Chapter 1 1

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 11:
Transition to Design

DTU course 02264

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 11.1
From Requirements to an Analysis Model

DTU course 02264

DTU it

r

. Sy EE'}H %ff’dC/@ Iﬂﬁ:ij.

Vaes
|
T
r‘i'{-uﬁ |
i
-0

i3
e
k

Jag

e
(L]
b1

reat job!

But shouldn’t it be
a just little more
detailed over
here...?”

Requirements to Analysis Level Models

* In many domains, the only viable way of expressing requirements
is using unstructured natural language (“prose”).

= Prose is the one language universally understood. Also, tool support is widely
available at no extra cost for licenses or training (i.e., MS Office).

= The short term gains of this choice outweigh the long-term gains offered by a
more structured approach in the eye of many clients.

= However, as soon as the design and implementation start, most prose
descriptions exhibit a lack of precision, and missing appeal to technical staff.

= These type of people are more in favor of notations such as UML.

= |f we wish to maintain prose as our initial notation but transition
into UML models, we face two problems.

= The transitions is difficult, error-prone, invites misunderstanding, implies
many design decisions (as well as requirements resolutions), and be done
only by skilled modelers.

= As a consequence, it may be difficult to convince clients that the model is
actually a faithful translation of their textual requirements.

Weaving Models

= [nstead of one single complex manual translation, we propose a
sequence of simple transformation steps:
= Translate individual requirements into small model fragments,
= weave the fragments together into a comprehensive model,

= consolidate the model manually.

= Each step requires only one type of knowledge (domain or
technology), and some steps can be partially or fully automated.

= This procedure also creates tracing links between requirements
and design automatically.

R ——> <R
R
.Q\TE @O
R —>X <y (7S
: @
GO ——> (57

DERIVE & CLARIFY WEAVE CONSOLIDATE

Requirements-to-Model Transformation

Elaborate Requirements until they appear sufficiently precise.

3: Consolidate

Harvest each requirement into one or more (small) fragments of
UML models.

If the translation results in a large or many different fragments,
decompose requirement further or justify “large” requirement.

Weave all fragments in to a raw comprehensive model with RED.
Improve the layout such that it makes sense to you. If there are
unexpected results (errors, omissions, duplicates), change
requirements and/or translation to compensate, and repeat
weaving.

Consolidate the raw model into a final model.

Model structures may suggest, by symmetry, the addition of other
model elements not yet implied by the requirements. The
occurrence of design anti-patterns may suggest overlap in
requirements, which are potentially inconsistent. The model may
need to be reformulated, completed, and restructured.

Step 1: Translate

MLC2
Librarians may add, update, and
delete corpus items manually.

MLC4

Librarians and Readers may post
and inspect media they think
should be acquired by the library
to a public “wish list” indicating
the status of the wish and the
originator.

MLC6

Librarians may remove or
deactivate entries to the wish list.

MLC9

Guest readers may inspect
suggestions.

MLC10

A librarian can do all a reader can
do; a reader can do all a guest
reader can do.

DTU course (02264)
Requirements Engineering
Chapter 11: Design Transition

8

o

Libparian

manual
(domain expert)

| wishlis+
buest
split & elaborate MLC4? i v Q
what about “deactivate”? O\Xj

bvest+ Keader
Terminology?

Librarian

Step 2: Weave

‘ wishlis+
i l'n.!',r!c* JV”GSJ"‘M

Lvest
© ©
— Y—
buest Reader Librarian

“suggest acquisitions” twice?!

DTU course (02264)
Requirements Engineering
Chapter 11: Design Transition
9

W!-S‘t’l-.?‘{'

ths,ocn" sv”er}fan

| ﬂ’cawsrﬁ'm:

‘ .ﬁi”c:-f' acsm:'-v‘!'m)

/‘ comment .su”es-h‘m

rocess s e.ﬁ‘!‘a#
/(P vss),
automatic QO =Z—] -
close€ 5 J’#ﬂﬂ
(RED) ‘X\ e o N

L’. pa"fa” k/jc_’w?:_\j

—

Reader

COI‘PUS

‘ add carpus tem)

\(e mm
mqpm item ‘}

redundant associations?

