
MQ-2 User Guide

Vlad Acretoaie
Department of Informatics and Applied Mathematics

Technical University of Denmark
rvac@dtu.dk

22.03.2013

1 Introduction

This document describes the usage of the MQ-2 plug-in for MagicDraw. The
plug-in implements the Visual Model Query Language (VMQL), a novel
query by-example approach for UML (and other) models. For a detailed
description of VMQL see [1], and for an overview of the plug-in’s implemen-
tation see [2].

2 Using the MQ-2 Prolog console

The Prolog console can be opened by selecting the MQ-2 entry from the
Tools menu in the MagicDraw menu bar. This action will cause the MQ-2
Prolog Console window to appear at the bottom of the MagicDraw applica-
tion window (see Figure 1). The console may only be opened if a model is
already open in MagicDraw. The console’s initial behavior is that of a regu-
lar Prolog console: it allows executing queries supported by SWI-Prolog, and
prints query results and error messages. The following keys must be used to
execute queries in the MQ-2 Prolog console:

• Return: Prints the next query result. The behavior of the Return key
may be modified using the Quick Actions drop-down on the Console
Tool Bar (see Section 2.2).

• Up: Displays the previous query.

• Down Displays the next query.

1



M
Q-

2 
Pr

olo
g 

Co
nso

le
Co

nso
le 

To
ol 

Ba
r

Se
ar

ch
 R

es
ult

s T
re

e

Hi
gh

lig
ht

ed
 qu

er
y 

sol
uti

on

Figure 1: MagicDraw window featuring the MQ-2 Prolog console. Model
elements returned by the last console query are highlighted in green.

2



The MQ-2 Prolog console offers a number of features aimed specifically
at the task of model querying. These features are accessible through the
Console Tool Bar, placed above the console text area, and are detailed in
what follows.

2.1 Consulting models

Before the model query facilities provided by the MQ-2 Prolog console can
be used, a model must be consulted. The Console Tool Bar features the
following buttons enabling model consulting:

• Consult the currently active model: Consults the model currently
open in MagicDraw so that it is available for querying.

• Select a MagicDraw model to consult: Opens a file browser allow-
ing users to select a MagicDraw project file to consult so that it is
available for querying. Note that only projects stored in the MDXML
file format may be selected.

• Re-consult the MagicDraw model: Re-consults the last consulted model,
regardless if it is open in MagicDraw or not.

• Re-start the Prolog console: Clears the console contents and un-
consults all previously consulted modules.

The Explicit header check-box allows users to select whether or not the
me/2 predicate should be included in the header of the Prolog module gener-
ated when a model is consulted through one of the methods above. In case
it is checked, the me/2 predicate will be included in the generated module
header, and model elements may be accessed from the console using pred-
icates of the form me(Type,Id-Attributes). In case it is left un-checked,
the me/2 predicate will be omitted from the generated module header, and
model elements may be accessed from the console using predicates of the form
’ModelName’:me(Type,Id-Attributes), where ’ModelName’ is the name of
the consulted MagicDraw model. By default, the Explicit header check-
box is un-checked.

Warning: When using MQ-2 with versions of SWI-Prolog older than
6.1.9, consulting two Prolog modules that expose the same predicate in their
headers causes MagicDraw to crash. For this reason, it is recommended to
leave the Explicit header check-box un-checked.

3



2.2 Querying models

Once a model has been consulted, it is possible to execute queries on it. The
most direct way to query a consulted model is through the me(Type-Id,Attrs)
predicate, where Type is the meta-type of a model element, Id is its unique
generated identifier, and Attrs is a list of the element’s meta-attributes and
their values. For instance, a query retrieving a class named Reader has the
following form:

me(Type-Id,Attrs), member(name-’Reader’,Attrs).

Additional MQ-2 library predicates that can be used to query model
elements are presented in Section 2.3. While all queries can be executed
by simply typing them into the console and pressing the Return key, the
Console Tool Bar features the Quick Actions drop-down that can be used
to add custom behavior to the Return key. The Quick Actions drop-down
contains the following entries:

• Print next solution: When this option is selected, pressing the
Return key causes the next query solution to be printed on the con-
sole. If no other solutions exist, a new prompt is printed. This is the
standard Prolog console behavior.

• Print all solutions: When this option is selected, pressing the
Return key causes all query solutions to be printed, followed by a new
prompt.

• Show all solutions in tree: When this option is selected, pressing
the Return key causes all query solutions to be printed and all model
elements included in the query solution to be shown in MagicDraw’s
Search Results Tree. A new prompt is printed on the console.

• Highlight all solutions: When this option is selected, pressing the
Return key causes all query solutions to be printed and all model ele-
ments included in the query solution to be highlighted in the diagrams
in which they appear. The highlight color may be selected using the
Select highlight color button on the Console Tool Bar. A new
prompt is printed on the console.

• Show selection in tree: When this option is selected, pressing the
Return key causes all model elements which can be identified by the
selected console text to be displayed in MagicDraw’s Search Results
Tree.

