Harald Storrle, DTU COMPUTE

Process Paradigms for
Software Development Projects

Lifecycle

The software development
lifecycle is the general con-
ceptual framework for soft-
ware processes at all
scales. It depicts the logical
dependencies between
phases without specifying
their sizes, detail activities,
or products.

For very small prorgam-
ming tasks, we may not de-
marcate explicitly an
“Analysis Phase”, say, but
there always is one, even if
it is only a minute activity
in the head of the program-
metr.

Sequential

The sequential model
(often called “Waterfall”)
has been developed in one
of the first (and extremely
successful) large scale de-
velopment projects, the
IBM S/360 in the 1960s.
“Waterfall” is often used as
a derogatory term implying
strict sequence, rigid struc-
ture, and stifling regulation.
However, even the original
model shown on the right
obviously does not advo-
cate a strict, unidirectional
top-down flow of artifacts.
Instead, it specifically de-
fines feedback loops.

Spiral

Soon after the sequential
process was proposed, the
Spiral model followed.
Where the sequential
model focuses on planning
and control, the spiral
model suggests to create a
sequence of (more or less
complete) prototypes and
revisit the whole life cacle
iteratively. In each itera-
tion, the product so far is
evaluated and the plan is
adapted. Thus, we trade
effort for risk, and we rely
on greater individual and
organisational capabilities
to ensure quality.

Document No. 1

Requirements

Document No. 2
Preliminary
Design (SPEC)

Software Lifecycle

Design Coding

n

Analysis Integration

M ||§rat| on
Definition & & Deployment
|deation
Closedown Operations
Renovations
Maintenance
Plan-Based Processes
System \\
il Preliminary '__,-'y‘:___""_:‘__j
| Requirements Desion |\ |Reccemants L ot ansats and cariog
o Analysis N | be
bOj‘(Wafe \]2 D ation must be
Requirements Program \ | cu d complete
Design \\ Software | 3 Do the job twice if possible
\ Requirements | 4 Testing must be planned
Preliminary X j | controlled, and monitered
Pé&;gsf:ga;ﬂ Testing \\ (5 Involve the customer

A Analysis

Analysis

1

Program
Design

|
(((i

Preliminary
Software
Review

ding

Coding
\ 1

N e Testing

Testing

/FSARY

Document No. 3
Interface
Design (SPEC)

.

Document No. 4
Final Design

CSR
Critical
oftware
Review

Final
Software

Operations \ Operations

Acceptance
Review

(SPEC)

P

Document No. 4
Final Design
(SPEC)

Document No. 6
Operating
Instructions

Document No. 5
Test Plan
(SPEC)

Product-Based Processes

(ulativ

Determine

Objectives,
Alternatives.
Constraints

Evaluate Alternatives:
Identify, Resolve Risks

Commitment

Partition

s | Concept of
te | Operation

| Integration |
and Test |

1 Implemer ‘ A‘_cem(«'(;ozl
| |

Plan Develop, Verify
Next Phases Next-Level Product

=

Benefits and Issues
Understanding the soft-
ware lifecycle is paramount
for understanding software
development. It defines the
essential concepts and ter-
minology, and reminds us
of the logical dependen-
cies.

Frequently, though, the li-
fecycle is misunderstood as
being a prescriptive model,
i.e., a set of instructions of
how to run a software de-
velopment project.

Benefits and Issues
The obvious benefits of a
rigid, plan-based process
are plannability and mana-
gerial control: it is always
clear what is supposed to
be happening next and
who is responsible. This is
essential for very large
projects and highly regu-
lated industries (e.g., aero-
space, medical). However,
reality does not always
conform to our plans, so
that predictions and esti-
mations are very difficult.
Sticking to a poor plan may
result in catastrophic fail-
ures.

Benefits and Issues
The obvious benefits of an
flexible, result-based ap-
proach is that each itera-
tion is shorter than the
overall project, so less time
expires between planning
and delivery. Thus, predic-
tion is easier, deviations
from plans are smaller, and
adapting the overall project
is easier. The obvious draw-
back is that it is more diffi-
cult to stay on a pre-
meditated plan, that each
iteration incurs additional
fixed cost, and that parts
may have to be re-done
after a plan-change.