Step 3: Consolidate

@,

Lues+

wish fl'.?‘}'

ms,ocn" sv”er}fan

(s3ggest acm

cavfs:‘ﬁbn:

o070

Reader

l A I
7‘ s-i”c:-f' acsw’:f#dn)

7 (comment sm

process sv;;e.rf%»
o>

S

'brarian

(close .w”cm

N

—_—
Corpus

add corpus item

\

4 -,

/

bues+

3: Consolidate

manual
(Sw. Engineer)

‘i
Li ram‘n\ i

VMTL-support for
anti-pattern detection?

e —

w:‘.s&h:s_'-f'

L (s3ggest “m

K < comment s@

A‘caw'.w‘-fv‘ons \

‘ process :u;;eﬂ‘ﬁn)

(close SU”CQ

¢)
orpus

add corpus item

(vpda'/'t carm

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 11.2
Harvesting Model Fragments
from Requirements

DTU course 02264

Harvesting Example 1:
Successful extraction

= Consider the example on the right.
Translating it gives rise to the small
class diagram at the bottom.

= The detail description suggests more
model elements than are apparentin
the title alone, e.g., methods
= search()
= is available for_ lending().
= Also, additions like return types for
the methods may arise. Here, search()
will have to return Medium rather than

Copy.
= Details such as multiplicities may also
arise from requirements.

= This step needs so little knowledge of
UML that it can be done by domain
experts with little or no help.

MLC11: The corpus may contain
several copies to a medium.

The catalog shall provide readers with
access to media rather than individual
copies.

Readers shall be able to find out,
whether there is a copy of a given
medium available for lending.

Harvesting Example 2:
Incomplete Fragment

= Extracting a fragment
often results in a deficient
model at first

= Classic requirements flaws
like ambiguity and incom-
pleteness often become
very obvious in fragments.

= Creating alternative frag-
ments helps finding unre-
solved design decision lies.

= This may result in changes
to the requirements, and
appropriate updates in
the fragment.

Requirement MLC9c
Book suggestions may be in-

spected.
- Hu 5? (inspect :um

2o ‘E\f\&f—

Requirement MLC9b
Guest readers may inspect sug-

gestions.

Requirement MLC9a
Guest readers may inspect sug-

gestions in the wishlist system.

wishlis+

yerhon N
inspect svggestio
X (K enspect soggest

Harvesting Example 3:

Large Fragment

= Some requirements result in
more than one or overly large

fragments.

= As a rule of thumb, one require-
ment should not yield more than

ten model elements.

This is ok if we think the
domain is well enough
understood and the receivi
of the model can handle it.

Sometimes, however, it
indicates an insufficiently
refined requirement that
needs another iteration.

MLC1: Media follow a defined lifecycle from

suggested, via acquired, incorporated, to

removed.

= The availability of incorporated media may be
restricted, e.g. in terms of age restrictions, access
restrictions for valuable copies and highly
demanded media and so on.

= The status of incorporated media is regularly
updated to reflect damages and lending status.

= Creating new media requires information such as
title, author, type, publication date, etc.

Medium

title

author

itype

~AVvailability

minimum age

ublication date

Vvailability: Availabili*

aCQunred

I — { suggeSted

mcor porated

removed Jq

Harvesting Example 4:
No Fragment

The translation process might
not yield any fragments at all.

There are several possible
reasons for such an event.

A. The translation is possible in
principle, but the a domain
expert may not know UML well
enough.

B. No translation is possible
because there is a language
impedance mismatch between
the prose used and UML.

C. Notranslation is possible
because the intent of the
requirement is simply not
expressible in UML.

Many high-level requirements (e.g.,
crosscutting requirements, qualities)
provoke a language level impedance
mismatch.

= “The system should be highly usable”.

Such requirements need to be
further refined until they are
concrete enough to amount to a (set
of) specific element(s) in the design.

The UML does not (directly) speak
about user interface elements, so
requirements involving that topic
may be difficult to express.

= “There should be a tab sequence for all
input fields”.
Other areas the UML is not well
suited for are resource constraints,
physical entities like location, and
processes & threads.

