Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

Beyond OCL:
Model Queries for Mere Mortals

Universita di Trento, 23.5.2014

Problem

= In Model Based Development or Business Process Reengineering, large
systems of analysis level models are created in a variety of languages.

= These models are often created by (or in collaboration with) domain experts, who
usually do not have a CS background.

= The models are a significant asset though often a “buried treasure” - finding
information in large model bases may not be not easy.

= Asone client once put it: “The process of modeling really made us understand our
processes, but now our repository is kind of a black hole, really.”

= There are a number of practical ways for querying models.

Look through the whole model (or the diagrams presenting it) manually.

Select one from a number of predefined queries (or visualizations).

Do a full-text search, possibly applying one of a finite selection of filters, or regular expressions.
Program the query using a query APl of the modeling tool at hand.

vk e

Use a model query language to formulate a query.

* |na UML context, OCL is the “natural” model query language.

Models can become large

(c) 2007-2008, H. Storrle

Corporate data model
Bayerische Landesbank

Model Elements

10

1 10°

Views (“Diagrams”)

Spread
>

.@@@@

AP R/3 EPC reference model

Harald Storrle
Model Querying Beyond OCL
3

Model element:

Instance of a metaclass of a
metamodel describing the
modeling language

View:

individual group of model
elements, often visualised by
a diagram

Spread:

Number of different types of
views (“diagram types"”)
used in a model

Name:

All names given are internal.
Numbers instead of names
refer to anonymized models.

ultra large

Part 1

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Beyond OCL:
Model Queries with VMQL

Universita di Trento, 23.5.2014

VMQL - Basic Idea

= |If people can model, they understand the modeling language.
= Using this vocabulary and concrete syntax surely is acceptable to them.
= Some slight additions may be acceptable.

= This will work for querying languages for any visual language.

= With suitable implementation, this VMQL is a concrete query facility for all
languages, including future DSLs.

= Asimilar idea has been proposed but not implemented [1,2].

" For process models this problem has been studied more intensely
in recent years. [3,4]

1) Stein, D., Hanenberg, S., Unland, R.: Query models. Proc. UML. LNCS 3273 (98-112) Springer, 2004

2) Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model Queries for MDA Transformations
on UML Models. Proc. MDAFA’03. LNCS 3599 (77-92) Springer 2005

3) Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes. Proc. 32nd VLDB (343—-354) 2006

4) Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q and Temporal Logic. Proc.
BPM 2008. LNCS 5240 (326—341) Springer 2008

Example 1: Ground Query

M Insurance Entities /

i 1 Address
Person Product Person 01 S
name: 3tring name: String %brvers city: String
- Date birth date: Date |p_* zip: int
gender gender: Char
subscriberiD: int L .
lastChange: Date underwriter
Find a class named ‘Product’, s 1 |
. customer
and a class named ‘Person’ with 0.* Contisit
- a string attribute called ‘name’ valid from: Date
. . * i :
- an attribute with type date : el thisy: Qute

. accept(): void
- an attribute named gender Frarier approve(): void

activate(): void

. . deactivate(): void
Blndlng reject(): void
decline(): void

Product &~ Product
Person — Person

Person.name <& Person.name

Person.<#1> &> Person.birth date

Person.gender <= Person.gender

Example 2: Variables and Patterns

auery: co Y

Product

SClass{*}

SA{n*e}: String
coverage: float
effective: Date

SA: String
SB{*}: Date

Find two associated classes with
some attributes as shown above.
One of the classes is called ‘Product’,
report the other one’s name in
variable ‘Class’.

Binding | Class A B

1: “Person” | “name” | “birth date”
2: “Person” | “name” | “last change”
3: “Person” | “name” | “entry”

Harald Storrle
Model Querying Beyond OCL

7

Insurance Entities /

ji.* 1 Address
Person E street: String
: COVErS
_ *w tr < city: String
birth dateliDate (o _* Zip: int
gender: Char
subscriberlD: int |
lastChange: Date | underwriter
entry: Date 1
= " customer :
ﬂ-__‘
Contract
valid from: Date
1 0.* . valid thru: Date
Product 1 accept(): void

approve(): void
activate(): void
deactivate(): void
reject(): void
decline(): void

Syntactic Sugar

1.

Technically, using variables and patterns in the query model has

defined a set of constraints.

1. We have provided syntactic sugar to hide this from the user.

Constraints are captured as comments annotating arbitrary
model elements.

auery: co E

Product

$Class{*}

SA{n*e}: String
coverage: float
effective: Date

SA: String
SB{*}: Date

:m 3 (expanded) /

name $A{n*e}

L|

-~
-~
-

-

Product ="

-
.

