set of RQAs 
 It is important to consciously decide on just the right set of RQAs. 

 

 On the one hand, we must not miss critical RQAs, or specify too low 
levels for them. 
 This may cripple the system and thus threaten the whole project. 
 Most systems rely strongly only on a small set of quality attributes. 

 

 On the other hand, trying to “be on the safe side” is no solution either. 
 If we add too many or too stringent demands this doesn’t necessarily help 

(consider the Ariane 501 case). 
 Also, quality is expensive (both in terms of money and time) and has to be 

justified by the business proposition. 
 Finally, adding too many constraints may reduce the software designer’s too far. 

 

 Recall that we can’t start with any set of RQAs and change it as we go 
along, we really must get this right first time. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
15 

Tailoring  the set of RQAs 
Create a good (i.e., viable, justifiable) set of RQAs in these four steps. 
 
1. Select RQA list 
 Decide, as a project, on a catalog of pre-existing software quality attributes, e.g. 

the ISO 9126, the lists by Boehm or McCall, or a company specific catalog. 
 

2. Remove irrelevant RQAs 
 Go through your software quality attribute catalogues and tick off irrelevant 

RQAs, as determined by the system type and application area, the goals, and the 
stakeholder’s opinion. 

 
3. Shift emphasis and add new items 

 Conversely, issues that are rather minor in any of the software quality attribute 
catalogues may be really important in the present project. 

 Such issues should be emphasized, e.g. by turning them into a separate chapter in 
the requirements specification. 

 
4. Establish benchmarks and targets 

 For project management as well as for marketing it is important to know what 
level of quality a development is going for. 
 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
16 

RQAs by System Type (1) 

 Performance 
 In an embedded system, efficiency is usually very important, but for desktop 

systems often secondary.  
 For system critical applications however, it is often a direct cost factor since 

twice the required computing power will mean twice the number of 
servers/data centers. 
 

 Integrity 
 For administration system of the tax office, integrity is so important, that 

usually, there are no physical connections to the internet. 
 For other systems, this may not be possible, such as a online retail system or 

the AMADEUS flight booking system. 
 

 Availability 
 Many embedded systems need effectively 100% availability, where a failure 

means the replacement of the system.  
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
17 

RQAs by System Type (2) 

Quality Attribute Word Magic
Draw ESP AMADEUS Compiler Excel 

Macro ERH iPod 

Reliability 
Re-startability 

Availability 
– – – + + + – – – – + – 

Performance 
Capacity 

Endurance 
– + + + + + – – + + + 

Integrity 
Safety 

Security 
Privacy 

– – – – – + + – – – – + + – – 

Usability 
Understandability 

Learnability 
+ + + – – – – – – – + + 

Operability 
Interoperability 

Robustness 
+ + + – – + + – – + + – – 

Maintainability 
Portability 
Testability 

+ + + – – – – + + – – 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
18 

RQAs by Stakeholder 

 If you specify an RQA, make sure that you link it to the goals that it 
serves. 
 Which qualities are relevant, how important they are, and to what degree 

they are essential depends on the individual perspective.  
 Use the stakeholder‘s point of view, and prioritize by their importance. 

 

 For instance, what are the qualities the stakeholders for the LMS 
will find most important to them? 

©
 2

00
9,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 

Stakeholders Desired System Qualities 

Readers usability, privacy, performance 

Librarians usability, stability, reliability, availability, performance 

Administrators instalability, customizability, interoperability, 
performance 

Developers (Initial) testability 

Developers (Maintenance) portability, testability, well structuredness 

Community Council operatability, maintainability ( cost!) 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
19 

Dependencies among Quality Attributes 
©

 2
00

9,
 P

ro
f. 

D
r. 

H
. S

tö
rr

le
 

[Wiegers: Software Requirements, MS Press, 2003, end ed., p. 230] 

Legend 
+ increasing the row 
   attribute improves the  
   column attribute 
 
- increasing the row  
  attribute deteriorates the  
  column attribute 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
20 

RQA-Sources (1): 
McCall’s Software Quality Attributes 

©
 S

. E
as

te
rb

ro
ok

 

Product operation 

usability 

Product revision 

Product transition 

integrity 

maintainability 

testability 

reusability 

portability 

interoperability 

operability 
training 

I/O volume 

access control 
access audit 

storage efficiency 

consistency 

instrumentation 
expandability 

generality 
self-descriptiveness 

modularity 
machine independence 

s/w system independence 
comms. commonality 

efficiency 

correctness 

reliability 

flexibility 

communicatativeness 

I/O rate 

execution efficiency 

[van Vliet 2000, pp111-113] 

traceability 
completeness 

accuracy 
error tolerance 

simplicity 
conciseness 

data commonality 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
21 

RQA-Sources (2): 
Common Criteria 
 The common criteria recognition agreement is an international 

attempt to define and validate integrity requirements (see 
www.commoncriteriaportal.org). 