Improvement Opportunities in Step A:
2) Multiple resulting fragments

= Once elicited and defined, the requirements need to be
elaborated to the degree needed to implement the system.

= Expect a major increase in the number of requirements, and thus, the
administrative problems associated to them.

= Robert Glass says: "Explicit requirements explode by a factor of 50 or more
into implicit (design) requirements as a software solution proceeds.”

= [If translating a requirement yields several fragments, they must
have different types.

= The same type would just increase the existing diagram.

= Sometimes, it is unavoidable that a requirement results in several
model fragments, e.g., to cover

[Robert L. Glass: Sorting Out Software Complexity. CACM November 2003, 45(1), pp. 19-21]

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 11.3
Weaving Model Fragments

DTU course 02264

Weaving

"= Once requirements are translated into model fragment, we need
to combine (“weave”) them into one coherent model.

= Weaving two fragments will look for elements with the same type
and matching names from the two fragments, and merge them.

= |f elements are intended to represent the same thing, this is just what the
user wants.

= |f not, then the result will be nonsensical to the user, and should be fairly easy
to discover.

= Tightening the name comparison from “matching” to “identical” name will
exhibit typos, because what ought to be the same element ends up as two
elements.

= However, problems may occur in the weaving process.
= Fragments may overlap or contradict each other, or
= their combination leads to poor or wrong models, or
= there may be gaps between the fragments.

Weaving Example 1:
Simple overlap

= Consider a simple
example first.

= Here, both fragments
contain a class
“Medium”.

= Merging them resultsin a
class that has both the
association to Copy and
the properties (title, ...).

= Everything else stays
unchanged.

Medium [Medium .
title I ~AVvailability 7
j 1 \mlmmum age
author
*
publication date
Copy _r
!I Vailability: Availability
Medium -
title I ~AVvailability 7
\mlnlmum age
author

type

ublication date
Vailability: Availability

Wea\ling Example 2: DTU course (02264)

Requirements Engineering
Chapter 11: Design Transition

Multiple/consecutive overlaps

= Here is an excerpt from the LMS requirements specification, and
how the features described may be captured as models.

_ Requirement
| 2 ([sitions

MLC4 Librarians and Readers may post and

inspect media they think should be X
acquired by the library to a public ~

Reader

wish list” indicating the status of the LQW‘WL,W J

wish and the originator.

MLC10 A librarian can do all a reader can do;
a reader can do all a guest reader can
do.

@,

swen‘ lcsm‘.r.-‘-t‘m

N\
(inspect wm

)

N

)

Librarian

\Qmm‘cn

X

V)
NJ
bues+

Weaving Example 3:
Semantic Implications

= Weaving these Use Case Fragments raises conceptual questions.

= Should book tips also be given to complex searches? Then, the includes (A) should be
going out from “search catalog” (C).

= Are the main use cases of A and B really that different? If sometimes use cases are
included (A) and sometimes not (B), shouldn’t they be extensions instead?

= Do the inclusions/extensions maybe belong to a sub- ase?

5“ k.ﬂ; T Ca—h!oj
Ca-/-aloj :

O Ry ‘_} search ca-/'aloj
"""" -2 add data C -;
] < search ca-/'aloj (simpled
eader

search ca-hk.tj Ccomplex)

i —* sv.,-jes-fL media)
{hd-as—}ou-lype \ search ca*f'nloj (simpled)
{ spell checker \ !'den-f'l'{? cop} @

S}oﬂl’!k A::,-Afg&#nj

complex expressions

j Cﬂ'l'&foj

Remote
Ca-/'aloj ‘ vpdate (hatch)

Opdate (manvald

Cﬂ‘dlcj

search ca-/'alaj (complex))

~o B

Reader

ﬁ
Librarian

Weaving Example 4:

Weaving exhibits duplication or flaw

* The weaving may produce models that are considered flawed, e.g.,
by containing anti-patterns.
= Pulling up attributes and associations
= Avoiding circular inheritance

= Avoiding implicit synchronization

A 8 A’cam's:‘-f'thns —_
. ' A’caw?f-/v‘ons
1 = o s
- swe:% acguisition
Keader X X/

Keader "‘C“""""" ’m \

T ! \/’_\] - Reader :;(comment sm

E i

Librarian k/_/__\j

0 ﬂ’c&w‘.ﬂ'-hhns
Xo (commen'!’ sm
Librarian
Librarian

ecam'r‘e copy

Weaving Example 5:
Weaving yields unexpected results

= The weaving result may deviate from the modeler’s expectation.

