
Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

Beyond OCL:
Model Queries for Mere Mortals

Università di Trento, 23.5.2014

Harald Störrle
Model Querying Beyond OCL

2Problem
 In Model Based Development or Business Process Reengineering, large

systems of analysis level models are created in a variety of languages.
 These models are often created by (or in collaboration with) domain experts, who

usually do not have a CS background.

 The models are a significant asset though often a “buried treasure” – finding
information in large model bases may not be not easy.
 As one client once put it: “The process of modeling really made us understand our

processes, but now our repository is kind of a black hole, really.”

 There are a number of practical ways for querying models.
1. Look through the whole model (or the diagrams presenting it) manually.
2. Select one from a number of predefined queries (or visualizations).
3. Do a full-text search, possibly applying one of a finite selection of filters, or regular expressions.
4. Program the query using a query API of the modeling tool at hand.
5. Use a model query language to formulate a query.

 In a UML context, OCL is the “natural” model query language.

Harald Störrle
Model Querying Beyond OCL

3Models can become large

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

Beyond OCL:
Model Queries with VMQL

Università di Trento, 23.5.2014

Part 1

Harald Störrle
Model Querying Beyond OCL

5VMQL – Basic Idea
 If people can model, they understand the modeling language.
 Using this vocabulary and concrete syntax surely is acceptable to them.
 Some slight additions may be acceptable.

 This will work for querying languages for any visual language.
 With suitable implementation, this VMQL is a concrete query facility for all

languages, including future DSLs.

 A similar idea has been proposed but not implemented [1,2].
 For process models this problem has been studied more intensely

in recent years. [3,4]

1) Stein, D., Hanenberg, S., Unland, R.: Query models. Proc. UML. LNCS 3273 (98–112) Springer, 2004
2) Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model Queries for MDA Transformations

on UML Models. Proc. MDAFA’03. LNCS 3599 (77–92) Springer 2005
3) Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes. Proc. 32nd VLDB (343–354) 2006
4) Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Temporal Logic. Proc.

BPM 2008. LNCS 5240 (326–341) Springer 2008

Harald Störrle
Model Querying Beyond OCL

6Example 1: Ground Query

Find a class named ‘Product’,
and a class named ‘Person’ with
- a string attribute called ‘name’
- an attribute with type date
- an attribute named gender

Binding

Product ↔ Product

Person ↔ Person

Person.name ↔ Person.name

Person.<#1> ↔ Person.birth date

Person.gender ↔ Person.gender

Harald Störrle
Model Querying Beyond OCL

7Example 2: Variables and Patterns

Find two associated classes with
some attributes as shown above.
One of the classes is called ‘Product’,
report the other one’s name in
variable ‘Class’.

Harald Störrle
Model Querying Beyond OCL

8Syntactic Sugar

1. Technically, using variables and patterns in the query model has
defined a set of constraints.
1. We have provided syntactic sugar to hide this from the user.

2. Constraints are captured as comments annotating arbitrary
model elements.

Harald Störrle
Model Querying Beyond OCL

9Example 3: Paths, Meta Model Access

Find all subclasses of ‘Product’
whose name ends in ‘Plan’.

Intention: Find all plans!

…but doesn’t find ‘AllRoundHealthPlan’
and ‘GroupPlan’

Harald Störrle
Model Querying Beyond OCL

10Implementation of VMQL in ModelQuery

Harald Störrle
Model Querying Beyond OCL

11Actually, VMQL works for any UML Notation

Harald Störrle
Model Querying Beyond OCL

12In fact, any Modelling Language

Harald Störrle
Model Querying Beyond OCL

13Come to think of it: not just on Queries

 Apart answering simple questions about a model, a query may
also serve other purposes:
 A query may also express a property (including temporal properties) we may

want to check, metrics we may want to compute, or (design) patterns we
might want to detect.

 With suitable base predicates, queries may be used as version control
primitives (“find the difference between…”).

 A (negated) query is a model constraint or consistency condition.
 A query is the “left hand side” of a model transformation, with suitable base

functions, it may also express the “right hand side” (VMTL).
 VMTL should also work as a language for representing (and executing)

diagrammatic inferences.

 These additional use cases require only few and minor conceptual
additions.
 The implementation is lagging behind, though.

Harald Störrle
Model Querying Beyond OCL

14Limitations of VMQL

• VMQL only works for modeling languages with a meta model and
comment-boxes.
 Notational elements without concrete syntax representation, or non-

syntactic features of a language (e.g., layout) cannot be queried.
 Result presentation relies on the preexistence of diagrammatic

presentations of the model.

