
MACH 0.94 (subsonic)

Harald Störrle
Department of Applied Mathematics and Computer Science

Technical University of Denmark (DTU), Technical Report 2014-02
hsto@dtu.dk

March 13, 2014

1 Introduction

The Model Analysis and Checker (MACH) tool is an experimental tool to
deploy and test advanced algorithms for analyzing UML models. MACH is
a flexible and lightweight framework for the loose integration of independent
tools, and a set of tools integrated this way under a common UI. All parts of
MACH are implemented using SWI-Prolog [5]. Many of its more advanced
parts have been subject to previous research publications.

MACH is targeted at modelers that already have a fairly good under-
standing of UML as a modeling language. Given its purpose and intended
audience, MACH puts little focus on UI, making it somewhat challenging to
use. MACH is more of a tool demonstrator rather than a high-productivity
CASE tool.

2 Getting started

2.1 Obtaining and installing MACH

MACH requires SWI Prolog to be installed. To the best of our knowledge,
MACH works with any recent version of SWI-Prolog. SWI Prolog can be
downloaded from www.swi-prolog.org and is available for many platforms.
The installation is easy, but takes a a few minutes. MACH can be down-
loaded for free from www.compute.dtu.dk/~hsto/tools. Installing MACH
amounts to unpacking the zip and placing the executable in the directory that
also contains the swipl.dll (or equivalent thereof on other platforms). Start

1

MACH by running the executable (i.e., double-clicking or similar). MACH
will open a console window. In the console window, it’s probably best to
first set the path to the directory with samples that comes with MACH. It
is placed inside MACH, so you just have to say “cd "samples"”. See below
for a sample session.

2.2 First steps

Conventions Commands are entered at the prompt and terminated by
the 〈CR〉 character. Names containing special symbols like spaces, slashes,
hash, or dollar signs must be enclosed in double quotes. There are some
problems with long file names, and it is thus recommended to use short and
simple names when working with MACH. The MACH command line has a
history function, that is, the cursor keys 〈UP〉 and 〈DOWN〉 recall the pre-
vious commands. MACH is exited by typing “quit”. There is currently only
a rudimentary help function, help for specific commands is not implemented.
Similarly, the commands “magic” and “pray” are not yet implemented. Ob-
serve that MACH is case sensitive.

Issues Every now and then, a command fails and MACH terminates un-
expectedly. For instance, this happens when model names that are supposed
to be enclosed by double quotes are not properly closed, i.e., the trailing
quotes are omitted. While inconvenient, the user can often recover from this
fault quite easily by restarting MACH (saying “mach.” at the PROLOG
command line). This allows the user to carry on exactly where MACH ex-
ited: the environment (such as the current working directory and the opened
models) are maintained. At this point, MACH has only been tested with
the XMI produced by MD 16.9 to 17.0.3. Since commercial and academic
UML modeling tools tend to deviate from the XMI standard, using other file
formats might result in incompatibilities.

Getting help The command “help” reminds you of some basic commands
and conventions. The command “help commands” lists the available com-
mands alphabetically and provides a short description. The command “help
X” will provide a more detailed description for the command X. Any char-
acters after X are ignored so that if a command fails, one can simply recall
the previous command from the command history by CURSOR UP, go to
its beginning by POS1, and insert “help” to obtain help on the respective
command.

2

Welcome to MACH 0.93 ("Subsonic") (C) 2013-2014, H. Strrle

no warranties whatsoever

MACH is case sensitive - exit by saying "quit"

>

> pwd

h:/_arbeitsbereich/projekte/momat/

> cd "mach/samples"

> pwd

h:/_arbeitsbereich/projekte/momat/mach/samples/

> ls -m

LMS_2011_2.mdxml m2.mdxml IE1.mdxml IE2.mdxml

> open "LMS_2011_2"

% LMS_2011_2.pl compiled into LMS_2011_2 0.22 sec, 2,586 clauses

> size "LMS_2011_2"

Model LMS_2011_2 has 2584 elements with 7568 attributes.

This is magnitude 4, a medium model.