= This is always an instructive starting point, and may lead to either changed

requirements, fragments, or better understanding of UML.

——

Re-/wn 540&

(4

-
| et loan s+atmen
¢

+erminate loan

©

lee-/-ww 54?

|

rch'lLl';?, book

:Iﬁ-/' loan statme

¢

e 3

Retvrn Book

[-]

d

r'den-h':f} bhook

loan s+tatmen

. campu-k overduve fee

©

Folding Assemblies (Composite Structures)

= Weaving can be applied to all diagram types, including goal and

context diagrams.

Ordering context /

Orders

v

Customer

DTU course (02264)
Requirements Engineering
apter 11: Design Transition

24

Quoting context /

Stocks

-

Customer

Orders

General context /

Stocks

DN

Orders

Customer

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 11.4
Tracing between Requirements and Models

DTU course 02264

Tracing

= The trace connections established by the folding process can be
used to relate changes in the requirements and the analysis
model, both ways.

= Typically, the analysis model is translated manually into a design
level model, incorporating design decisions and technology
choices.

= |f both ends of this transformation are expressed in the same language (e.g.,
UML), it is feasible to establish trace links manually.

= The similarity between typical design and implementation languages is
sufficient to also allow simple linking from the design model to the
implementation.

= That way, a complete chain of trace links from requirements to code via
analysis and design models can be established

= This kind of linkage is required in high-assurance software, e.g.,
aerospace applications (cf. DO-178A/B/C).

Forward/Backward Tracing

= Question: Given a requirement, how is it realized in the model?

= |f code is generated from the model: how is the requirement implemented?

FORWARD TRACING

= Question: Given a model element, which requirement justifies it?

= |f code is generated from the model: why is a given line of code where it is?

S

BACKWARD TRACING

Tracing in RED

= During weaving, RED embeds trace links into diagrams that are

woven together.

= On the tab “Management & Tracing”, the two input diagrams are linked in the
set of “Sources”, and can be navigated from there.

= These sources are also reflected in the title of the diagram.

* The details of the merge procedure are documented in the “Merge Log” field
on the tab “Diagram Editor”.

= A visualization of the tracing is currently missing, as are more
advanced facilities to query the trace relationships.

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Chapter 11.5:
Requirements Tools

DTU course 02264

State of RE in Practice is Poor

= “There is a lot of information available on solid RE practices but
anecdotal evidence still indicates poor practices.”

U. Nikula, J. Sajaniemi, H. Kalvidinen: A State-of-the-Practice Survey on Requirements Engineering in Small-
and Medium-Sized Enterprises. Telecom Business Research Center Lappeenranta, Research Report 1, 2000

1. Use natural lang.

2. Incl. interf. descr.

3. Incl. stakeholders

4. Incl. viewpoints

5. Std doc structure*

6. Done as document

7. Incl. domain descr.

8. Format is text

9. Incl. system descr.

10. Incl. prototypes

11. Use simple lang.”

12. Easy change planned”
13. Use semi formal meth.
14. Separate facts & reqs
15. Regs have unique id*
16. Incl. scenarios

17. Done as tasklist

18. Format is hypertext
19. Use formal methods

M Standard

O Normal

B Discret.

O Never

Company count 3 6 9 12

RE Process Maturity in Practice is Poor

1. RE process defined

2. Formal insp. done*

3. Reqgs template used”

4. Anal. checklist used”

5. Bugs traced to sources

6. Data dictionary done

7. Problem anal. done

8. Conflict res. planned”

9. RM policies defined”

10. Reqgs metrics gathered

11. Reqs rel. probl. metrics

12. Doc checklist defined”

Company count 0 3 6 9

Il Standard

0 Normal

O Discret.