- String ~
coverage: float
effective: Date

- —

-

e — —

== -

name $Class{*} H

name $A{n*e} ‘|

| name $B{*} H

Example 3: Paths, Meta Model Access

Intention: Find all plans!

SProduct{*Plan}

Find all subclasses of ‘Product’
whose name ends in ‘Plan’.

...but doesn’t find ‘AllRoundHealthPlan’ —___

and ‘GroupPlan’

mClESS < ClESS,

mattr isAbstract = *, _—-=--steps = * h|
name }Product{*Plan}

--'-.

Harald Storrle
Model Querying Beyond OCL
9

Product Catalog /

Product

name: String o_*

coverage: float

effective: Date 1 *

£\

LifePlan

MedicalPlan

DentalPlan

DreadDiseasePlan

ajeladood

\9

AlIRoundHealthPlan [l

CompoundProduct

0..

Ja

CompoundHealthPlan

\S

GroupPlan

Harald Storrle

Implementation of VMQL in ModelQuery " og

e
Datei Bearbeiten Ansicht Layout Diag Optionen Hilf: 1 Analy Fenster Hilfe x
DEEDB & -9 - ik dontestreposoynie. ~ ER EROHESIRINGE EE0
Em&m *:"JM., <3£rhd |m — !m = T F. : : mm i ﬁ]“ ’) 4 p 0 x
a8 x] 0y ITzhHamaus /I7 o uEh QQox - ¥BE N B ;
damageCourt : it =
E
automobiles
a.8.%

, Blement ﬂ:lstardohoeaan I:ha mao‘llea'\d st«eotme has genara steraotypes,
Element and stereatype e in the same profle and stereotype has generdl stereotypes.
. Blement and sterectype are in the same profile and sterectype has general sterectypes.
2. Element and stereotype e in the same profile and stereotype has general stereotypes.
! Elu'rmt and swentwe e in the same profie and stereotype has general stereotypes.
, Elamant and stereotype are in the same profie and stereotype has general stereotypes.
A 9, Element and stereotype are in the same profile and stereotype has general stereotypes.
. Blament and stereotype are in the same profile and stereotype has general stereotypes.
, Blzmeant and stereotype are in the same profle and stereotype has general stereotypes. ¥

Harald Storrle

Actually, VMQL works for any UML Notati&on “ "}

Contract approval /

Cortiact Person Person
/Customer /Underwriter

m Contract approval /
WL UE-Te o) Who calls Person. propose()? / pri

Contract Person Person
ScCaller{*} Person < /Customer /Underwriter

o

propose() propose(self)
< Contract approval /
af <
= Contiact Person Person
< L /Customer J/Underwriter
<]
ropose(sel
i propose(self) S|
= k< accept()
ropose(self
propose(self) >
approve()

I<

activate()

In fact, any Modelling Language

I!IMIE :I Query 22a/ Coad/Yourdon CD [eINSg"W¥1) Martin/Odell CD [P 1e

Product

N
1..% Product 0,1

Product P

P
<<vmgls> vmgl \ # I vmgl indirect |- -
1 3 = T e R TS T A

indirect | indirect | _

= /N <

| | I |
LifePlan MedicaIPIan. i~ ~ D ™, MedicalPlan—&H
0..1 LifePlan MedicalPlan
1m LifePlan
(OIS NS Query 7 eI Query 6
I: vmgql any vmgl indirect, mclass <: SequenceFlow ; Association

Contract

r:{)

X : e | || ko EEEREE W send quote to customer

Come to think of it: not just on Queries

= Apart answering simple questions about a model, a query may
also serve other purposes:

= A query may also express a property (including temporal properties) we may
want to check, metrics we may want to compute, or (design) patterns we
might want to detect.

= With suitable base predicates, queries may be used as version control
primitives (“find the difference between...”).

= A (negated) query is a model constraint or consistency condition.

= A queryis the “left hand side” of a model transformation, with suitable base
functions, it may also express the “right hand side” (= VMTL).

= VMTL should also work as a language for representing (and executing)
diagrammatic inferences.

* These additional use cases require only few and minor conceptual
additions.

= The implementation is lagging behind, though.

Limitations of VMQL

« VMAQL only works for modeling languages with a meta model and
comment-boxes.

= Notational elements without concrete syntax representation, or non-
syntactic features of a language (e.g., layout) cannot be queried.