 The common criteria are not restricted to software, they cover all 
kinds of IT products. 
 The notion of IT product ranges from pure software products like data bases, 

operating systems, and middleware like Tivoli via integrated 
hardware/software systems like access control solutions and smart cards (e.g. 
ActivCard) to such unlikely “IT products” like German ID cards and passports. 
 The id card is merely a (optically) machine readable picture id.  
 The passport however also features a RFID transmitter and stores the passport data 

together with biometric features (fingerprints) in an encrypted format.  
 Processing and storing such ids is, of course an IT based process.  
 Similarly, the verification of such an ID is an automatic process. 

 The common criteria are the most widely accepted security 
requirements framework. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
22 

RQA-Sources (3): 
Usability Standards 
 The two most important standards in the field are  

 ISO 13407 Human centred design processes for interactive systems, and 
 ISO 9241 “Ergonomics of human-system interaction”. 

 They contain a wealth of information on usability. 
 If usability really is an important quality of a system, usability 

experts are needed to specify usability requirements. 
 

DIN ISO 9126 – 1 

DIN ISO/IEC 25051 

DIN EN ISO 9241 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
23 

Sw. Quality Attributes (ISO 29148:2011) 

 ISO 29148 defines systems requirements engineering processes for 
software products and services throughout the life cycle. 
 It supersedes the earlier IEEE Std 830-1993, and relates to ISO/IEC 

12207:2008 and 15288:2008. 

 
Product 

requirements 

• Functions 
• Performance 
• Interfaces 
• Ressource Reqs. 
• Security 
• Quality 
• Reliability 

Process 
requirements 

• Documentation 
• Verification 
• Acceptance 

External 
requirements 

• Maintainability 
• Portability 
• Safety 
• Operational 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 8.3: 
Making Qualities concrete and measurable 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
25 

Refine RQAs 

 There are several approaches to refine Software Qualities that we 
can reuse for refining RQAs. 
 Notable examples are the McCall Attribute list and the ISO 9126 standard 

(now ISO/IEC 250xx series) “Quality Attributes for Software Systems”. 

 In order to turn vague quality concepts into measureable 
quantities, we  
 break the concepts down into a set of (more concrete) properties,  
 define a metric and specify an operational procedure to determine it, and  
 aggregating the measurements according to our property break down 

structure, yielding a quantitative value for the respective quality. 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
26 

Operationalizing Metrics for RQAs 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
27 

Usability 
 Usability is the ease of using a system accurately and efficiently, and learning to do so. 

 Usability involves a great deal of psychological and cultural questions, which makes it inherently difficult to 
measure. 

 Also, it is still not always accepted as a first-class concern by many technologically-minded people. 
 

 Demanding that “The system must be easy to use” is not sufficient.  
R1: In the learning phase, 90% of experienced users need no more than 2h to become so proficient with the 

system, that requirement 2 is satisfied. 
R2: During normal operation (i.e. after a learning phase, see R2), 90% of all users must be able to perform the 

following tasks: 
R3: A trained librarian shall be able to process the lending or returning of 10 books by 1 user in less than 5 seconds. 

 
 In order to avoid cluttering the requirements, we can use tables to specify the scenarios in 

greater detail. 
 
 
 
 
 
 
 
 
 

 Another approach is to externalize requirements and use pre-existing standards. 
R4: The application shall follow the company GUI style guide. 

task amount duration 
avg/max  

coverage of 
cases [%] 

fro
nt

 d
es

k 
ac

tiv
ity

 

accept returned book 1 book 3s / 5s 95 

accept returned book 10 books 20s / 30s 95 

accept returned book 10 media (any type) 25s / 35s 95 

prolong or return book  1 medium 10s / 20s 50 

… … … … … 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
28 

Integrity 

 Integrity comprises safety, security, 
and privacy. 
 Safety is protection of the environment 

against damages by system malfunction. 
 

 Security is the protection of the system 
against tampering or outside attacks; 
 

 Privacy is the protection of individual data 
against disclosure to unauthorized parties. 
 

 These three aspects are 
complementary, and often governed 
by law. 
 
 

System 

Environment 

safety 
threat 

security 
threat 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
29 

Integrity (Examples) 
R1: The LMS.Lending subsystem may only be used by authorized persons. 

R2: Reader shall be accurately identified in all activities that could lead to cost on 
behalf of the reader. 

R3: Personal data shall be displayed to and changeable only by the reader. 

R4: All user inputs are validated before being processed. 

R5: The system shall terminate any operation within 1s if the measured tank 
pressure exceeds 95% of the specified maximum pressure. 

R6: The radiation beam shield remain open only through continuous computer 
control. The shield shall automatically fall into place if computer control is lost 
for any reason. ( Therac-25). 

R7: Patient records must only be exposed to medical staff with proper 
authorization. 