4



Alternatively, all actions included in the Quick Actions drop-down can
be executed through corresponding buttons on the Console Tool Bar. The
buttons do not alter the behavior of the Return key, but rather replace its
role. The Console Tool Bar contains two additional buttons addressing Pro-
log query execution: the Clear highlights button, which clears all high-
lights from all diagrams (including highlights generated by VMQL queries,
as discussed in Section 3.2), and the Abort query button, which stops the
execution of the current query.

2.3 Library predicates

Querying models using the integrated Prolog console is facilitated by the
pre-consulted MQ-2 library predicates:

• get me(Attr-Val,Type-Id,Attrs): Returns the attribute values of
all model elements of type Type having the value Val for the at-
tribute Attr. Example usage (finding the attributes of the class named
’Reader’):

get me(name-’Reader’, class-Id, Attrs).

• part of(Kind,SuperId,SubId): Returns the ID of a model element
representing a part of type Kind of the model element with ID SuperID

in the variable SubId. Example usage (finding all owned ends of the
model element with ID 1):

part of(ownedEnd, 1, SubId).

• highlight(Elements,Color): Highlights the model elements identi-
fied by the Elements parameter in the specified Color. The Elements

variable can either contain a list of me/2 predicates, a list of model
element IDs, or a list of model element names. Example usage (high-
lighting the class named ’Reader’ in green):

get me(name-’Reader’, class-Id, Attrs), highlight(Id, green).

In addition to the MQ-2 library predicates, users can consult their own
custom defined library predicates at run time by pressing the Consult user

defined Prolog modules button on the console tool bar. Files containing
user-defined predicates must be placed in the <MagicDraw home>/plugins/mq2/user/

directory prior to being consulted. Files containing helper predicates re-
quired by the user defined library predicates must be placed separately
in the <MagicDraw home>/plugins/mq2/user/helpers/ directory, so that
they are not directly consulted in the MQ-2 Prolog console.

5



2.4 Limitations

The MQ-2 Prolog console does not support executing queries in debug mode.
Calling the debug/0 predicate must be avoided, as it will cause MagicDraw
to crash. All errors that cause Prolog to enter debug mode will also cause
MagicDraw to crash. This behavior occurs due to the fact that MagicDraw
interprets the Prolog debug mode as a Java Virtual Machine crash.

3 Executing VMQL queries

Besides providing support for executing Prolog queries on models, the MQ-2
Prolog console also supports executing VMQL queries. The VMQL query
execution interface, shown in Figure 2 on the bottom right corner of the
MagicDraw main window, can be activated or de-activated from the VMQL

toggle button on the Console Tool Bar.

3.1 Query execution

Executing a VMQL query requires a source model and a query model to
be selected. The MQ-2 VMQL query execution interface assumes that the
source model is the currently open MagicDraw model. Therefore, the first
step in executing a VMQL query is consulting this model in the MQ-2 Prolog
console, as described in Section 2.1. Selecting a query model and executing
it as a VMQL query against the source model is facilitated by the following
buttons on the VMQL query execution interface:

• Select a MagicDraw project to be used as query model: Opens
a file browser allowing users to select a MagicDraw project file to be
used as a VMQL query model. Note that only projects stored in the
MDXML file format may be selected.

• Re-consult the current query model: Re-consults the last selected
VMQL query model.

• Execute the selected VMQL query: Triggers the execution of the
VMQL matching algorithm between the selected source and query mod-
els.

Query execution results are displayed in a tabular format bellow these
buttons in the Bindings Table. Each binding is displayed as a row in the
Bindings Table, while the first column of each row identifies the index of
the binding. In case the query model includes VMQL variables, subsequent
columns correspond to the values taken by these variables in each binding.

6



Hi
gh

lig
ht

ed
 b

ind
ing

Se
lec

te
d b

ind
ing

M
Q-

2 
Pr

olo
g 

Co
nso

le
VM

QL
 qu

er
y 

ex
ec

uti
on 

int
er

fac
e

Figure 2: MagicDraw window featuring the MQ-2 Prolog console and VMQL
query execution interface. The selected VMQL binding is highlighted on the
model in green.

7



3.2 Result highlighting

Selecting a binding from the Bindings Table by clicking on it leads to the
source model elements included in this binding being displayed in the Mag-
icDraw Search Results Tree. The selected binding can also be highlighted on
the source model’s diagrams through the Highlight the selected binding

button. Just as in the case of highlighting Prolog query results, the high-
light color can be selected via the Select highlight color button on the
Console Tool Bar, and highlights can be cleared via the Clear highlights

button on the Console Tool Bar.

References

[1] Störrle, H.: VMQL: A Visual Language for Ad-Hoc Model Querying. J.
Visual Languages and Computing 22(1), 3-29 (2011).

[2] Acretoaie, V., Störrle, H.: MQ-2: A Tool for Prolog-based Model Query-
ing. In: Joint Proc. co-located Events at the 8th European Conference
on Modelling Foundations and Applications (ECMFA 2012), pp. 328-331.
Technical University of Denmark, Kgs. Lyngby (2012).

8


