
Process Paradigms for
SoŌware Development Projects

(c) H. Störrle, 2018, hstorrle@acm.org

Harald Störrle, DTU COMPUTE

MigraƟon
& Deployment

Closedown
RenovaƟons
Maintenance

Coding

OperaƟons

IntegraƟonAnalysis

Design

DefiniƟon &
IdeaƟon

Lifecycle
The soŌware development
lifecycle is the general con-
ceptual framework for soŌ-
ware processes at all
scales. It depicts the logical
dependencies between
phases without specifying
their sizes, detail acƟviƟes,
or products.
For very small prorgam-
ming tasks, we may not de-
marcate explicitly an
“Analysis Phase”, say, but
there always is one, even if
it is only a minute acƟvity
in the head of the program-
mer.

SequenƟal
The sequenƟal model
(oŌen called “Waterfall”)
has been developed in one
of the first (and extremely
successful) large scale de-
velopment projects, the
IBM S/360 in the 1960s.
“Waterfall” is oŌen used as
a derogatory term implying
strict sequence, rigid struc-
ture, and sƟfling regulaƟon.
However, even the original
model shown on the right
obviously does not advo-
cate a strict, unidirecƟonal
top-down flow of arƟfacts.
Instead, it specifically de-
fines feedback loops.

Spiral
Soon aŌer the sequenƟal
process was proposed, the
Spiral model followed.
Where the sequenƟal
model focuses on planning
and control, the spiral
model suggests to create a
sequence of (more or less
complete) prototypes and
revisit the whole life cacle
iteraƟvely. In each itera-
Ɵon, the product so far is
evaluated and the plan is
adapted. Thus, we trade
effort for risk, and we rely
on greater individual and
organisaƟonal capabiliƟes
to ensure quality.

SoŌware Lifecycle

Plan-Based Processes

Product-Based Processes

Benefits and Issues
Understanding the soŌ-
ware lifecycle is paramount
for understanding soŌware
development. It defines the
essenƟal concepts and ter-
minology, and reminds us
of the logical dependen-
cies.
Frequently, though, the li-
fecycle is misunderstood as
being a prescripƟve model,
i.e., a set of instrucƟons of
how to run a soŌware de-
velopment project.

Benefits and Issues
The obvious benefits of a
rigid, plan-based process
are plannability and mana-
gerial control: it is always
clear what is supposed to
be happening next and
who is responsible. This is
essenƟal for very large
projects and highly regu-
lated industries (e.g., aero-
space, medical). However,
reality does not always
conform to our plans, so
that predicƟons and esƟ-
maƟons are very difficult.
SƟcking to a poor plan may
result in catastrophic fail-
ures.

Benefits and Issues
The obvious benefits of an
flexible, result-based ap-
proach is that each itera-
Ɵon is shorter than the
overall project, so less Ɵme
expires between planning
and delivery. Thus, predic-
Ɵon is easier, deviaƟons
from plans are smaller, and
adapƟng the overall project
is easier. The obvious draw-
back is that it is more diffi-
cult to stay on a pre-
meditated plan, that each
iteraƟon incurs addiƟonal
fixed cost, and that parts
may have to be re-done
aŌer a plan-change.