 

 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
30 

Performance 
 Performance is the amount of work done with given resources. 

 For example the client may wish to operate the new LMS without buying new machines, 
and so may demand  “The LMS shall be able to manage the current traffic of business 
processes and events with the currently installed hardware.” 
 

 Performance may be broken down into Capacity and Endurance/Degradation. 
 

 System capacity is often straightforward to specify: the numbers, frequencies, 
and sizes of domain objects, processes and so on are usually known. 
 You should include required minimum numbers of users, objects of different kinds, amount 

of data and process instance per time, and so on. 
 Ideally, it should also include a forecast of the future development of these dimensions to 

achieve maintainability qualities (“scalability”). 
 When the cost or performance of the underlying hardware is critical (e.g. very large or 

embedded systems), it may also be necessary to specify the available resources in detail 
(i.e. processors and cores, clock time, available primary and secondary memory and so on). 

 
 Here are two examples for the LMS 

R1:  The LMS will have to handle at least 2,000 readers (3,000 within 3 years). 
R2:  The LMS will have to handle at least 50,000 media (150,000 within 5 years). 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
31 

Reliability 
 Software reliability is the probability of executing without failure for a 

specific period of time in an environment in which it was intended to be 
used. 
 Reliability may be decomposed into availability (ratio of up/down time), 

robustness (or “survivability”, handling of unexpected conditions ), and 
restartability (how fast/easy we can come back). 
 

 As before, we need to differentiate between different types/severities 
of failures, and the services and service-levels offered.   
 Maybe, we can accept lower service levels for some services and can accept some 

kinds of failures. What is sensible and cost-efficient for our system? 
 We need to be specific about the intended operation environment: 

 the working state  which services should be available? 
 the operating hours, and  what days, what times? 
 the operation conditions. what other services are required? 

 
 Examples 

 “No more than 2 out of 100.000 successful scans of book or reader ids may result 
in a wrongly identified number.” 

 „The system must run 99.999% of the time during normal operation hours.“ 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
32 

Availability 

 Availability is the degree to which a system is in a normal working 
state during expected operating hours, under expected operation 
conditions. 
 Availability may be measured as averages of up-time versus down-time. 

 
 
 Example 

 Consider a server which, on average, 
fails once every 10 hours. Restarting it 
takes 5 minutes.  

 Its availability is 600/600+5 = 99.17%. 
 

 
 

 

 

MTTF: mean time to failure (“up”) 
MTTR: mean time to repair (“down”) 

up down 
fail 

repair 

after 10h 

after 5 minutes 

Availability Down time 

99.999% ca. 5 minutes / year 

99.99% ca. 1h/year 

99.5% 3:54 from 7:00-20:00 each day 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
33 

Maintainability 
 Maintainability is the degree to which the software may be deployed, 

maintained, ported, and reused. 
 

 By definitions, such activities take place in the future. Thus, it is difficult 
to select the right level of maintainability. 
 As a rule of thumb, systems live ten times as long as one would imagine ( Y2K).  
 Trying to prepare for every eventuality, however, is neither effective nor 

justifiable. 
 Planning for future system stages (cf. Domain architectures) can help. 

 
 As before, detail must be added to make maintainability operational. 

R1: A maintenance programmer who has at least six months of experience 
supporting this product shall be able to develop a new report with at most as many 
output fields as report R123 including all modifications and test in less than 10 hours 
of work. 
R2: A programmer with at least 2 years of experience programming Java but no prior 
knowledge of the AID system shall be able to create a new AID Cartridge with three 
simple widgets and one new kind of transition event in less than 20 hours of work. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
34 

Installability 
 Installability is the ease with which a system deployment may be 

installed on a target platform.  
 

 Software systems need varying degrees of installability. 
 End user software systems must be installable by everybody 
 Many embedded systems are only ”installed” at assembly 
 Large scale enterprise applications are only installed by trained specialists 

 

 Web applications (RIAs) have drastically reduced installability 
requirements for a great number of applications. 

 
 Typical measures to ensure / increase installability of traditional 

applications include 
 Release notes 
 Readme files 
 Installation scripts and wizards 
 Installation tutorials and manuals 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
35 

Interoperability 

 Interoperability is the degree to which it is possible to exchange 
data or services with other systems. 

 

 As before, we need to be specific about which systems and which 
data and services this refers to. Again, this may change in the 
future. 

 

 Examples 
 The MX system shall be able to read all files satisfying the XMI 2.1 DTD or 

earlier. The MX system shall be able to process all data satisfying the UML 
meta model version 2.2.0 or earlier. 

 The LMS shall be able to access all catalogs implementing the Common 
Danish Catalog Interface (CDCI) in the formulation of 1998. 

 The XYZ shall use the Windows System clipboard to send and receive data 
from other applications. 

