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Process Paradigms for
Software Development Projects

Lifecycle

The software development
lifecycle is the general con-
ceptual framework for soft-
ware processes at all
scales. It depicts the logical
dependencies between
phases without specifying
their sizes, detail activities,
or products.

For very small prorgam-
ming tasks, we may not de-
marcate explicitly an
“Analysis Phase”, say, but
there always is one, even if
it is only a minute activity
in the head of the program-
metr.

Sequential

The sequential model
(often called “Waterfall”)
has been developed in one
of the first (and extremely
successful) large scale de-
velopment projects, the
IBM S/360 in the 1960s.
“Waterfall” is often used as
a derogatory term implying
strict sequence, rigid struc-
ture, and stifling regulation.
However, even the original
model shown on the right
obviously does not advo-
cate a strict, unidirectional
top-down flow of artifacts.
Instead, it specifically de-
fines feedback loops.

Spiral

Soon after the sequential
process was proposed, the
Spiral model followed.
Where the sequential
model focuses on planning
and control, the spiral
model suggests to create a
sequence of (more or less
complete) prototypes and
revisit the whole life cacle
iteratively. In each itera-
tion, the product so far is
evaluated and the plan is
adapted. Thus, we trade
effort for risk, and we rely
on greater individual and
organisational capabilities
to ensure quality.
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Benefits and Issues
Understanding the soft-
ware lifecycle is paramount
for understanding software
development. It defines the
essential concepts and ter-
minology, and reminds us
of the logical dependen-
cies.

Frequently, though, the li-
fecycle is misunderstood as
being a prescriptive model,
i.e., a set of instructions of
how to run a software de-
velopment project.

Benefits and Issues
The obvious benefits of a
rigid, plan-based process
are plannability and mana-
gerial control: it is always
clear what is supposed to
be happening next and
who is responsible. This is
essential for very large
projects and highly regu-
lated industries (e.g., aero-
space, medical). However,
reality does not always
conform to our plans, so
that predictions and esti-
mations are very difficult.
Sticking to a poor plan may
result in catastrophic fail-
ures.

Benefits and Issues
The obvious benefits of an
flexible, result-based ap-
proach is that each itera-
tion is shorter than the
overall project, so less time
expires between planning
and delivery. Thus, predic-
tion is easier, deviations
from plans are smaller, and
adapting the overall project
is easier. The obvious draw-
back is that it is more diffi-
cult to stay on a pre-
meditated plan, that each
iteration incurs additional
fixed cost, and that parts
may have to be re-done
after a plan-change.