> frequency "LMS_2011_2" width 60 min 25 sort alphabetical

activity 33 ++

activityFinalNode 26 ++

activityPartition 69 +++++

association 120 ++++++++

callBehaviorAction 231 +++++++++++++++

centralBufferNode 26 ++

class 30 ++

componentRealization 26 ++

connectorEnd 32 ++

controlFlow 369 ++++++++++++++++++++++++

dataStoreNode 26 ++

decisionNode 58 ++++

enumerationLiteral 37 ++

forkNode 27 ++

include 60 ++++

initialNode 31 ++

inputPin 39 +++

literalInteger 38 +++

messageOccurrenceSpecification 39 +++

objectFlow 105 +++++++

operation 58 ++++

outputPin 35 ++

package 37 ++

parameter 78 +++++

property 377 +++++++++++++++++++++++++

receiveOperationEvent 43 +++

state 38 +++

transition 62 ++++

trigger 45 +++

useCase 32 ++

>

3

3 Working with directories

MACH offers some commands to navigate directory trees. The syntax is vaguely reminis-
cent of a UNIX shell, but offers only a very small number of the most basic options. Recall
that using some special characters such as white spaces will require that you enclose your
path expression in double quotes.

pwd

Shows the current working directory (“print working directory”).

cd PATH

Move to the directory indicated by the parameter (“change directory”). Ac-
cepts a relative path separated by “/”, and using “..” for the upper level
directory. E.g. cd subdir changes the working directory to the subdir sub-
directory of the current working directory. Path names have to be enclosed by
double quotes.

ls OPTION

Shows the contents of the current working directory. Accepts the following
values for OPTION:

m : list only models

a : list all files

p : list all Prolog files

4

4 Working with Models

The following commands are used to access existing models in MACH. Models are assumed
to be stored as files conforming to the MagicDraw MDXML format (based on the standard
XMI model interchange format), having the .mdxml file extension.

open FILE

Accesses FILE and tries to interpret it as a model. The .mdxml file extension
should be omitted when specifying FILE. E.g.: The command open testmodel

opens the model stored in the file testmodel.mdxml.

open FILE as $ALIAS

Accesses FILE and tries to interpret it as a model. Assigns the name $ALIAS

as a shorthand for the file. This alias may be used instead of a model file name
in all subsequent commands. When using an alias, it must be preceded by
the dollar sign. The .mdxml file extension should be omitted when specifying
FILE. E.g.: The command open testmodel as $x opens the model stored in
the file testmodel.mdxml and assigns $x as a shorthand for it.

show all aliases

List all currently defined aliases.

show alias $ALIAS

Show details of the specified alias.

clear all aliases

Remove all alias declarations.

clear alias $ALIAS

Remove the specified alias declaration.

models

show all opened models

List all the models currently opened.

5

5 Querying and inspecting models

The following commands are used to search for specific patterns or elements in models,
and to ispect parts of models in detail.

dump all of MODEL

Show a tabular overview of all elements in MODEL. E.g.: The command dump

all of $x shows a tabular overview of all elements in the model previously
associated with the alias $x, while the command dump all of testmodel

shows a tabular overview of all elements in the model stored in the file test-
model.mdxml.

dump #ID of MODEL in (detail|summary|overview)

Show a tabular overview of the element with identifier ID in MODEL, provid-
ing several levels of details. E.g.: The command dump #mdx123 of $x in

detail shows a detailed tabular overview of the element with ID = mdx123 of
the model previously associated with the alias $x, while the command dump

#mdx123 of testmodel in summary shows a summary tabular overview of
the element with ID = mdx123 of the model stored in the file testmodel.mdxml.

find exactly QUERY in MODEL

Looks for the string QUERY in MODEL, as an exact match.

find QUERY in MODEL

Looks for the string QUERY in MODEL, with a degree of vagueness in the
matching (e.g., to correct for typos and the like).

6

6 Model differences and versions

difference between MODEL1 and MODEL2

Compute the difference between MODEL1 and MODEL2 and list the result in a
table. The algorithms applied in this command and its options explained below
are published as [1, 2, 3].

difference between E1 of MODEL1 and E2 of MODEL2

Compute the difference between the sub-model below the element E1 in MODEL1

and element E2 in MODEL2. The result is presented in a table by default.

difference between MODEL1 and MODEL2 aggregated

After computing the difference between the two models, this option instructs
MACH to try and aggregate the (large) number of low-level changes into a
smaller number of high-level changes that make more sense to modelers (cf. [3]).
By default, the result is presented in a table. Aggregation only works for class
models.

diff MODEL1 and MODEL2 as text

Present the difference as prose rather than in a table. This feature works only
for class models, and it is not very reliable.