 The XYZ shall integrate with the Tivoli system management. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
36 

Measuring/Testing High Quality 

 High levels of any quality are difficult to validate. 
 Assume we demand an average downtime per year of less than 3s. 
 Ignoring the fact that this requirement is not very helpful to begin with, since 

3s is too small a time frame to do, say, any maintenance or a restart. 
 The system must run for 10 years to be able to confirm by testing the 

requirement has been met with any degree of confidence. So, we can’t really 
verify this requirement. 

 In this case, formal verification may be the only tool available. 
 

 Similarly, consider the usability requirement “999 out of 1000 
users without prior knowledge of the system must be able to carry 
out task x without help in less than y minutes”. 
 In order to have a reliable reading, we have to test a very high number od 

subjects, or y has to be grossly over-dimensioned (e.g., 5 times as long as it 
usually takes). 
 

 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 8.4: 
Determining the right level of RQA 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
38 

“High Quality” can mean different things 
 Depending on the system type, “high” quality can mean completely different 

things. 
 

 Even a seemingly precise requirement like “99.9999% (‘six sigma’) reliability” is 
not entirely clear. When considering a telephony switch system, this might 
mean the following. 
 At most 1 out of 106 phone calls may be lost. 
 The switch system is down no more than 5 minutes per year. 

 When considering a hospital patient monitoring system, we may intend 
something like this. 
 At most 1 out of 106 measurements may be lost. 
 The system may go down, as long as the ward is being notified. 

 
 The same is true for availability. For instance, for a web-shop or a business 

process support system we might specify: 
 “The system shall be at least 99.5% available Mon-Fri between 7:00 and 20:00 local time 

and at least 99.95% available on Mon-Fri between 9:00 and 17:00 local time.” 
 whereas for a flight control system the specification might ask for: 

 “The system shall be at least 99. 999% available Mon-Sun between 5:00 and 24:00 local 
time and at least 99.99% available at all other times.” 
 
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
39 

Quality Levels 

 Everybody wants the best quality, but nobody wants to pay for it, 
or has the time to wait. 
 Thus, very high quality is usually only found in highly critical systems.  
 The essential ingredient in producing quality are not any tools or systems, but 

the software process as such; all the other factors follow from that. 
 

 For low or average levels of quality, it is sufficient to consider the 
large factors only (i.e. CMM/SPICE-level 1, aka. any process at all). 
 In order to achieve very high quality, we need to cover not just the big 

factors, but also a large number of smaller factors. 
 This corresponds to a larger degree of rigidity or a higher CMM/SPICE level.  
 Interestingly, this is also a more cost-efficient process. 

 

 Agility in a project comes at a (high) cost, either in terms of effort, 
or in terms of not being able to guarantee properties (such as 
RQAs). ©

 2
01

0,
 P

ro
f. 

D
r. 

H
. S

tö
rr

le
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
40 

RQAs derived by physical constraints 
 Sometimes, it is possible to derive the right level RQA from other 

constraints, so all we have to do is some maths. 
 

 Consider a traffic speed trap system that takes photos of car drivers 
exceeding the speed limits. There will be a RQA like this: 

R1: The product shall detect a speed violation and take a picture of the offending 
driver within 0.5 seconds. 

 
 Obviously, we need to perform this operation in a certain fixed amount 

of time. 
 The time will be determined by physical factors such as the distance to the 

camera, the detecting range, the absolute speed of the car and so on.  
 We just have to compute it. 

 
 Of course, this is not always possible. For instance, what is the right x in 

R2? 
R2: A newly acquired medium shall be available in the catalog within x minutes.  



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
41 

RQAs differ with project set-up 
 The project set-up may have a significant impact on the RQAs. 
 Consider again R2. 

 
 In-house development (Taarbæk Municipal IT Office develops LMS) 

 MITO might not make an effort to achieve this quality, and we end up with 24h 
instead of 30min. 
 

 Several suppliers competing for a tender 
 Going for a quicker response time might increase the chances of winning the 

contract.  
 On the other hand, a quicker response time might decrease other qualities or the 

functionality, or it might increase cost. 
 

 Customers nowadays have a tendency to ask for too much result for too 
little money. 
 From a certain size on, tenders have to be offered publicly in Europe. 
 In Germany, there is a law requiring public customers to accept the cheapest 

offer, no matter what.  ALG-II disaster, BVK tender, ibiza tender 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
42 

RQAs from clients 
 Clients are often unreliable as sources of RQAs for a number of reasons. 

 Some clients want to cut costs and feel they need to pressure their supplier in 
order to not be cheated. If they are also less knowledgeable about software than 
we are (a common case), they might underestimate cost and difficulty. 

 Some clients tend to exaggerate their requirements because it underlines their 
own importance or they are afraid to take responsibility. Trying to “be on the safe 
side” is not a good solution.  

 ( “you don’t get fired for buying IBM”) 
 

 One way to approximate the right quality level is to ask for the highest 
unacceptable level. 
 For instance, when looking for acceptable response times we may ask 
 „what response time is unacceptable?“. The first time they tend to accept is the 

right level. 
 