0 Never

12

*REAIMS top 10

Prose for Requirements Engineering

= Alternatives to Natural
Languages (NL) exist.

= Various case studies have

demonstrated that they
can largely replace NL.

Language Type Used
5%

Plain
79%

m Controlled
M Structured

= Natural Language Process-

ing (NLP) and Information
Retrieval (IR) technology
can do amazing things:

= generating sequence diagrams
from natural language use
case descriptions;

= generating class diagrams
from NL requirements
specifications.

However, if the perform-
ance is less than perfect,

using tools is often worse
than not using them.

NL-Analysis of document outlines

DTU course (02264)
Requirements Engineering
Chapter 11: Design Transition
33

= There are algorithms to identify parts of natural language require-
ments documents with poor structuring, sections that ought to be
re-arranged, and requirements that are placed in conceptually
unconnected sections.

Original

Document Requirements

)

List

— il

S-HTC

¢
20

Clustering
Parameters

J

Hidden Structure

Candidates —

Best
Hidden
Structure
Selection

Q

Structure
Evaluation

I
m

|

Best Hidden
Structure

Original
Document

2

Alessio Ferrari, Stefania Gnesi, Gabriele Tolomei: Using Clustering to Improve the Structure of Natural Language Requirements Documents.
In: J. Doerr, A.L. Opdahl (Eds.): REFSQ 2013, LNCS 7830, pp. 34-49, 2013, Springer

Tools

Do you use any tool supporting How many employees and consultants are there in
requirements analysis and your company?
top-level design?
1-5 6—20 21-50 51-100 More than 100
Yes 16% 18% 33% 33% 51%
No 84% 82% 67% 67% 49%
1. Word processor |
P , W Standard
2. Spreadsheet
| U Normal
3. Own DB
| .
4. Commercial tool . . . O Discret.
Company count | 3 6 g 12| O Never

Luisa Mich, Mariangela Franch, Pierluigi Novi Inverardi: Market research for requirements analysis using linguistic tools
Requirements Eng (2004) 9: 40-56, Springer

DTU course (02264)
T I Requirements Engineering
00 S Chapter 11: Design Transition

35

= “l hate to be a cynic, but there are hardly any worthwhile tools. The
overhead in learning to use them is too great for the payoff.”

Identify user requirements
Test the software

Model user requirements
Document software systems
Evaluate project feasibility
Learn to use new tools

Train staff

Other

0 5 10 15 20 25 30 35
m US ®mEurope

Luisa Mich, Mariangela Franch, Pierluigi Novi Inverardi: Market research for requirements analysis using linguistic tools
Requirements Eng (2004) 9: 40-56, Springer

Diverse Requirements Stores in use

30 Meeting notes

30 Lists of requirements

22 Technical specifications

21 Use cases

19 Software requirements specifications

17 Functional specifications

16 Rough concepis

16 Dictionaries of business terms
13 GUI layouts

12 Prototypes

12 Process, task and workflow diagrams

12 Dynamic UML-Diagrams

12 Business object diagrams

8 Scenarios

8 Test specification, t|est cases, acceptance criteria

7 Security concepfs

3 Usel documentations

3 Project plans

2 Qther Diagrams Stefan Winkler: Information Flow Between Requirement Artifacts. Results of an Empirical Study
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232-246, Springer, 2007

Concurrent Requirements Stores

= |n typical industrial settings, five to eight different media are used
to store requirements.

answers
4
[

1 2 3 4 5 6 7 8 9 i0 11 12 13 14 15
amount of different types of artifacts

Stefan Winkler: Information Flow Between Requirement Artifacts. Results of an Empirical Study
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232-246, Springer, 2007

Requirements Flow

Requirement Lists —

| \““—-—h Dictionary

/----'/ ‘ \ GUI Layouts

4 \ \i Rough Concept
Scenarios

Use(Sases |

VY
Functional Specification

_

SRS

"f"'r

Technical Specification

Stefan Winkler: Information Flow Between Requirement Artifacts. Results of an Empirical Study
P. Sawyer, B. Paech, and P. Heymans (Eds.): REFSQ 2007, LNCS 4542, pp. 232-246, Springer, 2007

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Chapter 11.6:
Tailoring the Requirements Toolbox

DTU course 02264

The necessity of Tailoring

There are many different techniques for specifying and managing
requirements — which ones should we use?