• VMQL is purely syntactic: semantic relationships cannot be
expressed directly.
• Querying for the methods of B does not yield m().

• Unless you put in some semantic muscle, i.e.,
predicates that capture some wanted property.

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

Beyond OCL:
Model Queries for Mere Mortals

Università di Trento, 23.5.2014

Part 2

Harald Störrle
Model Querying Beyond OCL

16Experimental Setup
 Subjects
 Mostly students (all levels), some practitioners

 Tasks
1) Given a query in language X, select the correct out of three given natural

language descriptions;
2) Given a query in English, select matches out of 16 queries in language X;
3) Given a query in English, produce a query in language X.

 Controlled Variables
 Main: query language
 Noise: task type, task, population

 Measurements
 Score (Writing: checklist assessment)
 Time (self timed)
 Cognitive Load (several different for corroboration)
 Preference (several different for corroboration)

Harald Störrle
Model Querying Beyond OCL

17Post Interview Remarks

 After the experiments,
some participants were
willing to share their
feelings.

 Some also added written
comments on the
questionnaires during the
experiment.

 These perceptions are in
line with the objective
findings, thus corroborate
the overall outcome.

Quotes from participants:

“After [the other] languages, it's hard
to get yourself to work on [OCL]. [It]
is rather, well, relatively complicated,
I kept thinking, jeez, why does it have
to be quite as complicated. [The
others] are quite easy in comparison,
these are easy to understand.”

“All in all it was ok...I found OCL
horrible”

“[the other language] was ok, but
[OCL] is diffcult to understand, you
have to follow the algorithm. That's
ok, it works, but it's more effort."

“[OCL] was really pissing me off".

Harald Störrle
Model Querying Beyond OCL

18VMQL/OCL+ for Queries
difficulty

effort
confidence

writingcheckingreading

Harald Störrle
Model Querying Beyond OCL

19VMQL/OCL+ for Constraints

Harald Störrle
Model Querying Beyond OCL

20VMQL/OCL+ for Constraints

Only a) writing is significant 9+7 participants

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

Factoring out differences:
visual/textual vs. low/high level of abstraction

Università di Trento, 23.5.2014

Part 3

Harald Störrle
Model Querying Beyond OCL

22MOCQL (1/3)
 Suppose, you want to find all classes that capture some kind of address. In OCL

this could be expressed as
Class.allInstances()-> select(c |

c.name.contains_substring("Address"))
under the assumption that string-simiularity function is available in some
query API.

 In MOCQL, on the other hand, we can simply say
show all classes $C named like "*Adress" in M_1

which, we believe, is easier to understand.

 Instead of the above query, one could also say any of the following equivalent
MOCQL queries

show all classes $C named like "*Adress" in M_1
in M_1 show all classes $C named like "*Adress"
show all classes $C where $C.name is similar to "*Adress" in M_1

 MOCQL offers plenty of syntactical variants so that vague recall will (often) still
yield the expected result. In OCL you have to recall precisely the right syntax.

Harald Störrle
Model Querying Beyond OCL

23MOCQL (2/3)

 Suppose, you want to restrict your query to contain only abstract
classes. In OCL this could be expressed as

Class.allInstances()-> select(c |
c.isAbstrac=true &&
c.name.contains_substring("Address"))

 In MOCQL, on the other hand, all we have to do is add ‘abstract’
in the right place:

in M_1 show all abstract classes $C named like "*Address"

Harald Störrle
Model Querying Beyond OCL

24MOCQL (3/3)

 Suppose we were to look for abstract classes that do not have
subclasses.
 This is an example where the typical built-in search facilities of most

modeling tools will fail

 In OCL, we would have to write something like the following.
Class.allInstances()->select(c | c.isAbstract=true).

intersection(c | c.general->isEmpty())

 Substantial understanding of details of the UML meta model are
required here (e.g., the property "general"), the different
navigational operators (dot vs. arrow).

 In MOCQL, we can simply write
show all abstract classes $C where there are

no classes $SUB such that $C generalizes $SUB in M_1

Harald Störrle
Model Querying Beyond OCL

25VMQL/OCL+/MOCQL for Querying

Harald Störrle
Model Querying Beyond OCL

26VMQL/OCL+/MOCQL for Constraints

Prof. Dr. Harald Störrle
Danmarks Tekniske Universitet (DTU)

The other way round:
Improving the Usability of OCL by the
OCL Query API (OQAPI)
2013 OCL Workshop (at MODELS’13), Miami, FL, USA

Part 4

Harald Störrle
Model Querying Beyond OCL

28OQAPI provides convenience

1. Find all classes named “Address”!
2. Find all classes named “Address”

or so!