 Similarly, when asking for privacy concerning lending records, we may ask 
 „Is everyone allowed to read/write all lending records?“ 
 „Is everyone allowed to read/write their own lending records?“ 
 And so on. 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
43 

Reusing RQAs from Service Providers 
 In order to find good sets of RQAs, we might start at existing sets. 

 Such sets may be available to our client through previous engagements, or from the 
system we are replacing (a very common case) 
 

 For instance, a good starting point for capacity requirements could be derived 
from an existing Service Level Agreement (SLA). 
 Many companies provide such data on a quid-pro-quo basis as part of a benchmarking 

program. 
 Also, outsourcing providers have this kind of data and may be helpful in obtaining it. 

 
 Here is a small part of a SLA by Lufthansa Systems, provided as part of their 

service offering to hosts third party applications at their data centers. 

Dimension Quantity Unit 

Maximum number of transactions  2,000,000 per month 

Maximum number of transactions  125,000 per day 

Records to be loaded 300  per minute 

Maximum numbers of records in DB table 25,000 total 

Maximum number of concurrent users 20 total 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
44 

Reusing RQAs from Competitors 
 Another source for reusing RQAs are freely available industry best 

practices or publicized data. 
 Here is an example from the Gebühreneinzugszentrale (GEZ), the German 

Broadcasting Fees Authority. 
 
 
 
 

 
 
 

 The problem is of course, that the replacement system will have 
completely different operating parameters so that the figures are not 
directly comparable. 
 For instance, the new system may keep track of the complete history of each 

case, it may provide a GUI where the old system only had a text interface, or it 
may have to offer completely different functionality like real time processing 
rather than batch processing, and so on ( ERH). 

 

Dimension Quantity Unit 

Participant accounts 40,000,000 total 

Transactions (average) 100,000 … 140,000 Per day 

Transactions  (maximum) 2,000,000,000 Per day 

Bookings  17,000,000 Per batch 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
45 

The ”Open Target/Metric” approach 

 We might leave the target open, i.e. the following required 
quality. 
R3: The newly acquired medium shall be available in the general catalog within 

__ minutes.  

 This way, the supplier has some leeway, thus avoiding unjustified 
costs by unnecessary tight quality levels. 
 

 The problem with this is again, that the supplier may not strive for 
the best possible deal for the customer.  

 To limit this effect, the customer may additionally specify his 
expectations. 
R4: The newly acquired medium shall be available in the general catalog within 

__ minutes (customer expects 15 minutes). 

 This establishes a soft lower limit to the quality provided. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
46 

Quality Grid 
©

 2
00

9,
 P

ro
f. 

D
r. 

H
. S

tö
rr

le
 

The quality grid by 
Christiansen & Lauesen 
helps us consider only 
the relevant quality 
attributes, and assess 
their importance. 
 
Here is the quality grid 
for a Hotel Reservation 
system. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
47 

Arbitration among RQAs 

 Ideally, we would like 100% 
quality, but that may be too 
expensive. 

 

 However, we rarely really 
need 100%. 
 Often, 100% of one quality can be 

replaced by 90% of  two (other) 
qualities. 

 This way, one RQA may be traded 
in for another, thus reducing the 
overall cost or complication. 

 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
48 

Arbitrating among RQAs: Example 1 
 Consider the qualities 

Availability and Restartability. 
 

 When a system is not 100% 
available, it will fail sometime, 
and the system must be 
restarted. 
 In order to increase availability, 

we can either reduce the 
frequency of failures, or 
accelerate the repair process. 

 Assume you are aiming for 
99,95% availability. This can be 
achieved in two ways: 
 a MTTF of 1000h and 30min of 

restart duration; or 
 a MTTF of 10h and 20s of restart 

duration. 

 
 
 
 
 
 
 

 
 

 

 In the example, we might be 
able to isolate the subsystems 
and their services, and require 
different sets of RQAs for 
them, e.g., starting them 
separately before connecting 
them. 

up down 
fail 

repair 

after 10h 

after 20s 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
49 

Arbitrating among RQAs: Example 2 
 It us usually very difficult to guarantee that capacity requirements are 

met. 
 Adding a small security margin is ok, and also contribute to maintainability, but 

adding too much of a margin is not cost effective. 
 Also, similar to reliability, capacity considerations will affect the overall 

architecture (e.g. storage in file vs. data base, processing with/without application 
server, or single vs. multiple servers required). 

 
 Similarly, verifying capacity requirements may be difficult. 

 Waiting till the case becomes reality is no good, obviously. 
 Producing fake data for a stress test is a lot of effort, and it may be difficult to 

make sure they have the same characteristics as real production data. 
 

