
January 19, 2018
Harald Störrle
hstorrle@acm.org
@stoerrle
https://www.pst.ifi.lmu.de/~stoerrle/index.html

“ Considering the current
sad state of our computer
programs, software dev-
elopment is clearly still a
black art, and cannot yet
be called an engineering
discipline."

Bill Clinton

The Gartner Hype-Cycle

Hawthorne works, PA, ca. 1930

The highly respected Professor Nibbowitz proved,
that octopus are more intelligent than cat,
when exposed to the same challenges and conditions.

Anecdotes are not scientific evidence

Maybe a bit oversimplified after all…

…this probably
more realistic.

Quality is free – or is it?

„Quality is free. It‘s not a gift, but it is free. What
costs money are the unquality things – all the
actions that involve not doing jobs right the first
time.“

Philip B. Crosby „Quality is free“

"Quality is free, but only to those who are willing
to pay heavily for it.“

T. DeMarco and T. Lister “Peopleware”

(Formal) Inspections
• Code inspection pays for itself during development, isolates defects much

more efficiently than testing, and has been shown to reduce maintenance
costs by 90%.
– Quality processes reduce errors without increasing costs.

Increased quality assurance is associated with a decreased error rate but does not
increase overall development cost.

– Inspections cut rework by half.
Raytheon reduced its cost of rework from about 40% of total project cost to 20% through an
initiative that focused on inspections.

– Inspected software costs 90% less to maintain.
ICI found that maintaining a portfolio of about 400 programs was only about 10% of the cost of
maintaining a similar set of programs that had not been inspected.

– Inspection catches 70% of defects.
The combination of design and code inspections usually removes at least 70% of the defects in a
product.

– Inspection catches 60% more errors than testing.
Code inspection at NASA's Software Engineering Laboratory found 20 to 60 percent more errors than
testing did.

– 85% of errors are trivial.
About 85% of errors can be fixed in a few hours.

[http://ifsq.org/answer-immmediate-roi.html]

Static Analysis
• Powerful static analysis techniques are implemented in many tools and

environments.
– They are easy to use.

In many cases, it is no more complex than to run your tests on the Jenkins server.
Interpretation of the measurements may require some brain capacity

– Tools are readily available, and cheap.
There are several great, well-integrated, tools: SonarQube is LGPL, Structure 101 is commercial but
affordable. Training and consulting are available at reasonable cost and it’s money spent wisely.

– Static Analysis can be essential in competitive situations.
If you can guarantee measureable quality levels, and your competitors cannot, you have an
advantage, and may even be able to demand higher prices. By offering defined quality levels to your
customers, they may develop a taste and demand it from your competitors as well.

– Static analysis is not complete.
The combination of design and code inspections usually removes at least 70% of the defects in a
product.

– Many simple defects are found earlier, cheaper, and with less
embarrassement.
Don’t wait until your client/boss finds out about your code quality.

– Beware of Sonar-blindness, though.
Not all artifacts are covered (configuration data, some languages), and not all warnings are really
problems. Blind trust in measurements can be counterproductive.

Technical Debt
• Technical Debt is a metaphor for short-term goal satisfaction at the

expense of long-term goals.
– Apart from poor code, this also covers poor documentation, communication,

relationships etc.

• Taking out a loan comes back at you, with interest, depreciation, and
technical, inflation.
– At the least, you should be aware that you are indebted.

• Taking out a loan can be a good business decision, if it is informed, and
controlled.
– If not, it is a reckless gamble.

• Best Practices, standards, authorities' opinions, your bosses decision, or
the tool's output are no replacement for critical thinking and common
sense.
– All of these may inform your decision, but it is your decision all the same.
– And your responsibility, in the end.

[http://geekandpoke.typepad.com/geekandpoke/2011/03/architectural-best-practices.html]

Practical Advice

1. Use static analysis tools

2. Use formal (!) inspections

3. Measure, track, and improve

4. Do post-mortems

5. Document what you do

6. No code without tests

7. Demand evidence for claims

8. Demand reasonable and argued goals from leaders/clients

9. Take responsibility for your work and be proud of it

10. Be active in the computing community

Code
When you write good code, others will

understand. When you write your code based
on good code created by some other

programmer, it will be good code, too.

If you encounter horrible code, make it better.
Don't just walk by, and leave it to be fixed by

someone else. For you might be that one, and it
will happen at a most unfortunate time.

One defect may cause a production error
costing millions, and might just be your fault that

this defect is still there.
So be good, and do good…

FTE 10kLOC 1mLOC

Create 0.5…1 50…100

Maint./1yr 0.005… 0.02 0.5…2

Maint./10yr 0.05… 0.2 5…20

Change starts today, with every one in this room! No use procrastinating – no use complaining. BREAKING NEWS

Quality starts today

http://tinyurl.com/MU-survey-2014

Recommended Reading

• Robert C. Seacord: Secure Coding (SEI, August 13, 2009)
https://www.sei.cmu.edu/webinars/view_webinar.cfm?webinarid=18652&gawebinar=securecoding

• Entertaining and thought-provoking quotes on Software Engineering
http://www.softwarequotes.com/

Philip B. Crosby
Quality is free
1979

Fred Brooks
The mythical man-month
1975

DeMarco & Lister
Peopleware
1987

Abstract: Crafting software
• Like many other academic disciplines, Software Engineering is a practical craft.

Unlike medicine, law, or economics, however, Software Engineering is a fairly
recent arrival on the scene. Its development is still explosive, and the impact is
only starting to manifest itself in the public eye. We as representatives of this craft
have a very special responsibility towards the general public, but first and
foremost, it is our responsibility to do our job as best as we can, by the state of the
art.

• In this talk I want to explore what we - every one of us - can do to live up to this
standard, despite pressures on us from all side: impatient clients, economically
pressed bosses, and colleagues not all of whom are always helpful. The good news
is that it can be done, and that the tools and techniques are widely available to
those willing to try. The bad news is that far too often, people get away cheating,
cutting corners, and not paying back their (technical) debt. It is not a new story,
many of the classic texts have already pointed out the issues decades ago (e.g.,
Mythical Man-Month, Peopleware, Quality is Free). One might say it is a well
known tale of agility and quality. You might also call it the game of code.

The Speaker
Harald Störrle strives to make software better,
and he believes that empirical research is the
only way to do that. His main interest are
methodology and software process, modeling
and requirements.
In his day job, he is a principal consultant with
QAware GmbH, Munich. Previously, he was a
professor of software engineering in Denmark,
Germany, and Austria, and worked in several
companies in the IT industry. He is a Senior
Member of the ACM and elected member of
the ACM Europe Council.