= One size does not fit all.
= Each method has their specific profile of strengths and weaknesses.

= For many techniques, we do not have adequate evidence to assert usage
conditions: common sense and experience will have to do.

Using an inappropriate technique might be worse than using no
technique at all for several reasons.

= Disagreement about the approach can be distracting (“method wars”) and disrupt
the team’s group dynamics.

= Using methods typically comes with increased effort and/or cost.

= The techniques may lead to properties of the system document that may not just
be wasteful, but actually negative.

Imagine a scenario where using User Stories is demanded, while some
team members prefer Use Cases.

= Convincing and training them requires effort and time.
= Focusing on features may lead to neglecting qualities.

The Toolbox

= [Itis recommended practice to select and fix a set of techniques for
a project, based on an initial estimate of the project’s needs.

= We call this the ,,project toolbox“, and the process ,tailoring”“.

= During tailoring, a (brief) description of the ,toolbox” should be
created.

= The toolbox should be a project specific selection of existing proven practices,
possibly with one or two additions of new “experimental” methods.

= A justification of the decision must be provided.

= The toolbox must be easily available, e.g., as a printed poster on the wall next
to the coffee machine.

= One team member should be appointed as responsible for maintaining the
toolbox (the “tool smith“).

= After the project, a post-mortem should be conducted to, among other
things, assess the toolbox and the tailoring process.

DTU course (02264)
° ° ° Requirements Engineering
RE TECh n Iques In SV“OpSlS Chapter 11: Design Transition

42

STRUCTURAL
MODEL
PROCESS
- —
MODEL
VISION

STRUCTURE

INFORMATION
MODEL

Methods ~ Qualities (1/2)

= Using the ISBSG data set on project outcomes, we can see some
interesting correlations:
= Some methods/techniques have positive influence on many quality metrics.
= QOther actions seem to have little to no practical impact.
= Some quality metrics are influenced positively by more or less any action.

Variable MSO MBR QF QD EU SDS SPS
CASE Tool Used pUSC pUDC ¢C ¢Cu dC
Used Methodology pUdCu ppC pU pUPC
Upper CASE Used U p
Lower CASE (with code gen) pUPCu pUpCu pUbCu pUPCu pUdpCu pUbCu pUPHCu
Project user involvement pUdCu p p p
Portability requirements $Cu ¢C dCu
Metrics Program pUu pUdCu pUpCu pUPCu pUPCu dCu pu
User satisfaction survey pUdbCu ppC pUPC pUPC pUPC
Training given pHOCV pHOCVu pHOCVu pHOCVu pHOCVU GCV pH
Process improvement pgm OUDCu pUbCu
MSO: meet stated objectives = MBR: meet bus. Regs. QF: Quality of functionality
EU: Ease of use SDS: speed of def. solution SPS: speed of providing sol.

tukasz Radlinski: Empirical Analysis of the Impact of Requirements Engineering on Software Quality
B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 232-238, 2012, Springer

Methods ~ Qualities (2/2)