 It may be easier to consider degradation, i.e. what happens, if the limits 
of the requirements are exceeded (“stress”). 
 Suppose, the Taarbæk Library is very successful, and all of a sudden it has twice as 

many readers as specified. Hiring librarians is easy – but how can we enhance the 
system to handle more traffic? 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
50 

Arbitrating among RQAs: Example 3 
 Assume we demand 99.9999% reliability for an airbag controller. 

 Assume that the controller determines whether or not to fire every 0.1s when the 
car is running.  

 Assume further that a car is operated no more than 1000h/year, which amounts 
to an operation period of 3.6*106 s/yr and thus 3.6*107 ops/yr for the airbag 
controller. 
 

 Six-nines reliability (99,9999%) corresponds to 1 failure in 106 
operations.  
 Ensuring this for the whole system lifespan of, say, 20 years will be exceedingly 

expensive.  
 

 Solutions 
 Suppose that we can easily achieve an Airbag Mean-time-to-failure (MTTF) of 

80.000 operating hours (approx. 22 years at 10h/day), but asking for more is very 
expensive. 

 Routine replacement of the airbags after 20.000 operating hours quadruples the 
reliability; most likely, even a taxi or a bus will have an accident before that or be 
decommissioned altogether. 

 Other solution: increase sample rate, ask for three confirming measurements in a 
row 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
51 

Refining usability to functionality 
 Like many quality attributes, usability requirements may be refined to a level 

where they turn into functional requirements.  
 So, instead of providing an RQA level, we might provide a refinement to 

features. Here is an example. 
R1: A trained librarian shall be able to process the lending or returning of 10 books by 1 user in 

less than 5 seconds. 
 

 This already rather detailed usability requirement may be replaced by a 
sequence of more detailed requirements realizing it. 

R1.1: All main functions (lend, return, reserve, prolong) and the search functions (simple and 
expert search) have both a key shortcut and a button on the main screen. 

R1.2: The core functions (lend, return) may be triggered by scanning a book and confirming 
with the [SPACE] key. 

 
 Other usability requirements may translate into similar requirements. 

R3.1: The function search with suggestions may be triggered by scanning a book and timing 
out after 2s or the [S] key. 

R3.2: The functions prolong and search with suggestions may be triggered by scanning a book 
and confirming with the [P] key. 

R3.3: The keys used in key shortcuts are underlined on the buttons shown at the main screen. 
Pressing [ALT] and any of the accelerator keys will execute the respective command 

R3.4: Pressing the [F1] key will bring up a “Help” dialog that contains explanations of the main 
functions and the keyboard shortcuts. 

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
52 

Quality level by system type (1) 
 Consider the following requirements for a flight control system. 

 The system shall trace the movements of up to 50 aircraft. 
 New positions of all aircraft shall be displayed at least once per 5 seconds. 

 
 But what happens if the 51st plane arrives? 

a. The system aborts and stops working altogether. 
b. The system keeps tracking the first 50 planes, but ignores the 51st plane. 
c. The system prints the error message “requirements violation”. 
d. The system notifies the pilot of the 51st plane to leave the sector at once. 
e. The system tracks all 51 planes but increases the update interval to 7s. 

 
 If there is no requirement stating the behavior in case of degradation, 

the designers (and implementers) are free to chose any of these options.  
 And they can’t be held responsible for it – but we as requirements 

engineers can and will be held responsible. 
 

 For an air traffic control system, options (a) through (c) are clearly 
unacceptable, and option (e) is the best. 
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
53 

Quality level by system type (2) 
 For a telephone switch system, similar requirements might be 

specified: 
 The system shall handle up to 50 calls simultaneously at any time. 
 New calls shall be connected within 5 seconds. 

 
 What happens if the 51st call arrives? 

a. The system aborts and stops working altogether. 
b. The system keeps handling first 50 calls, but ignores the 51st one. 
c. The system notifies the operator of the error “requirements violation”. 
d. The system notifies the 51st caller to hang up. 
e. The system handles all 51 calls but increases connection time to 7s. 

 
 For this system, option (a) is clearly unacceptable, but all other 

options are ok – occasionally losing (b) or balking (d) a call is not 
too bad. Option (c) is not much use, and (e) – clearly the best 
option here, too – will rarely happen. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
54 

Requirements by Role 
 As a client, you should sign 

for qualities rather than 
features 
 they are much more 

comprehensive and easily 
cover many issues 

 They leave open the exact 
implementation, thus allow 
for unexpected 
improvements. 

 However, qualities are more 
difficult to handle than 
features. 

 Try to commit as late as 
possible. 
 Any decision reduces your 

freedom to react on new 
information or improved 
insight. 

 

 As a provider, on the other 
hand, you should sign for 
features rather than 
qualities. 
 It is much easier to provide 

and check features rather than 
qualities. 

 You may get away with 
providing less than what the 
client expects and still 
satisfying your contract, but 
unhappy clients don‘t return. 