1. With OQAPI:
classes() -> named(‘Address’)
classes() -> named_like(‘Ad?ress’)

2. Plain OCL:
Class.allInstances() -> select(c | c.name.contains_substring("Address"))
???

3. OCL does not provide easy access to
1. Selection by name
2. Pattern matching/wildcards in string expressions
3. Selection of instances by type

Harald Störrle
Model Querying Beyond OCL

29OQAPI hides the meta model
Does “A” have any associations?
Query: Is the class named “A” associated to any other
class?

With OQAPI:
classes()->named(‘A’)->associated_to()
->notEmpty()

Plain OCL:
let end1 = c1.ownedMember,

end2 = c2.ownedMember,
assc = Association.allInstances()

in collect(a | assc->includes(a)
and a.memberEnd->intersects(end1)
and a.memberEnd->intersects(end2)
)->notEmpty()

 This is poor OCL code, experts can do better!
 This is not OCL’s fault, it’s the complex UML MM!

Harald Störrle
Model Querying Beyond OCL

30Observations 1 & 2: Scores, Cognitive Load

1. Observations
1. Understandability is improved through the usage of OQAPI.
2. Writability cannot be assessed because of lack of data.
3. Effort goes down and confidence goes up when using OQAPI.

2. Interpretation
1. The results are significant, though not highly significant, at high effect size, so

we may expect much higher significance through increasing n.

Remarks

All measures
normalized to
0..10

Cohen’s interpre-
tation for effect
size

Two-tailed t-test
(same results for
Wilcoxon)

Harald Störrle
Model Querying Beyond OCL

31Threats to Validity

Study participants
 might not be representative of

modelers in general
 number is relatively low (but

recall: almost no previous work).

Sample models and queries
 might not be representative of

„real life“ models

Experimental Procedure
 pen&paper, so the task setting

might not be realistic enough

Experimental Tasks
 tasks involved textual answer

options, which might favor a textual
query notation

completion rate: ~80..95%
(depending on task)

Harald Störrle
Model Querying Beyond OCL

32Comparison: OCL, OQAPI, VMQL, MOCQLE

NLMQL VMQL LQF OCL+ OCL
Understandability 8,00 7,00 5,50 4,78 3,76

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

su
bj

ec
tiv

e
sc

or
e

(0
: l

ow
es

t .
. 5

: h
ig

he
st

)

Understandability

NLMQL VMQL LQF OCL+ OCL
Effort 6,15 7,50 6,88 6,25 8,75
Confidence 8,45 7,68 5,68 5,23 3,33

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

10,00

su
bj

ec
tiv

e
ra

nk
in

g
(0

: l
ow

es
t .

. 4
: h

ig
he

st
)

Cognitive Load

OQAPI
OQAPI

MOCQLE

MOCQLE

Harald Störrle
Model Querying Beyond OCL

33Publications in this Thread
1. MOCQL: A Declarative Language for Ad-Hoc Model Querying. Proc. Eur. Conf. Model Driven

Development Foundations and Applications (ECMFA), Springer 2013

2. Improving the Usability of OCL as an Ad-hoc Model Querying Language. Proc. OCL-Workshop
@MODELS, ACM 2013

3. MQ-2: A Tool for Prolog-based Model Querying. Proc. Eur. Conf. Model Driven Development
Foundations and Applications (ECMFA). Springer 2012, with R.V. Acretoaie

4. VMQL: A Visual Language for Ad-Hoc Model Querying, Journal of Visual Languages and
Computing, Elsevier, 22(1), 2011, 3—29

5. Expressing Model Constraints Visually with VMQL, Proc. Intl. Symp. Visual Languages/Human
Centric Computing (VL/HCC), IEEE 2011

6. VMQL: A Generic Visual Model Query Language, Proc. Intl. Symp. Visual Languages/Human
Centric Computing (VL/HCC), IEEE 2009

7. A logical model query interface. Proc. Intl. Ws. Visual Languages & Logic (VLL), 2009

8. A PROLOG-based Approach to Representing and Querying UML Models, Proc. Intl. Ws. Visual
Languages and Logic 2007 (VLL)

Harald Störrle
Model Querying Beyond OCL

34

Prof. Dr. Harald Störrle

Software Engineering Section
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 303b, Room 056
DK-2800 Kgs. Lyngby

Tel 0045 4525 3757
EMail hsto@dtu.dk
Web www.compute.dtu.dk/~hsto