= Result presentation relies on the preexistence of diagrammatic
presentations of the model.

e VMAQL is purely syntactic: semantic relationships cannot be
expressed directly.

e Querying for the methods of B does not yield m(). [v nneritonce
A

* Unless you put in some semantic muscle, i.e., +m)

predicates that capture some wanted property. T\
;]

Part 2

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Beyond OCL:
Model Queries for Mere Mortals

Universita di Trento, 23.5.2014

Experimental Setup

= Subjects
= Mostly students (all levels), some practitioners

= Tasks

1) Given a query in language X, select the correct out of three given natural
language descriptions;

2) Given a query in English, select matches out of 16 queries in language X;
3) Given a query in English, produce a query in language X.

= Controlled Variables
= Main: query language
= Noise: task type, task, population

= Measurements
= Score (Writing: checklist assessment)
= Time (self timed)
= Cognitive Load (several different for corroboration)
= Preference (several different for corroboration)

Post Interview Remarks

After the experiments,
some participants were
willing to share their
feelings.

Some also added written
comments on the
questionnaires during the
experiment.

These perceptions are in
line with the objective
findings, thus corroborate
the overall outcome.

Quotes from participants:

“After [the other] languages, it's hard
to get yourself to work on [OCL]. [It]
is rather, well, relatively complicated,
| kept thinking, jeez, why does it have
to be quite as complicated. [The
others] are quite easy in comparison,
these are easy to understand.”

“All in all it was ok...I found OCL
horrible”

“[the other language] was ok, but
[OCL] is diffcult to understand, you
have to follow the algorithm. That's
ok, it works, but it's more effort.”

“[OCL] was really pissing me off".

VMQL/OCL+ for Queries

d

75%

S0%

25%

reading b checking ¢ writing
VML oot VML oct* WMOL ocL*
7E1%
E7.6%
S7.0%

27 3W27.0%

54.9%

23 a9

d1.72%

1.9%
1 o
— ad = a ag [FY o Fe) af e 4=
== -= o = ol = o =
25 B 3 5 : P oz ®
F £ 2 £ z £ 2 £
=] =] =] [=]
= [= = [=
Participants Task completion
students pres aum tasks students pros average|
misle 15 & 71 Task A [reading] 10 BE1% 10D% S907%
ciruta IR % i3 Task B (reading) =~ 12 85.3% 100% 96.3%
sum 25 ? az Task C writing) & S5T.BR L7.8%

Wrang

larguages &0

no answar

right

Wrang
no answer

mast

AVErage

least

most

average

least

f

very good
good
average
bad

very bad

Harald Stoérrle
Model Querying Beyond OCL

18
Reading Writing
o
=
708 'e)
1.86 c
129 —
H 0.92 ~<<
VgL oot vimal oot
o
207 0 6h
=
—t
(L] 064
WMOL oCLt wmaL ocLt
(@]
o
250 257 2,
(oR
M
1.27 1.21 S
(@]
M
vmaL ocL* vmalL oo’

Harald Storrle

VMQL/OCL+ for Constraints Viedel Quening Bevond 07
A) ACCURACY [SCORE: 1..8]
CORRECT OCL VMQL ADVANTAGE
ANSWERS o o Jlay o by — o
READING 4.71 1.83 4.76 2.36 +1.3%
WRITING 3.56 321 9.06 5.19 +154.5%
B) RESPONSE TIME [S]
TIME OCL VMQL ADVANTAGE
PER ITEM Lo T 1Ry o Uy — fig
READING 725.14 | 201.88 || 776.62 | 317.74 +7.1%
WRITING 452.25 | 320.05 || 408.25 | 57.20 -9.7%
CORRECT 168.19 | 69.77 217.90 | 137.58 +29.6%
READING
C) COGNITIVE LOAD [SCORE: 1..10]
SUBJECTIVE OCL VMQL BENEFIT
EFFORT o a Loy a Hy — Ho
READ .39 0.91 2.21 0.97 -17.2%
WRITE 349 0.96 2.23 0.96 -43.0%

Harald Storrle

Model Querying Beyond OCL

20

VMQL/OCL+ for Constraints

[%]

b) Response Time

. (O
uﬁcm—t_‘_ma% ° \
puo3 440.
)
N
OC
uawiimadx3 o
1513 &
o o o o
[¢0] (] =t (o]
..O.Mu_ |||||||||||||||||| IOO<
0.2 F q &
o8
L & _|III.I|I|_ I&@
(424
: -
& &
w e
&
: S R
T &
T .
| | | | | | |
[s] oovtT 00ZT 0O00T 008 009 00t 002
&
£
2
e
£
m
o

a) Accuracy

9+7 participants

Only a) writing is significant

Part 3

Prof. Dr. Harald Storrle
Danmarks Tekniske Universitet (DTU)

Factoring out differences:
visual/textual vs. low/high level of abstraction

Universita di Trento, 23.5.2014

MocCQL (1/3)

= Suppose, you want to find all classes that capture some kind of address. In OCL
this could be expressed as

Class.allInstances()-> select(c |
c.name.contains_substring("Address"))

under the assumption that string-simiularity function is available in some
query API.