 Try to get commitment. 
 Any committed decision is 

either reliable, or the client 
can be charged for changing 
them. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



Prof. Dr. Harald Störrle 
Danmarks Tekniske Universitet (DTU) 

DTU course 02264 

Chapter 8.5: 
Features vs. Qualities 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
56 

Specification Level 
 Many Qualities are abbreviations for of bundles of features. 

 For instance, we may find a requirement like this: “Expert users shall be 
empowered to operate the application very quickly.” 

 
 For a classical WIMP-interface used on an enterprise critical IS, we 

might translate it into these features.  
 “All graphical User interfaces support a Tab-sequence.” 
 “All major functions have keyboard shortcuts”. 

 
 For a consumer product with a touch interface, we might interpret 

it differently, though. 
 “Response time for all operations must be below 40ms for the start of the animation, and 

below 2s for completion of the operation.” 
 “All application data is cached locally on the device to compensate for slow or patchy 

network.” 
 

 Other qualities decompose into architectural decisions. 
 This is usually the case for availability, performance, and so on. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
57 

Discrete vs. Continuous 
 Features come mostly in discrete quantities. 

 For features it is always possible to state whether they are implemented or not, or 
exactly under which conditions they are available. 

 For example the required feature “The system shall support undo/redo for all 
operations” will be either implemented or not. 

 Usually, it is implemented with in some scope, e.g., operations like load/save are 
not maintained, the undo/redo history does not span across several launches of 
the system and so on.  

 Observe that such restrictions are not shared by many RDB products. 
 

 Qualities, on the other hand, are always continuous. 
 It is meaningless to say a product is highly maintainable, available, etc. 
 When we say that, it is just a matter of speaking, a colloquial abbreviation for 

something more verbose and unwieldy such as “The overall system has an 
availability of 95%, with a recovery time of 2 minutes or less and an annual 
window for scheduled maintenance of 5 hours”. 
 

 Qualities are measured with continuous scales, Features with discrete 
ones. 
 Qualities may be approximated by a sets of features (discretization). 

 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
58 

Cross-cutting vs. Self-Containedness 
 Many features are self-contained, that is, they can be added, changed, 

and removed from a system without affecting much of the rest of the 
system. 
 Of course, interfaces may have to be implemented causing additional effort. 
 Also, and there may be synergies arising from adding a feature. 
 However, technically, adding most features has little to no impact on existing 

features. 
 

 Qualities, on the other hand, are often cross-cutting. 
 Any change to the required level of a given quality is likely to affect a large part of 

the system, i.e., other features and/or qualities (e.g. performance). 
 Some features are also cross-cutting, such as undo/redo, Notable exceptions to 

this rule include undo/redo, logging, or business rules and policies. 
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
59 

Architecture 
 As a consequence of the properties discussed above, required quality 

attributes are usually not implemented by some additional code, but by 
the overall design (“architecture”) that acts as a blueprint for the 
implementation of the functionality. 
 

 Therefore, it is more difficult to retrofit required quality attributes than 
to retrofit (most) required features. 
 One could say that most required quality attributes are extremely crosscutting, 

but many required features are not. 
 There are crosscutting features, though, that are also difficult to retrofit, such as 

undo/redo, logging, or business roles/policies. 
 Sometimes, however, the situation is not that bad. For instance, demanding 

higher execution speed may be achievable by small changes (simple “tweaking”). 
 

 This is part of the reason why architecture is considered more difficult 
than “line development”, and why the professional profiles differ 
significantly. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
60 

Quality Arbitrage 

 Qualities interact not just with features, they also interact with 
each other. 
 Higher reliability will increase availability, because reduced error probability 

increases up-time. 
 Highly unreliable systems, however, can be just as available, if the repair time 

is very short. 
 So, if outage is not a safety risk as such (as in a nuclear reactor), “unreliable” 

and “safe” are not opposite ends of the same spectrum. 
 

 It would be extremely helpful to be able to do this kind of triage 
early in the development cycle. 
 Assuming we have the RQAs in place is not enough, we also need analytical 

procedures to examine and simulate the software architecture. 
 Such methods are theoretically available, but not practically.  
 Recent advances include the AADLv2 (Architecture Analysis and Design 

Language, SAE AS-5506A). 
 RED is set to add these features in the near future. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
61 

Discovery Time 

 If important RQAs are not satisfied, the system as such may be 
entirely unusable and has to be scrapped completely. 
 Think of an MP3-player: if the audio data is not processed fast enough, the 

user cannot listen to music—the whole product is completely useless. 
 

 That means that it is absolutely essential to have just the right 
RQAs up front of a development process whereas required 
features do not necessarily have to be available at that time. 
 Discovering features late usually costs no more than discovering them early.  
 Discovering qualities late, on the other hand, is often cripplingly expensive. 