7

7 Model similarity

similarity of MODEL1 and MODEL2 by identifiers

Compute the overlap of the identifiers between the two models. This metric
only makes sense when applied to successive versions of a models. If the mod-
eling tool used creates identifiers in a deterministic way, high similarity scores
may be indicated for dissimilar models.

similarity of MODEL1 and MODEL2 by edits

Compute the similarity between MODEL1 and MODEL2 as correlated to the inverse
of the edit distance. The values range from 1 to 0, where larger values represent
models of greater similarity. Identical models have an edit distance of 0, which
we interpret as a similarity of 1. The edit distance yields a more sensitive
similarity metric than spectral comparison, but is limited to comparing models
with a (close) common ancestor, such as one of the two models to be compared.
Comparing models without a (close) common ancestor will yield edit distances
larger than the target model size. This metric only makes sense when applied
to successive versions of a models.

similarity of MODEL1 and MODEL2 by length

Compute the similarity of the two models purely based on their length. This
metric may be applied to models that are not successive versions of each other,
but is a very coarse approximation of true similarity.

similarity of MODEL1 and MODEL2 by spectrum

Compute the (scaled) cosine-similarity of the meta-class spectra of MODEL1 and
MODEL2. The values range from 1 to 0, where larger values represent models of
greater similarity. Identical models receive a value of 1. This metric may be
applied to models that are not successive versions of each other. It is a better
approximation to ”similarity by length”.

similarity of MODEL1 and MODEL2 by plgind

Compute the likelihood that the two models are successive versions of each
other. If the two models score high on this similarity without being proper
versions of each other, this is an indication of plagiarism.

8

8 Model size and quality

The following commands are used to perform model manipulation tasks.

size of MODEL

Provide a rough measure of the size of MODEL. E.g.: The command size $x

computes the size of the model previously associated with the alias $x, while
the command size testmodel computes the size of the model stored in the
file testmodel.mdxml.

frequency of MODEL

Show a histogram of the frequency distribution of meta classes in MODEL. E.g.:
The command frequency $x shows a histogram of the frequency distribution
of meta classes in the model previously associated with the alias $x, while the
command frequency testmodel shows a histogram of the frequency distribu-
tion of meta classes in the model stored in the file testmodel.mdxml.

frequency difference of MODEL 1 MODEL 2

Show a histogram of the frequency distribution of meta classes in MODEL. Both
this and the previous command offer a free combination of the following options
attached to their end.

...sort DIRECTION

Sort the entries by increasing or decreasing size, or alphabetically by the name
of the meta-class.

...width INT

Scale the output to fit on INT columns.

...scale FACTOR

Scale the output by the given factor (may result in visually empty bars).

...min VALUE

Clip all entries smaller than the given value.

...max VALUE

Clip all entries greater than the given value.

clones of MODEL

Computes and lists clone candidates in MODEL. E.g.: The command clones $x

shows clone candidates in the model previously associated with the alias $x,
while the command clones testmodel shows clone candidates in the model
stored in the file testmodel.mdxml. The algorithms applied in this command
are published as [4].

9

A Cheat Sheet

Notation inspired by EBNF.

pwd

cd PATH

ls [-m|-a|-p]

open FILE [as $ALIAS]

show all aliases

show alias $ALIAS

clear all aliases

clear alias $ALIAS

dump all of MODEL

dump #ID of MODEL in (detail|summary|overview)

find [exactly] QUERY in MODEL

similarity of MODEL1 and MODEL2

[by (spectrum|edits|identifiers|length|plgind)]

diff [E1 of] MODEL1 and [E2 of] MODEL2 [aggregated |as text]

size MODEL

frequency MODEL

frequency difference A B

clones MODEL

10

References

[1] Harald Störrle. A formal approach to the cross-language version management of mod-
els. In Ludwik Kuzniarz, Miroslaw Staron, Tarja Systä, and Mia Persson, editors, Proc.
5th Nordic Ws. Model Driven Engineering (NW-MODE’07), pages 83–97. Blekkinge
Tekniska Hgskolan, August 2007.

[2] Harald Störrle. Making Sense of UML Class Model Changes by Textual Difference
Presentation. In Dalila Tamzalit, Bernhard Schtz, Jonathan Sprinkle, and Alfonso
Pierantonio, editors, Proc. Ws. Models and Evolution (ME), pages 1–6. ACM DL,
2012.

[3] Harald Störrle. Making Sense to Modelers - Presenting UML Class Model Differ-
ences in Prose. In Joaquim Filipe, Rui Csar das Neves, Slimane Hammoudi, and Lus
Ferreira Pires, editors, Proc. 1st Intl. Conf. Model-Driven Engineering and Software
Development, pages 39–48. SCITEPRESS, 2013.

[4] Harald Störrle. Towards Clone Detection in UML Domain Models. J. Softw. Syst.
Model., 12(2), 2013. (accepted in 2011).

[5] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

11