= In MOCQL, on the other hand, we can simply say
show all classes $C named like "*Adress" in M_1

which, we believe, is easier to understand.

= |Instead of the above query, one could also say any of the following equivalent
MOCQL queries
show all classes $C named like "*Adress" in M_1
in M_1 show all classes $C named like "*Adress"
show all classes $C where $C.name is similar to "*Adress" in M 1

= MOCAQL offers plenty of syntactical variants so that vague recall will (often) still
yield the expected result. In OCL you have to recall precisely the right syntax.

MOcCQL (2/3)

= Suppose, you want to restrict your query to contain only abstract
classes. In OCL this could be expressed as
Class.allInstances()-> select(c |
c.isAbstrac=true &&
c.name.contains_substring("Address"))

= |n MOCQL, on the other hand, all we have to do is add ‘abstract’
in the right place:
in M_1 show all abstract classes $C named like "*Address"

MOCQL (3/3)

Suppose we were to look for abstract classes that do not have
subclasses.

= This is an example where the typical built-in search facilities of most
modeling tools will fail

In OCL, we would have to write something like the following.
Class.allInstances()->select(c | c.isAbstract=true).
intersection(c | c.general->isEmpty())

Substantial understanding of details of the UML meta model are
required here (e.g., the property "general"), the different
navigational operators (dot vs. arrow).

In MOCQL, we can simply write
show all abstract classes $C where there are
no classes $SUB such that $C generalizes $SUB in M 1

Harald Storrle

VMQL/OCL+/MOCQL for Querying Vodel Queningpeyena 07

Experiment 1 Experiment 2
Language Task B | Task C Task B | Task C
MOCQL 82.1% 58.7% 83.9% 62.7%
VMAQL - - 74.2% 49.0%
OCL 54.8% 38.1% - =
100%
90%
80%
70% ;
gl I MOCQL
60% - <
"y 50% = < >
S = =) %
@ 40% = — ,/" ; é QL
S 0 55 = /,5 A
0 30% = = » 4
« == = 7% 7 oCL
20% s s 7
10% = e /]
- % %
0% £ A
Task B Task C Task B Task C
Experiment 1 Experiment 2
|Hyp0thesis || Task || Significance

p< 1077 ***
p< 1075 e
p = 0.0033 *

p = 0.059

Experiment 1:
Subjects perform better using OCL than MOCQL
Experiment 2

Subjects perform better using VMQL than MOCQ)L

QwWaw

Harald Storrle

VMQL/OCL+/MOCAQL for Constraints Viedel Quening seyend 070

Understandability Effort Confidence
Language JL | a i | a [L | a
MOCQL 8.0 1.88 6.2 3.38 8.5 2.20
VMQL 7.0 2.28 .0 3.30 7.7 2.90
OCL 3.8 1.80 8.8 1.78 3.3 1.55
10
highest —
: Za- Z
Z 7 Z J voca
: Z 78 Z ,
7 Za= 7 2 vMaL
7= Zh= =
’ = ZE= ==
A A J o B o«
! E = i
B BZR= E) E
i Understandability Effort Confidence

Experiments 1+2

Prof. Dr. Harald Stérrle
Danmarks Tekniske Universitet (DTU)

The other way round:
Improving the Usability of OCL by the
OCL Query API (OQAPI)

2013 OCL Workshop (at MODELS’13), Miami, FL, USA

OQAPI provides convenience

1.

Find all classes named “Address”! [GIvi/

Find all classes named “Address”
or so!

With OQAPI:

classes() -> named(‘Address’)
classes() -> named_like(“Ad?ress’)

Address

T

Person

MailAdress

name: string
age: int

get_job(Occupation) : void

model properties
author: stoerrle
ga: approved
level: analysis

Plain OCL:

Class.allInstances() -> select(c | c.name.contains_substring("Address"))

2?22

OCL does not provide easy access to
1. Selection by name

2. Pattern matching/wildcards in string expressions

3. Selection of instances by type

OQAPI hides the meta model

Does “A” have any associations?

Query: Is the class named “A” associated to any other
class?