DTU course (02264)
Requirements Engineering
Chapter 11: Design Transition

45
Variable MSO MBR QF QD EU SDS SPS '
Project objective: all functionality pHdCVu H &CVu pu
. Project objective: min. defects H H pHu pHu
Development TQCh 1] |q ue Pro_icct obj:ecti\-'c: min. cost &CVu P pH&CVu p
- - Project objective: shortest time u H
BUSIneSS area mOdEIIng Dev. tech.: Business area modeling pUdCu pUdpCu pUdCu pUdCu pUdCu
. Dev. tech.: Data modelling p &Cu pUdC ¢C
Data mOdelllng Dev. tech.: Event modelling pUdbCu ¢C pU
. Dev. tech.: Multifunct. teams phC
oo AnalySIS Dev. tech.: OO analysis Cu C Cu Cu Cu
00 b b o0 g UaC s% pd pdCu &G 18
Design ev. tech.: esign pUd $Cu dC $C $&Cu
Dev. tech.: OO $Cu ¢C @Cu $C
Dev. tech.: Process modelling &C $C $Cu p
. . Dev. tech.: Prototyping p
PrOIect Plannlng Dev. tech.: Timeboxing p p p
Dev, tech.: Waterfall phC pll pll
Budget [_Plan docs: Budget pdCu__ pdCu pUdC pdC &Cu pdC |
Plan docs: Business case pdpC $Cu $C
Plan docs: Feasibility study pUdC p
| Plan docs: Project schedule Gl u plgCu pUdC b |
Schedule
Plan docs: Proposal/tender &Cu pdCu pUgpCu p
Plan docs: Quality plan pUdCu pUdCu
Plan docs: Resource plan U
Plan d Risk anal ’
H H H an docs: Risk analysis pUdCu pUdCu
Specrﬁcatlon glfjﬂ ddcncs: S]:ftwarc dev. plan pUdCu ¢oC
: H'H : pec. docs: None pdbC p
FunCtlonaI SpElelcatlon | Spec. docs: Functional spec. & Cu $Cu pdCu pUdCu pUdCu |
Logical data ER model Spec. docs: Graph. look & feel pUdCu pU
Spec. docs: Log. data ER model P pu pUgpCu pl pU__(;u pUdCu |
System concept document Spec.docs: Requirements spec. pUaC pUdC
| Spec. docs: System concept doc. pUdpCu ¢C pUeCu_ pUdCu I
Spec. docs: Use case model pUpC p
. . Spec. docs: User interface prototype ¢C P
MSO: meet stated Objectlves Spec. docs: Ext. syst. interface spec. p
. Data flow model _Spec. docs: User manual pdC pU pUdCu_ plU
MBR: meet bUS. reqs. I Spec. docs: Data flow model $Cu pUdCu pUdCu_ pUdCu |
. : . : Spec. tech. Activity diagram pdpCu pdCu p
QF' Qua/lty OffunCtlona/Ity Spec. tech. JAD pdpCu p P pUdCu pUdCu pdCu
EU: Ease Of use Spec.tc_ch. Timeboxing p
Proportion of effort on plan
SDS: speed of defining solution Proportion of eff :
: roportion of effort on spec. P
. . . Activity planning $C pUsCu pUdC
SPS: speed of providing solution Activity specificati
. y specification ¢C pU

	Chapter 11:�Transition to Design
	Chapter 11.1�From Requirements to an Analysis Model
	Slide Number 4
	Requirements to Analysis Level Models
	Weaving Models
	Requirements-to-Model Transformation
	Step 1: Translate
	Step 2: Weave
	Step 3: Consolidate
	Chapter 11.2�Harvesting Model Fragments �from Requirements
	Harvesting Example 1:�Successful extraction
	Harvesting Example 2: �Incomplete Fragment
	Harvesting Example 3:�Large Fragment
	Harvesting Example 4:�No Fragment
	Improvement Opportunities in Step A:�2) Multiple resulting fragments
	Chapter 11.3�Weaving Model Fragments
	Weaving
	Weaving Example 1:�Simple overlap
	Weaving Example 2:�Multiple/consecutive overlaps
	Weaving Example 3:�Semantic Implications
	Weaving Example 4:�Weaving exhibits duplication or flaw
	Weaving Example 5:�Weaving yields unexpected results
	Folding Assemblies (Composite Structures)
	Chapter 11.4�Tracing between Requirements and Models
	Tracing
	Forward/Backward Tracing
	Tracing in RED
	�Chapter 11.5:�Requirements Tools�
	State of RE in Practice is Poor
	RE Process Maturity in Practice is Poor
	Prose for Requirements Engineering
	NL-Analysis of document outlines
	Tools
	Tools
	Diverse Requirements Stores in use
	Concurrent Requirements Stores
	Requirements Flow
	�Chapter 11.6:�Tailoring the Requirements Toolbox�
	The necessity of Tailoring
	The Toolbox
	RE Techniques in Synopsis
	Methods ~ Qualities (1/2)
	Methods ~ Qualities (2/2)