 

 Features can be managed much more flexibly. 
 Any and all of the lightweight processes models (“agile”) depend on this 

property, and break down when it is not present. That is, for qualities. 
 Existing code will have to be scrapped (“refactoring” in agile lingo). 

 
 
 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
62 

Specification Formalism 

 Features and qualities also differ in terms of which methods and 
notations/tools are suitable for specifying them. 
 There are many different formalisms to specify features, we know more 

about them, and they are generally easier to handle. 
 Specifying qualities is tricky, and much less forgiving than specifying features. 

 

 Luckily, much software development does not rely heavily on 
professional specification of required quality attributes. 
 In practice, most systems that are being built at all are either management 

information systems (MIS) or consumer products (CP). 
 They have mostly feature requirements and only weak quality requirements, 

mainly usability, performance, and integrity/compliance. 
 System software and embedded/real time (ERT) software has much more 

focus on qualities. 
 Revisit the classification of system types and the ensuing project complexity 

laid out in chapter 1. 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
63 

Logical Status 

 Features and qualities are also different on logical level. 
 

 A feature refers to a possibility, that is, an existentially quantified 
predicate. 
 Features are effectively liveness conditions. 
 The requirement “The reader may lend a book” effectively means that there is 

a state of the system in which the function “lend book” is enabled. 
 If we find one such state, the property is satisfied. 

 

 A quality refers to a necessity, that is, a universally quantified 
predicate. 
 Qualities are effectively safety conditions. 
 The requirement “The reader may lend at most 10 books” means that in all 

reachable states of the system, the number of lent books may not exceed 10. 
 All states have to be visited to be sure about this property. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 



DTU course (02264) 
Requirements Engineering 

Chapter 8: Quality Attributes 
64 

Software vs. Buildings 
 Many people metaphorically equate software with buildings, and it also 

fits very well with the discussion in this section. 
 Features: placement of doors and windows, interior decoration, plumbing details, 

... 
 Qualities: how much space, how many rooms/floors, climatic conditions, energy 

consumption, basic plumbing (e.g., central heating or not, floor heating vs. 
convectors), ... 
 

 In Architecture, major additions to competed houses are difficult or 
infeasibly expensive, adding a basement, say.  
 Nobody in their right minds would ask for it. Yet, in software, we are routinely 

asked to do just that. 
 

 However, we might often be able to make everybody happy with 
something else entirely.  
 Maybe, the additional basement is demanded to house a hobby workshop. 

Instead of the basement, we might build a garage or a semi-detached shed. 
 They would have mostly the same function, but a totally different 

implementation: it does uses more real estate, and might not look nice, but it 
solves the problem at reasonable cost. 

©
 2

01
0,

 P
ro

f. 
D

r. 
H

. S
tö

rr
le

 


	Chapter 8:�Specifying Quality Attributes�(“Non-Functional Requirements”)
	Agenda
	Chapter 8.1:�Issues of Software Qualities and �Required Quality Attributes
	Qualities of Software Systems
	Examples of RQAs
	RQAs are often critical
	RQAs are difficult to validate
	RQAs are often difficult to retrofit
	RQAs are difficult to specify (1)
	RQAs are difficult to specify (2)
	RQAs are difficult to specify (3)
	Issues with Specifying RQAs
	Chapter 8.2:�Select and Justify RQAs
	Tailoring  the set of RQAs
	Tailoring  the set of RQAs
	RQAs by System Type (1)
	RQAs by System Type (2)
	RQAs by Stakeholder
	Dependencies among Quality Attributes
	RQA-Sources (1):�McCall’s Software Quality Attributes
	RQA-Sources (2):�Common Criteria
	RQA-Sources (3):�Usability Standards
	Sw. Quality Attributes (ISO 29148:2011)
	Chapter 8.3:�Making Qualities concrete and measurable
	Refine RQAs
	Operationalizing Metrics for RQAs
	Usability
	Integrity
	Integrity (Examples)
	Performance
	Reliability
	Availability
	Maintainability
	Installability
	Interoperability
	Measuring/Testing High Quality
	Chapter 8.4:�Determining the right level of RQA
	“High Quality” can mean different things
	Quality Levels
	RQAs derived by physical constraints
	RQAs differ with project set-up
	RQAs from clients
	Reusing RQAs from Service Providers
	Reusing RQAs from Competitors
	The ”Open Target/Metric” approach
	Quality Grid
	Arbitration among RQAs
	Arbitrating among RQAs: Example 1
	Arbitrating among RQAs: Example 2
	Arbitrating among RQAs: Example 3
	Refining usability to functionality
	Quality level by system type (1)
	Quality level by system type (2)
	Requirements by Role
	Chapter 8.5:�Features vs. Qualities
	Specification Level
	Discrete vs. Continuous
	Cross-cutting vs. Self-Containedness
	Architecture
	Quality Arbitrage
	Discovery Time
	Specification Formalism
	Logical Status
	Software vs. Buildings