With OQAPI:
classes()->named(‘A’)->associated to()
->notEmpty ()

Plain OCL:
let endl = cl.ownedMember,

end2 = c2.ownedMember,
assc = Association.allInstances()

in collect(a | assc->includes(a)
and a.memberEnd->intersects(endl)
and a.memberEnd->intersects(end2)
)->notEmpty ()

= This is poor OCL code, experts can do better!
= Thisis not OCL’s fault, it’s the complex UML MM!

Ii:l Sample /

End

A B
mSample as MM-instance /
cl:Class c2:Class
name = “A” name = “B”
owned owned
Member Member
A4 4
pl:Property pl:Property
N N
member member

i

d

a:Association

] UML MM (2.4, 2010-11-14, Fig 7.12) /

Class
0.1

Association

0.1

*

ownedMember Property

2.x
memberEnd

Observations 1 & 2: Scores, Cognitive Load

1. Observations
1. Understandability is improved through the usage of OQAPI.
2. Writability cannot be assessed because of lack of data.
3. Effort goes down and confidence goes up when using OQAPI.

2. Interpretation

1. The results are significant, though not highly significant, at high effect size, so
we may expect much higher significance through increasing n.

OCL OQAPI Improvement|| Significance Effect size Remarks
(n=18) (n=25) [%%]||(p-Value, level)||(Cohen’s d, level)
Understandability All measures
1|13.76 4.78 27.13% 0.097 . -0.559 M | normalizedto
||1.80 1.84 2.22% 0..10
Writability Cohen’s interpre-
I 5.53 tation for effect
a 2.9 size
Effort
1|8.75 6.25 -28.57% 0.015 * 0.918 L | Two-tailed t-test
o||1.78 3.23 81.69% (same results for
- Wilcoxon)
Confidence
(£(/3.33 h.23 57.14% 0.013 * -0.881 L

ol||1.55 2.50 61.29%

Threats to Validity

student other

Study participants Tasks BSC MSC Sum
" might not be representative of male 14 15 1 30
modelers in general female 2 2 0 4

= number is relatively low (but sum 16 17 1 34

recall: almost no previous work).
] completion rate: ~80..95%
Sample models and queries (depending on task)

* might not be representative of
,real life” models

Experimental Procedure Experimental Tasks
= pen&paper, so the task setting = tasks involved textual answer
might not be realistic enough options, which might favor a textual

guery notation

Harald Storrle

Comparison: OCL, OQAPI, VMQL, MOCQLE"* =reserereod

Understandability
. 10,00
Cognitive Load
9,00
10,00
2 = 8,00
9,00 0 8
= 800 g5 7,00
17 g <
gg 700 2% 6,00
ez 80 £ . 500
€5 500 2% 7
L o400 S 3 400
9 w =
8 ¢ 300 S 3,00
-§§ 2,00 - 2,00
25 1,0 ’
0,00 1,00
mocate| VMAt | LAF | ogap | OC 0.00
m Confidence | 8,45 7,68 5,68 5,23 3,33 m Understandability| 8,00 7,00 5,50 4,78 3,76

Publications in this Thread

1. MOCQL: A Declarative Language for Ad-Hoc Model Querying. Proc. Eur. Conf. Model Driven
Development Foundations and Applications (ECMFA), Springer 2013

2. Improving the Usability of OCL as an Ad-hoc Model Querying Language. Proc. OCL-Workshop
@MODELS, ACM 2013

3. MQ-2: ATool for Prolog-based Model Querying. Proc. Eur. Conf. Model Driven Development
Foundations and Applications (ECMFA). Springer 2012, with R.V. Acretoaie

4. VMQL: A Visual Language for Ad-Hoc Model Querying, Journal of Visual Languages and
Computing, Elsevier, 22(1), 2011, 3—29

5. Expressing Model Constraints Visually with VMAQL, Proc. Intl. Symp. Visual Languages/Human
Centric Computing (VL/HCC), IEEE 2011

6. VMQL: A Generic Visual Model Query Language, Proc. Intl. Symp. Visual Languages/Human
Centric Computing (VL/HCC), IEEE 2009

7. A logical model query interface. Proc. Intl. Ws. Visual Languages & Logic (VLL), 2009

8. A PROLOG-based Approach to Representing and Querying UML Models, Proc. Intl. Ws. Visual
Languages and Logic 2007 (VLL)

Harald Stoérrle
Model Querying Beyond OCL
34

Prof. Dr. Harald Storrle

Software Engineering Section
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 303b, Room 056
DK-2800 Kgs. Lyngby

Tel 0045 4525 3757
EMai | hst o@lt u. dk
Wb www. conput e. dt u. dk/ ~hst o

