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Lifecycle
The soŌware development 
lifecycle is the general con-
ceptual framework for soŌ-
ware processes at all 
scales. It depicts the logical 
dependencies between 
phases without specifying 
their sizes, detail acƟviƟes, 
or products.
For very small prorgam-
ming tasks, we may not de-
marcate explicitly an 
“Analysis Phase”, say, but 
there always is one, even if 
it is only a minute acƟvity 
in the head of the program-
mer.

SequenƟal
The sequenƟal model 
(oŌen called “Waterfall”) 
has been developed in one 
of the first (and extremely 
successful) large scale de-
velopment projects, the 
IBM S/360 in the 1960s. 
“Waterfall” is oŌen used as 
a derogatory term implying 
strict sequence, rigid struc-
ture, and sƟfling regulaƟon.
However, even the original 
model shown on the right 
obviously does not advo-
cate a strict, unidirecƟonal 
top-down flow of arƟfacts. 
Instead, it specifically de-
fines feedback loops. 

Spiral
Soon aŌer the sequenƟal 
process was proposed, the 
Spiral model followed. 
Where the sequenƟal 
model focuses on planning 
and control, the spiral 
model suggests to create a 
sequence of (more or less 
complete) prototypes and 
revisit the whole life cacle 
iteraƟvely. In each itera-
Ɵon, the product so far is 
evaluated and the plan is 
adapted.  Thus, we trade 
effort for risk, and we rely 
on greater individual and 
organisaƟonal capabiliƟes 
to ensure quality.
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Benefits and Issues
Understanding the soŌ-
ware lifecycle is paramount 
for understanding soŌware 
development. It defines the 
essenƟal concepts and ter-
minology, and reminds us 
of the logical dependen-
cies.
Frequently, though, the li-
fecycle is misunderstood as 
being a prescripƟve model, 
i.e., a set of instrucƟons of 
how to run a soŌware de-
velopment project.

Benefits and Issues
The obvious benefits of a 
rigid, plan-based process 
are plannability and mana-
gerial control: it is always 
clear what is supposed to 
be happening next and 
who is responsible. This is 
essenƟal for very large 
projects and highly regu-
lated industries (e.g., aero-
space, medical). However, 
reality does not always 
conform to our plans, so 
that predicƟons and esƟ-
maƟons are very difficult. 
SƟcking to a poor plan may 
result in catastrophic fail-
ures.

Benefits and Issues
The obvious benefits of an 
flexible, result-based ap-
proach is that each itera-
Ɵon is shorter than the 
overall project, so less Ɵme 
expires between planning 
and delivery. Thus, predic-
Ɵon is easier, deviaƟons 
from plans are smaller, and 
adapƟng the overall project 
is easier. The obvious draw-
back is that it is more diffi-
cult to stay on a pre-
meditated plan, that each 
iteraƟon incurs addiƟonal 
fixed cost, and that parts 
may have to be re-done 
aŌer a plan-change.


