
Light-Weight Processes for
Increased Agility

(c) H. Störrle, 2018, hstorrle@acm.org

Harald Störrle, DTU COMPUTE

Benefits
Clearly, frequent re-assess-
ments allow for quicker re-
sponse to changed require-
ments (thus agile). This 
avoids delivering the wrong 
product. HighlighƟng proc-
ess improvement acƟviƟes 
increases producƟvity. 
However, probably the 
largest contribuƟon, 
though, is moƟvaƟng de-
velopers through empow-
erming them..

LimitaƟons
The benefit of agility is also 
the greatest limitaƟon: 
highly flexible processes 
lack the rigidity needed to 
guide large projects. Also, 
every iteraƟon has fixed 
cost so that the overall 
overhead is actually larger 
than in sequenƟal proc-
esses. Finally, light-weight 
processes can’t ensure 
regulaƟon compliance as 
needed in some industries.

Origin
There is a natural tendency 
to refine and augment sys-
tems of guidlines over 
Ɵme. As a backlash to this 
type of heavy-weight proc-
esses, the lightweight proc-
ess movement emerged in 
the late 1990s. There, the 
focus was on empower-
ment of developers, reduc-
Ɵon of “red tape”, and fo-
cusing on the product 
rather than the process.

Core Idea
Light-weight process pro-
propose to de-emphasize 
non-coding acƟviƟes as 
typically occur in the early 
life-cycle phases (e.g., re-
quirements, architecture) 
in favor of the actual 
coding. They also reduce it-
eraƟon duraƟons to allow 
for frequent evaluaƟons 
and adjustments of the 
project course.

IndicaƟons
Light-weight processes are 
advisable when one or 
more of the following 
apply: 
1) the requirements are 

unknown, unknowable, 
or highly volaƟle.

2) project size is fairly small 
(up to 10 people), and 

3) the systems is rich in 
atomic features (as are 
oŌen found in the MIS 
domain).

Counter IndicaƟons
Light-weight processes are 
not advisable if one or more 
of the following apply: 
1) the requirements are un-

known or highly volaƟle.
2) project size is large (20+ 

people, geographic distri-
buƟon),

3) the systems is rich in 
crosscuƫng concerns

4) system needs to comply 
with regulaƟons or has 
high criƟcality.

XP
Extreme Programming was 
the first lightweight devel-
opment method to become 
popular. It re-popularized 
long standing proposed 
pracƟces such as “Pair Pro-
gramming (PP)” and “Test 
First” and claimed improved 
quality and producƟvity, 
both of which failed to ma-
terialize. Other benefits like 
knowledge sharing by PP 
are demonstrable, though.

SCRUM
In the mid 2000s, Scrum 
became popular as a 
project management ap-
proach. In comparison to 
XP, Scrum is fairly vaguely 
defined, and every project 
interprets it in a different 
way, impeding learning. 
Core elements are public 
displays, group dynamic 
techniques, and a strong 
focus onprocess improve-
ment.

Sprint
Grooming

ElicitaƟon

PreparaƟon

Sprint RetrospecƟve
& Sprint Review

 
g

ost Mort m

 nspecƟon

Shipping

Refactoring

▪ removing impediments 
for development team

▪ shielding the team 
from outside influence

▪ moderaƟng reviews 
and esƟmaƟon

Product Backlog
A prioriƟzed set of required fea-
tures and qualiƟes, oŌen expressed 
as scenarios (user stories) is cre-
ated by the product owner.

Sprint Backlog
A set of feature slices, oŌen 
express-ed as sub-stories. Sup-
posed to be completable within a 
sprint. The process clarifying, refin-
ing, and restructuring the sprint 
backlog is called grooming.

Scrum Master
A group facilitator and process 
manager who is responsible for

Product
The prototype system. AŌer a 
sprint, the product is inspected 
(sprint review), and maybe refac-
toring is added as a new item in the 
sprint backlog. The past sprint is 
also reviewed from a process point 
of view (sprint retrospecƟve), for 
exploiƟng process improvement 
opportuniƟes.

PrioriƟzed
Features

Feature
Slices

Product


